Bayesian Computation

Andrew Gelman
Department of Statistics and Department of Political Science
Columbia University

Class 4, 28 Sept 2011
Review of homework 4

Skills:

1. Write the joint posterior density (up to a multiplicative constant)
2. Program two-dimensional Metropolis jumps
3. Program the accept/reject rule
4. Tune the parameters of your algorithm
Skills:

1. Write the joint posterior density (up to a multiplicative constant)
2. Program two-dimensional Metropolis jumps
3. Program the accept/reject rule
4. Tune the parameters of your algorithm
Review of homework 4

Skills:

1. Write the joint posterior density (up to a multiplicative constant)
2. Program two-dimensional Metropolis jumps
3. Program the accept/reject rule
4. Tune the parameters of your algorithm
Review of homework 4

Skills:

1. Write the joint posterior density (up to a multiplicative constant)
2. Program two-dimensional Metropolis jumps
3. Program the accept/reject rule
4. Tune the parameters of your algorithm
Skills:

1. Write the joint posterior density (up to a multiplicative constant)
2. Program two-dimensional Metropolis jumps
3. Program the accept/reject rule
4. Tune the parameters of your algorithm
Review of homework 4

Skills:
1. Write the joint posterior density (up to a multiplicative constant)
2. Program two-dimensional Metropolis jumps
3. Program the accept/reject rule
4. Tune the parameters of your algorithm
Optimization of Gibbs and Metropolis algorithms

- Conclusion of presentation by Wei Wang, Ph.D. student in statistics
- You can interrupt and discuss . . .
Optimization of Gibbs and Metropolis algorithms

- Conclusion of presentation by Wei Wang, Ph.D. student in statistics
- You can interrupt and discuss . . .
Optimization of Gibbs and Metropolis algorithms

- Conclusion of presentation by Wei Wang, Ph.D. student in statistics
- You can interrupt and discuss ...
Missing-data imputation

- Presentation by Ido Rosen, M.S. student in computer science
- You can interrupt and discuss . . .
Missing-data imputation

- Presentation by Ido Rosen, M.S. student in computer science
- You can interrupt and discuss . . .
Presentation by Ido Rosen, M.S. student in computer science
You can interrupt and discuss ...
1. Write the joint posterior density (up to a multiplicative constant)

- Binomial model for #deaths given #rats
- Logistic model for Pr(death)
- Prior distribution for the logistic regression coefficients
- Discuss extensions to the model
- Steps 2, 3, 4, 5 are straightforward
1. Write the joint posterior density (up to a multiplicative constant)

- Binomial model for #deaths given #rats
- Logistic model for Pr(death)
- Prior distribution for the logistic regression coefficients
- Discuss extensions to the model
- Steps 2, 3, 4 5 are straightforward
1. Write the joint posterior density (up to a multiplicative constant)

- Binomial model for \#deaths given \#rats
- Logistic model for \Pr(\text{death})
 - Prior distribution for the logistic regression coefficients
 - Discuss extensions to the model
- Steps 2, 3, 4, 5 are straightforward
1. Write the joint posterior density (up to a multiplicative constant)

- Binomial model for #deaths given #rats
- Logistic model for Pr(death)
- Prior distribution for the logistic regression coefficients
- Discuss extensions to the model
- Steps 2, 3, 4 5 are straightforward
1. Write the joint posterior density (up to a multiplicative constant)

- Binomial model for \#deaths given \#rats
- Logistic model for \Pr(\text{death})
- Prior distribution for the logistic regression coefficients
- Discuss extensions to the model
- Steps 2, 3, 4, 5 are straightforward
1. Write the joint posterior density (up to a multiplicative constant)

- Binomial model for \#deaths given \#rats
- Logistic model for Pr(death)
- Prior distribution for the logistic regression coefficients
- Discuss extensions to the model
- Steps 2, 3, 4 5 are straightforward
Tuning the algorithm

- Shape of jumping kernel
- Scale of jumping kernel
- Objective function to optimize
- Trying different tuning parameters
- Stochastic optimization
Tuning the algorithm

- Shape of jumping kernel
- Scale of jumping kernel
- Objective function to optimize
- Trying different tuning parameters
- Stochastic optimization
Tuning the algorithm

- Shape of jumping kernel
- Scale of jumping kernel
- Objective function to optimize
- Trying different tuning parameters
- Stochastic optimization
Tuning the algorithm

- Shape of jumping kernel
- Scale of jumping kernel
- Objective function to optimize
 - Trying different tuning parameters
 - Stochastic optimization
Tuning the algorithm

- Shape of jumping kernel
- Scale of jumping kernel
- Objective function to optimize
- Trying different tuning parameters
- Stochastic optimization
Tuning the algorithm

- Shape of jumping kernel
- Scale of jumping kernel
- Objective function to optimize
- Trying different tuning parameters
- Stochastic optimization
For next week’s class

- Homework 5 due 5pm Tues
- All course material is at http://www.stat.columbia.edu/~gelman/bayescomputation
- Next class:
For next week’s class

- Homework 5 due 5pm Tues
- All course material is at http://www.stat.columbia.edu/~gelman/bayescomputation
- Next class:
 - I present weakly informative priors
For next week’s class

- Homework 5 due 5pm Tues
- All course material is at http://www.stat.columbia.edu/~gelman/bayescomputation
- Next class:
 - I present weakly informative priors
For next week’s class

- Homework 5 due 5pm Tues
- All course material is at http://www.stat.columbia.edu/~gelman/bayescomputation
- Next class:
 - I present weakly informative priors
For next week’s class

- Homework 5 due 5pm Tues
- All course material is at http://www.stat.columbia.edu/~gelman/bayescomputation
- Next class:
 - I present weakly informative priors