Contracts on Maximum and Average Drawdowns or Drawups

Jan Vecer, Columbia University, Department of Statistics, New York, NY 10027, USA

February 7, 2006

Abstract

Risk management of drawdowns and portfolio optimization with drawdown constraints is becoming increasingly important among practitioners. In this paper, we introduce new types of contracts which depend on the maximum drawdown or on the average drawdown. Trading drawdown contracts would address directly the concerns of portfolio managers who would like to manage them. The maximum or the average drawdown can be viewed as a derivative contract which could be priced and hedged accordingly as an option. Similar contracts can be written on the maximum drawup or on the average drawup. We also discuss more complex products, such as barrier knock in option on the maximum drawdown or drawup, which we call crash and rally options, respectively.

1 Drawdowns and Drawups

Suppose that we have an underlying asset whose price process at time t is given by S_t. For example, it could be a stock price, index, interest rate or exchange rate. Denote by M_t its running maximum up to time t:

$$M_t = \max_{u \in [0,t]} S_u.$$

Drawdown D_t is defined as the drop of the asset price from its running maximum:

$$D_t = M_t - S_t.$$

Maximum drawdown MDD_t is defined as the maximal drop of the asset price from its running maximum over a given period of time:

$$MDD_t = \max_{u \in [0,t]} D_u.$$

Average drawdown ADD_t is given by

$$ADD_t = \frac{1}{t} \int_0^t D_u du.$$

Similarly, we can define the concept of drawup, maximum drawup and average drawup. **Drawup** U_t is defined as the increase of the asset price from its running minimum:

$$U_t = S_t - m_t,$$

where

$$m_t = \min_{u \in [0,t]} S_u.$$

Maximum drawup MDU_t is given by

$$MDU_t = \max_{u \in [0,t]} U_u,$$
and Average drawup ADU_t is defined as

$$ADU_t = \frac{1}{t} \int_0^t U_u du.$$

Figure 1 illustrates the concepts of the drawdown and the drawup on data taken from S&P500 for the year 2005.

The concept of maximum drawdown or average drawdown has been extensively studied in the recent literature. Risk measures based on the maximum or average drawdown can serve as an alternative to the commonly used Value-at-Risk. Portfolio optimization using the drawdown has been considered in Chekhlov, Uryasev and Zabarkin (2005). Analytical results linking the maximum drawdown to the mean return appeared in the paper of Magdon-Ismail and Atiya (2004).

A portfolio manager concerned with control of the drawdown might be interested in entering a contract with payoffs depending on the level of the maximum or the average drawdown. The obvious choices are listed in Table 1:

<table>
<thead>
<tr>
<th>Contract type</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward (futures) on the maximum drawdown</td>
<td>$MDD_T - K$</td>
</tr>
<tr>
<td>Call on the maximum drawdown</td>
<td>$(MDD_T - K)^+$</td>
</tr>
<tr>
<td>Put on the maximum drawdown</td>
<td>$(K - MDD_T)^+$</td>
</tr>
<tr>
<td>Forward (futures) on the average drawdown</td>
<td>$ADD_T - K$</td>
</tr>
<tr>
<td>Call on the average drawdown</td>
<td>$(ADD_T - K)^+$</td>
</tr>
<tr>
<td>Put on the average drawdown</td>
<td>$(K - ADD_T)^+$</td>
</tr>
</tbody>
</table>

Table 1: Contracts depending on the maximum drawdown or the average drawdown.

The price of a futures contract on maximum drawdown or average drawdown can serve as an important risk measure indicator which would be quoted by the market (rather than determined internally). When the market is in a bubble, it is reasonable to expect that the prices of drawdown contracts would be significantly higher. On the other hand, when the market is stable, or when it exhibits mean reversion behavior, the prices of drawdown contracts would become cheaper.

The volume of drawdown trading can be relatively small, but it would carry important information for the entire market in terms of the perception of drawdown risk associated with the given asset or index. If
the market enters a bubble, the price of the drawdown contract would increase, indicating the increased risk associated with the given asset. Higher risk leads to a limited exposure to such asset, and possibly to a fast price correction. Transparent quoting of maximum drawdown prices could potentially lead to more stable markets, without long periods of bubbles followed by significant crashes. The market would rather adapt through small and short corrections instead of large and extended drops.

As for the pricing, the value \(v(t, S_t, M_t, MDD_t) \) of any type of contract depending on the maximum drawdown is given by taking the conditional expectation of the discounted payoff under the risk neutral measure:

\[
v(t, S_t, M_t, MDD_t) = \mathbb{E}[e^{-(T-t)} f(\{MDD_u\}_{u=0}^T|S_t, M_t, MDD_t)].
\]

A similar formula applies for the pricing of contracts that depend on the average drawdown, \(ADD_t \). Here, the function \(f \) determines the type of payoff defined by the contract (for instance, \(f(\{MDD_t\}_{i=0}^T) = MDD_T - K \) for the forward contract, etc.). For the evolution of the underlying asset under the risk neutral measure, we may assume that

\[
dS_t = rS_t dt + g(t, S_t) dN_t,
\]

for a general martingale \(N_t \) (diffusion or jump type process). Other possible evolutions, such as a mean reversion type process, could be considered for the asset dynamics of \(S_t \).

The price can be computed by using standard Monte Carlo simulations. The pricing via conditional expectations can be linked to partial differential equations through the Feynman-Kac theorem, see for instance Shreve (2004). However, the resulting PDE has 3 spatial dimensions which is difficult to implement and slow to compute. Therefore Monte Carlo methods would be more efficient and easy to implement in this situation. Monte Carlo also allows for more complicated dynamics of the asset price, such as stochastic volatility or jumps.

![Figure 2:](image)

Figure 2: Left: The price of the contract with the payoff \(MDD_T \) (maximum drawdown) as a function of maturity \(T \). The underlying asset is the index S&P500 on 01/03/2005: opening value 1,211.92, interest rate \(r = 0.03 \), volatility \(\sigma = 12\% \). Right: The price of the call option \((MDD_T - K)^+ \) as a function of the strike \(K \), same underlying index S&P500, the value of the option on 01/03/2005 with maturity 12/30/2005.

Figure 2 shows the price of the forward contract on the maximum drawdown \(MDD_T \) as a function of maturity written on the S&P500 index, assuming the geometric Brownian motion model. It also shows the price of the call option on the maximum drawdown with maturity 1 year as a function of strike. Figure 3 illustrates the same contracts written on the average drawdown \(ADD_T \).
Table 2 lists realized values and theoretical prices of contracts depending on the maximum and average drawdown or drawup written on S&P500 in the year 2005. Notice that in that period, theoretical prices of 1 year contracts written on both drawdown and drawup exceeded the realized values. This might be due to the effect of mean reversion — stable real markets could stay within a more conservative range in the long run if compared to models based on geometric Brownian motion model. We assumed a rather small estimate of volatility $\sigma = 12\%$.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Contracts Expiring on 12/30/2005, S&P500 & Realized Values & Theoretical Prices \\
\hline
 & 3 months & 1 year & 3 months & 1 year \\
\hline
Forward on MDD & 51.97 & 87.81 & 76.84 & 155.39 \\
Forward on ADD & 17.30 & 27.35 & 49.26 & 96.81 \\
Forward on MDU & 95.90 & 135.24 & 84.44 & 185.27 \\
Forward on ADU & 51.16 & 61.28 & 56.40 & 124.19 \\
\hline
\end{tabular}
\caption{The realized values and theoretical prices of forward contracts on the maximum drawdown, the average drawdown, the maximum drawup, and the average drawup, where the underlying index is S&P500. We assume that the 3 month contract starts on Oct 3, 2005 and expires on Dec 30, 2005; the 1 year contract starts on Jan 3, 2005 and expires on Dec 30, 2005. We use opening value 1211.92 of the index for the one year contract, opening value 1228.81 of the index for the 3 months contract, interest rate $r = 0.03$, volatility $\sigma = 12\%$. Theoretical prices are obtained from Monte Carlo simulation, standard deviations do not exceed 0.01.}
\end{table}

2 Crash Option, Rally Option and Other Contracts

Let us define the event of the absolute value market crash as the first time the stock price S_t drops by a constant a from its running maximum, i.e.,

$$T_a = \inf\{t \geq 0 : D_t = M_t - S_t \geq a\} = \inf\{t \geq 0 : MDD_t \geq a\},$$

which is obviously the same event as the first time the maximum drawdown exceeds level a.

4
A crash option is defined as a contract which pays off \(a \) at the time of the market crash \(T_a \) if \(T_a < T \), where \(T \) is the maturity. Other payoffs, such as \(MT_a - ST_a \) (\(MT_a - ST_a \) could be greater than \(a \) if the market exhibits price discontinuity at the time of the crash), are possible to consider. The crash option can be regarded as a barrier option on the maximum drawdown.

The closest contract to the crash option that has been studied in the literature is the Russian option. It is a perpetual option that pays off at the time of the exercise the running maximum (discounted by a rate \(\alpha > r \)) of the asset price. It turns out that in the Black-Scholes model, the optimal exercise time is the time of a drawdown of a certain size \(a \). See, for instance, Shepp and Shiryaev (1993).

The crash option resets its holder to the historical maximum of the asset price during the lifetime of the contract at the time of the market crash. If the crash does not happen up to the time of the maturity of the contract, the option expires worthless. Since the market crash is a rather extreme event, most of the time the option will not end up in the money if we are considering a large drop. This feature will make the contract cheap. It is possible to construct a contract which would set the wealth of its holder to a different level than the running maximum at the time of the crash, for instance to the running average, or to some intermediate point between the running maximum and the crash value.

<table>
<thead>
<tr>
<th>Drop Level</th>
<th>3M</th>
<th>1Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>32.80</td>
<td>49.72</td>
</tr>
<tr>
<td>75</td>
<td>27.56</td>
<td>72.24</td>
</tr>
<tr>
<td>100</td>
<td>18.00</td>
<td>83.90</td>
</tr>
<tr>
<td>150</td>
<td>4.32</td>
<td>72.27</td>
</tr>
<tr>
<td>200</td>
<td>0.51</td>
<td>45.10</td>
</tr>
</tbody>
</table>

Table 3: The price of the crash option (with daily monitoring) for selected drop levels and maturities 3 months and 1 year. We assume that the 3 month contract starts on Oct 3, 2005 and expires on Dec 30, 2005; the 1 year contract starts on Jan 3, 2005 and expires on Dec 30, 2005. We use opening value 1,211.92 of the index for the one year contract, opening value 1228.81 of the index for the 3 months contract, interest rate \(r = 0.03 \), volatility \(\sigma = 12\% \). Theoretical prices are obtained from Monte Carlo simulation, standard deviations do not exceed 0.01.

Table 3 gives theoretical prices of crash option contract written on S&P500 in the year 2005 for selected drop levels and maturities. The prices were computed as discounted payoff under the risk neutral measure, using Monte Carlo simulation. Figure 4 plots the theoretical price of the crash option as a function of the barrier level. Notice that small drawdowns typically happen within the given time framework just from the random nature of the price process, making the price of crash option increase almost linearly around zero. However, drops of larger sizes become increasingly unlikely, making the corresponding option price cheaper.

A rally option insures the opposite event of a crash, the case of a market rally. Define the rally event in the absolute value as the first time the stock price raises by a constant \(b \) from its running minimum, i.e.,

\[
T_b = \inf\{t \geq 0 : S_t - m_t \geq b\} = \inf\{t \geq 0 : MDU_t \geq b\}.
\]

The rally option is defined as a contract which pays off \(b \) at the time of the rally \(T_b \) if \(T_b < T \), where \(T \) is the maturity. Other payoffs, such as \(ST_b - MT_b \), are possible to consider.

A range barrier option pays off \(c \) at the time \(U_c \) if \(U_c < T \), where \(T \) is the maturity, and \(U_c \) is first time the stock exceeds a range of the level \(c \), i.e.,

\[
U_c = \inf\{t \geq 0 : M_t - m_t \geq c\}.
\]
Figure 4: Price of the crash option (with daily monitoring) as a function of barrier level and maturities 3 months (left) and 1 year (right). We assume that the 3 month contract starts on Oct 3, 2005 and expires on Dec 30, 2005; the 1 year contract starts on Jan 3, 2005 and expires on Dec 30, 2005. We use opening value 1,211.92 of the index for the one year contract, opening value 1228.81 of the index for the 3 months contract, interest rate $r = 0.03$, volatility $\sigma = 12\%$.

All contracts described in this paper can be also defined on the percentage (relative value) drawdown or drawup as opposed to the absolute values. For instance, we can define the maximum relative drawdown $MRDD_t$ as the largest relative drop of the asset with respect to its running maximum up to time t:

$$MRDD_t = 1 - \max_{u \in [0,t]} \frac{S_u}{M_u}.$$

One can trade various options with maximum relative drawdown as the underlying process. For example, the barrier option on $MRDD_t$ represents the relative value crash option with the payoff $a^* \cdot M_T$ at the first time T_{a^*} when the relative drawdown exceeds $100 \cdot a^\%$ percent:

$$T_{a^*} = \inf\{t \geq 0 : MRDD_t \geq a^*\}.$$

Similarly, we can define the maximum relative drawup as

$$MRDU_t = \max_{u \in [0,t]} \frac{S_u}{m_u} - 1,$$

and the corresponding contracts written on $MRDU_t$ as the underlying process.

References

