APPENDIX B: PROOF OF THEOREM 5.3

Proof. First of all, to simplify our notation, we write \(\Omega \) as a vector in the following way: divide the indexes of \(\Omega_0 = \{(\omega_{0ij}), i, j = 1, \ldots, p \} \) to two parts: \(A = \{(i, j), \omega_{0ij} \neq 0 & i \leq j \} \) and \(B = \{(i, j), \omega_{0ij} = 0 & i \leq j \} \). Denoting \(\Omega \) in a vector format, we write \(\beta = (\beta_1, \beta_2) \), where \(\beta_1 = (\omega_{ij}, (i, j) \in A) \) and \(\beta_2 = (\omega_{ij}, (i, j) \in B) \). As a result, \(\beta \) has the length of \(d = p(p + 1)/2 \).

In this way, \(\Omega \) can be considered as a function of \(\beta \): \(\Omega = \Omega(\beta) \). Denote the true value of \(\beta \) as \(\beta_0 = (\beta_{10}, \beta_{20}) = (\beta_{10}, 0) \), where the nonzero part \(\beta_{10} \) has the length of \(s \).

In the adaptive LASSO penalty setting, we define

\[
Q(\beta) = L(\beta) - n\lambda_n(\bar{\beta}^{-\gamma})^T|\beta|,
\]

where \(L(\beta) = \sum_{i=1}^{n} l_i(\Omega(\beta)) = \frac{n}{2} \log |\Omega| - \frac{n}{2} \log(2\pi) - \sum_{i=1}^{n} \frac{1}{2} x_i^T \Omega x_i \) is the log-likelihood function and \(\bar{\beta} = (\bar{\beta}_1, \bar{\beta}_2, \cdots, \bar{\beta}_d) \) is a \(a_n \)-consistent estimator of \(\beta \), i.e., \(a_n(\bar{\beta} - \beta_0) = O_p(1) \). In addition, we denote \(I(\beta) = E\{[\frac{\partial}{\partial \beta} l(\beta)][\frac{\partial}{\partial \beta} l(\beta)]^T\} \) be the Fisher information matrix.

Let \(\tau_n = n^{-1/2} \), we want to show that for any given \(\epsilon > 0 \), there exists a large constant \(C \) such that

\[
P \left\{ \sup_{||u||=C} Q(\beta_0 + \tau_n u) < Q(\beta_0) \right\} \geq 1 - \epsilon
\]

This implies that with probability at least \(1 - \epsilon \) that there exists a local maximum in the ball \(\{\beta_0 + \tau_n u : ||u|| \leq C\} \). Hence there exists a local maximizer such that \(||\hat{\beta} - \beta_0|| = O_p(\tau_n) \).
The asymptotic normality of the estimator can be derived from Fan and Li (2001). For any a_n satisfying $a_n |\tilde{\beta}_j| = O_p(1)$ as $n \to \infty$. Again, by a_n consistency of $\tilde{\beta}$, we have $a_n |\tilde{\beta}_j| = O_p(1)$ as $n \to \infty$. Thus, the order of the third term of (B.4) is $n^{1/2} \lambda_n a_n \gamma \to \infty$ as $n \to \infty$ by our assumption. Hence (B.3) holds. This completes the proof of the sparsity part. The asymptotic normality of the estimator can be derived from Fan and Li (2001).}

REFERENCES