1. Reading:

2. Homework due 5pm Tues of week 4:

Consider the model from the previous homework, described in Section 3.7 of *Bayesian Data Analysis*:

\[y_j \sim \text{Binomial}(n_j, \logit^{-1}(\alpha + \beta x_j)), \text{ for } j = 1, \ldots, 4, \]

where \(\logit^{-1}(z) = e^z/(1 + e^z) \) and the data are \(x = (-0.86, -0.30, -0.05, 0.73) \), \(n = (5, 5, 5, 5) \), and \(y = (0, 1, 3, 5) \). Assume a noninformative independent \(N(0, 100^2) \) prior distributions for \(\alpha \) and \(\beta \).

The data here represent four experiments of rats exposed to a toxin: \(x \) is the logarithm of the dose in experiment \(j \), \(n \) is the number of rats in the experiment, and \(y \) is the number that die. Thus, in these data, more rats die at higher doses.

The joint posterior density is

\[
p(\alpha, \beta|y, n, y) \propto N(\alpha|0, 100^2)N(\beta|0, 100^2) \prod_{j=1}^{4} [\logit^{-1}(\alpha + \beta x_j)]^{y_j} [1 - \logit^{-1}(\alpha + \beta x_j)]^{n_j-y_j}.
\]

The primary quantities of interest in the analysis are \(\beta \) (the slope of the logistic regression), and \(-\alpha/\beta\), which is called the LD50, the dose at which there is a 50% chance of death.

(a) Program a Metropolis algorithm with a simple two-dimensional jumping rule, \(\theta^* \sim N(\theta, I) \). Run the algorithm to approximate convergence.

(b) Program a Metropolis algorithm with a two-dimensional jumping rule that is optimized for efficiency. Demonstrate that you have set the tuning parameters of your algorithm to be approximately optimal.