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Introduction

The momentum worldwide toward greater utilization of private
capital for public purpose, which began in the latter stages of the
20th century, shows no sign of abating. In the United States, 20
states have enabling legislation that permits some form of public–
private initiatives for transportation projects �Reinhardt 2004�. In-
ternationally, the Private Finance Initiative �PFI� in the United
Kingdom is well known while the use of private capital for infra-
structure projects within emerging economies has become a glo-
bal trend where financially challenged public administrations look
toward the private sector to develop basic infrastructure �Esty
2003�. Without a marked change in the allocation of budgetary
resources by governments at all levels, the share of infrastructure
that is privately financed will certainly increase.

Effectively, the public and private sectors are fashioning new
partnership arrangements where the efforts of the two sectors are
combined to achieve a common objective, the successful realiza-
tion of an infrastructure project. Certainly, these two parties are
motivated by different objectives; the public sector is interested in
the political and socio-economic benefits that a successful project
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can provide while the private sector is primarily concerned with
the financial profitability of a project.

One of the more effective methods to exploit this public–
private partnership is the build–operate–transfer �BOT� project
delivery method. Private participation in a BOT delivery strategy,
however, is conditioned upon the mitigation of the risks that may
adversely impact a project’s profitability. A relevant BOT project
risk that may seriously undermine a project’s profitability is the
revenue risk, that is, “the risk that the project may not earn suf-
ficient revenue to service its operating costs and debt and leave an
adequate return for investors” �Yescombe 2002�. If the private
participants do not feel comfortable with the level of revenue risk,
they will typically withdraw from a BOT project.

The public sector, i.e., the government, could provide incen-
tives or subsidies to entice private investment. These incentives
might take the form of “guarantees” where the government se-
cures a minimum amount of revenue in order to improve the
creditworthiness of a BOT arrangement. In effect, the government
has granted the sponsor a contract to cover the revenue shortfall
over a specific operating period. If the concept of a revenue guar-
antee is generalized, then a revenue guarantee is a contract in
which one party, the guarantor, promises to pay the other party,
the third party guaranteed �TPG� the revenue shortfall �K−X�
relative to a period of time �t, that is the difference between the
minimum guaranteed net revenue, K, and the net revenue accu-
mulated in �t, X. The contractual cumulative period �t�project
financial auditing interval, which typically occurs on a quarterly,
semiannual or annual basis. Note that this type of scheme is akin
to a financial put option.

The nature of a revenue guarantee is fully determined once the
following two elements are established:
1. Number of exercise rights, M, representing the number of

times the TPG is entitled to exercise or “redeem” the guar-
antee; and

2. Number of exercise dates, N, representing the dates where
the M exercise rights can be executed. At each date, it is

possible to execute only one exercise right. The exercise
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dates are set at �t period apart from each other.
Theoretically, the structure of a revenue guarantee may take

various forms. For example, the guarantor could grant the TPG:
�1� the same number of exercise rights as exercise dates, M =N;
and �2� fewer exercise rights than exercise dates, M �N; or �3� a
single exercise right, M =1.

Clearly, this “real” option has value. If the value of such an
option is substantial and no effort is made to quantify it, then the
government may unknowingly provide the sponsor a tremendous
subsidy. Alternatively, the sponsor may unwittingly disregard or
attach a conservative value to the option in view of its vagueness.
In the absence of an objective measure to reconcile the expecta-
tions between the two parties, abandonment of a needed project is
a likely possibility, thus leading to a lose–lose situation.

Accordingly, the intent of this paper is to present a method for
quantifying the value of a revenue guarantee in a BOT project.
The valuation approach extends existing computational finance
methods used to price discrete-exercise financial options, specifi-
cally the least-squares Monte Carlo method, and the approach is
illustrated in a hypothetical case study. The valuation method pre-
sented is far more flexible than prevailing methods, and it can
provide governments, sponsors, and lenders the ability to deter-
mine the worth of an important revenue risk mitigation strategy, a
possibility that heretofore was only notional.

Background

Option Theory

The basic structure of a revenue guarantee suggests that real
options analysis techniques are appropriate for its valuation. Gen-
erally, an option may be defined as the opportunity to take a
beneficial action, within a bounded time frame, when a favorable
condition occurs. Accordingly, option theory studies how to
model and price this “opportunity” which is typically either a
contractual right �e.g., financial options, flexible commodity con-
tracts� or system flexibility �e.g., expansion or delay options�.

Option theory embraces two principal research fields: financial
option theory and the more recent real option theory. The former
refers to option theory applied to assets traded in the financial
markets, while the latter concerns option theory applied to nonfi-
nancial assets �or real assets�. The foundation for financial option
theory was established in 1900 by the French mathematician
Louis Bachelier, and this field matured in the 1970s thanks to the
seminal Nobel Prize research by Merton, Black, and Scholes
�Merton 1973; Black and Scholes 1973�. Alternatively, real option
theory is a relatively recent development and Myers �1977�, who
first coined the term “real option,” is credited for its initiation.
Over the years, other researchers have significantly contributed to
expand real option theory �Dixit and Pindyck 1994; Trigeorgis
1996; Amram and Kulatilaka 1999; Copeland and Antikarov
2001�. Wang and de Neufville �2005� clarified the “nature” of real
options by categorizing them into real options “on” and “in”
projects. Real options “on” projects are mostly concerned with
the valuation of investment opportunities, while real options “in”
projects are mostly concerned with the design of flexibility �Wang
and de Neufville 2005�.

Several authors have investigated the use of real option analy-
sis in infrastructure problems: Ford et al. �2002� in strategic plan-
ning of a toll road project; Ho and Liu �2002� in evaluating A/E/C

technology investments; Garvin and Cheah �2004� in infrastruc-
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ture investment decisions; Zhao et al. �2004� in highway devel-
opment; Zhao and Tseng �2003�, along with de Neufville et al.
�2006�, in designing multistory parking garages.

Discrete-Exercise Options

A revenue guarantee is a particular type of “real” option, a
discrete-exercise option. Discrete exercise options are ones that
can be exercised at discrete points over a predetermined time
period. Discrete-exercise options generally take one of three
forms: European, Bermudan, and simple multiple-exercise op-
tions. Table 1 differentiates the characteristics of each. Both the
European and Bermudan option classes are related to the simple
multiple-exercise option class �Jaillet et al. 2004�. Hereafter,
simple multiple-exercise options are also referred to as “Austra-
lian” options.

Valuing a European option is rather straightforward, even by
Monte Carlo simulation; however, pricing of Bermudan and Aus-
tralian options through simulation is more challenging. A decade
ago, most academics assumed that it was not possible to employ
Monte Carlo simulation to price Bermudan options. In the last 10
years, several researchers have successfully combined different
dynamic programming techniques with Monte Carlo simulation to
value financial Bermudan options: Broadie and Glasserman
�1997�, Andersen �2000�, and Longstaff and Schwartz �2001�.
The Longstaff–Schwartz approach, also referred to as the least-
squares Monte Carlo �LSM� method, is the most popular ap-
proach among them, mainly for its mark of being an intuitive and
flexible tool �Gamba 2003�.

Pricing Bermudan options is complicated because of the right
of the holder to exercise the option at multiple, yet finite, points in
time before maturity. At each exercise point, the holder optimally
compares the cash flow due to an immediate exercise, the imme-
diate exercise value, with the cash flow generated if the option is
exercised in the future, the continuation value. Thus, the optimal
exercise decision relies upon estimating the continuation value.
Longstaff and Schwartz �2001� proposed estimating the continu-
ation value by a least-squares regression together with the cross-
sectional information provided by a Monte Carlo simulation. The
continuation value function is then approximated by fitting the
future cash flows using, for example, simple polynomial basis
functions. Comparing these estimates with the cash flows of im-
mediate exercise yields the optimal stopping rule. By expanding
the scope of the investigation, the LSM approach can also be
extended to multiple-exercise �Australian� options. Literature on
the LSM method to evaluate Bermudan options is quite extensive,
including the seminal Longstaff and Schwartz article �2001�,
Clement and Protter �2002�, Moreno and Navas �2003�, Gamba
�2003�, and Haugh �2003�. On the other hand, literature on the
LSM method applied to multiple-exercise options appears limited

Table 1. European, Bermudan, and Australian Options

European option An option that can be exercised one time,
only at the end of its life

Bermudan option An option that can be exercised one time,
on specified dates during its life.

Australian option
�simple multiple-
exercise option�

An option than can be exercised M times,
on specified N �N�M� dates during its life
to Meinshausen and Hambly �2004�.



Valuing Revenue Guarantees

Current Approaches

While the concept of a revenue guarantee as a revenue risk miti-
gation strategy for BOT projects is appealing, the current tech-
niques for establishing the fair value of the various configurations
that revenue guarantees might take are quite limited. Dailami
et al. �1999� developed a valuation method for a revenue guaran-
tee in BOT project settings using Monte Carlo simulation, but the
method presumes that the TPG has the right to redeem the guar-
antee at the end of each timeframe of a concession period, i.e.,
N�length of concession period �years�, �t=1 year, and N=M.
This structure provides the TPG with full revenue risk coverage,
and Dailami et al.’s approach values this full coverage guarantee
as a stream of European put options. In other words, the fair price
of such a contract is the value of N European put options with
maturity set at the end of each operational year with a payoff of

��X� = max�K − X,0� �1�

Alternatively, Irwin �2003� introduced a simpler technique for
valuing a revenue guarantee with the following general structure:
�1� N=M =1; and �2� �t=y, where y�period of time fixed by the
guarantor. In this case, the guarantor is offering the TPG a single
opportunity to redeem the guarantee at a predetermined date.
Irwin determines the value of this guarantee by treating it as a
single European put option and employing the familiar Black–
Scholes equation to price the option.

The major shortcoming of Irwin’s valuation approach is that
the TPG must specify beforehand the exact years in which he
wants to exercise the revenue guarantee. Therefore, relevant in-
formation about the revenue guarantee shortfalls that will be
eventually revealed during the operational phase cannot be used
by the TPG �Fig. 1�a��. On the other hand, this lack of decision
flexibility may be overcome by arranging for a full risk coverage

Fig. 1. Past and new framesets for revenue guarantees: �a� partial
coverage, exercise dates defined before operational period; �b� full
coverage, exercise dates defined before operational period; and �c�
partial or full coverage, exercise dates determined during operational
period
revenue guarantee that protects the TPG against the revenue
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shortfalls over all operational years �Fig. 1�b��. In this case, Dai-
lami et al.’s valuation technique may be used; however, this type
of arrangement is likely to result in a costly long-term commit-
ment for the guarantor.

A new “dynamic” valuation frameset is needed, which is un-
like the above mentioned revenue guarantee arrangements that
show “static” decision features. A dynamic approach would be
able to value a revenue guarantee where the TPG decides on the
“spot” i.e., during the operational phase, whether or not to redeem
the revenue guarantee. Thus, the TPG could take full advantage of
the relevant information that will be revealed over the operational
phase to make the best exercise decision �Fig. 1�c��.

Proposed Framework

The value of the “dynamic” revenue guarantee contract with M
claims �Fig. 1�c�� is the expected amount of dollars that the guar-
antor will have to pay the TPG as a result of the TPG’s exercise
policy, i.e., execution of the M claims. Different exercise policies
return different values of the contract; however, only one exercise
policy, the “optimal” exercise policy, will generate the maximum
profit for the TPG. Accordingly, the fair value of the contract can
be defined as the expected amount of dollars to be paid by the
guarantor if the TPG executes an “optimal” exercise policy.

The basic idea is to model the decision-making behavior of the
TPG to determine if and when the TPG will choose to redeem or
exercise revenue guarantee rights. This provides an estimate of
the fair value of the revenue guarantee option since the approach
has determined the potential “cost” of a revenue guarantee to the
guarantors. The valuation framework presumes that the TPG is a
profit maximizer, so given two dollar amounts A and B where A
�B, this party will always prefer A. In addition, the TPG cannot
foresee the future; thus, the TPG’s forecast of future revenues is
an expectation as opposed to a certainty.

Defining the stochastic evolution of the cumulative net rev-
enue X over time is the most crucial element of the entire mod-
eling process. This framework represents the net revenue X as a
discrete-time stochastic process that spans the operational period.
In this type of setting, the modeler may use either a discrete-time
one-factor model �Irwin 2003� or a discrete-time multifactor
model �Dailami et al. 1999�.

Once the analyst defines the model for the underlying variable,
X, the evolution of the net revenue shortfall over time can be
represented by the payoff function Eq. �1�, which is a discrete-
time stochastic process depending on the minimum net revenue,

Fig. 2. TPG’s decision making process
K, and the cumulative net revenue, X.
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Once the salient features of the revenue guarantee contract are
determined, the TPG has acquired a revenue guarantee contract
with M exercise rights at time t=0. The decision making process
followed by the TPG is illustrated in Fig. 2. At the end of the first
unit time period �t=1�, TPG must decide:
1. Whether to exercise one of the M exercise rights, the return

being the sum of the payoff due to one exercise and the
expected value of the M-1 future exercise payoffs, dis-
counted to t=1 �i.e., disct=1�

Ā = �1�X1� + E��
k=1

M−1

disct=1�k�Xt�� �2�

2. Or not to exercise, the return being the expected value of M
future exercise payoffs, discounted to t=1

B̄ = E��
k=1

M

disct=1�k�Xt�� �3�

where the subscript k refers to the kth claim of the M-1 remaining
claims �i.e., k=1,2 , . . . ,M −1�; while the subscript t refers to the
timestep in which it is still possible to exercise one of the remain-
ing M-1 claims �i.e., t=2,3 , . . . ,N�.

If TPG expects that Ā� B̄ he will choose Ā, i.e., he will exer-
cise the right and will go to the next time step with M-1 rights

remaining. Otherwise, if TPG supposes that Ā� B̄, he will choose

B̄, i.e., he will not exercise a right and will go to the next time
step with M rights remaining. The TPG’s decision-making pro-
cess continues until either the expiration date of the revenue guar-
antee or the timestep in which the Mth right is executed.

The decision process presented in Fig. 2 is a multistage deci-
sion process with a return associated to each decision. The objec-
tive of the guarantor in analyzing such a process is to determine
the TPG’s optimal decision policy, that is the collection of distinct
points in time �the optimal stopping time set� that results in the
best total return for TPG

��k
M� = ��1

M,�2
M, . . . ,�M

M� �4�

Once the optimal stopping time set is determined, the fair

value of the revenue guarantee, �̂, is given by the expectation of
the sum of the payoffs relative to the optimal stopping time set,
discounted to t=0

�̂ = E��
k=1

M

disct=0�k�X�k
M�� �5�

When the cumulative net revenue X is modeled using either a
geometric Brownian motion, a Brownian motion, or their deriva-
tive processes �e.g., Ornstein–Uhlenbeck process�, the true value

�̂ can be computed by extending the binomial or trinomial tree
method to a multiple-exercise option framework �Jaillet et al.
2004�.

However, a realistic representation of the net revenue evolu-
tion over time may require a more complex stochastic model such
as a multifactor model. In this case, a binomial or trinomial tree
method to value the multiple-exercise option is computationally
impractical. An alternative and effective approach is to combine
Monte Carlo simulation with dynamic programming techniques
and use it to compute the revenue guarantee value. The value of a
revenue guarantee that permits the redemption of M claims can be
framed as an Australian option with M exercise rights and payoff

function Eq. �1�. The valuation method to assess an Australian
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option was obtained by extending the Longstaff and Schwartz
�2001� approach to a multiple-exercise option framework.

Valuation Framework for an Australian Option

An Australian option is a discrete-time American-type option
which allows the redemption of M claims, M �1, at different
stopping times 0	 t1

M , t2
M , . . . . . , tM

M 	T chosen by the holder of
the option.

Hence, an Australian option is exercisable M times within
the interval �0,T	 and the possible N exercise dates are
�t1=�t , t2=2�t , . . . . . , tN=T=N�t� with time step �t=T /N. The
dynamics of the state variables are simulated by generating n
paths �Xt1

i ,Xt2
i , . . . ,Xtj

i , . . . ,XtN
i �i=1,2,. . .,n. The resulting Xtj

i �value of
the process at time tj = j�t along the ith simulated path. Hereafter,
the discount rate r is considered constant for clarity of exposition.

To assess the value of the option for each simulated path a
backward dynamic programming approach is employed. Based on
the Bellman’s “principle of optimality” �Powell 2005�, the value
of the Australian option with M exercise rights at time tj is given
by the Bellman equation

V
�M�

�tj,Xtj

i � = max�Ā,B̄� �6�

where

Ā = ��tj,Xj
i� + C

�M−1�
�tj� = ��tj,Xj

i� + E�e−r�t V
�M−1�

�tj+1,Xj+1�	

�7�

�return if the option holder decides to exercise one of the M
exercise rights at time tj, that is the sum of ��tj ,Xj

i�, the payoff
due to one exercise, and C

�M−1�
�tj�, the continuation value with M-1

exercise rights. C
�M−1�

�tj��expected value of the Australian option

with M-1 exercise rights discounted to tj �e.g., using the discount
factor e−r�t�, and

B̄ = C
�M�

�tj� = E�e−r�t V
�M�

�tj+1,Xj+1�	 �8�

�return if the option holder decides not to exercise any one of the
M exercise rights at time tj. The continuation value with M exer-

cise rights, C
�M�

�tj��expected value of the Australian option with

M exercise rights discounted to tj.
The difficulty in calculating Eq. �6� lies on the assessment of

the continuation value in Eqs. �7� and �8�. A way to overcome this
difficulty is to consider the continuation value as an expectation
conditioned to the information known at time tj

C
�K�

�tj� = E�Y j
�K�
Xj

i	 �9�

where C
�K�

�tj��continuation value relative to an Australian option

with K exercise rights, and

Y j
�K� = e−r�t V

�K�
�tj+1,Xj+1� �10�

�value of the option with K exercise rights discounted to tj; and
Xj�known underlying variable at time t= tj. The continuation
value in Eq. �9� can be approximated by adopting the least-
squares regression approach of Longstaff and Schwartz �2001�.
Then, Eq. �9� can be represented as a linear function of the ele-

ments of an orthonormal countable basis



C
�K�

�tj,Xj� = E�Y j
�K�
Xj	 = �

k=1




ak�tj�pk�tj,Xj� �11�

where pk�kth element of the basis; and ak�associated constant
coefficient. If Eq. �11� is represented using a finite number of
elements of the orthonormal basis �Z� 
 �, then an approximation
of the continuation value Eq. �9� is given by

C
�K�

�tj,Xj� = E�Y j
�K�
Xj

i	 � �
k=1

Z

ak�tj�pk�tj,Xj� �12�

The set of coefficients �ak�tj�� can be estimated by least-
squares regressing the simulated values of Eq. �10� onto the basis

�âk�tj�	k=1
Z = arg min��

k=1

Z

ak�tj�pk�tj,Xj
i� − e−r�t V

�K�
�tj+1,Xj+1

i ��
�13�

So, the estimated continuation value is

Ĉ
�K�

�tj,Xj� = �
k=1

Z

âk�tj�pk�tj,Xj� �14�

The Bellman Eq. �6� at time step tj for the ith simulated path
can be rewritten as

V
�M�

i�tj,Xtj

i � = max�Ā*,B̄*� �15�

where

Ā* = ��tj,Xj
i� + Ĉ

�M−1�
�tj,Xj

i� �16�

�return if the option holder decides to exercise one of the M
exercise rights at time tj; and

B̄* = Ĉ
�M�

�tj,Xj
i� �17�

�return if the option holder decides not to exercise any one of the
M exercise rights at time tj.

Therefore, the decision rule at time step tj along the ith path is
given by

IF ��tj,Xj
i� + Ĉ

�M−1�
�tj,Xj

i� � Ĉ
�M�

�tj,Xj
i�

THEN tj is an optimal stopping time �18�

When immediate exercise is performed at time tj, the optimal
stopping time set for t� tj must be rearranged

��k
M�t�tj

= tj � ��k
M−1�t�tj+1

�19�

that is the optimal stopping set for t� tj relative to the Australian
option with M exercise rights given by the optimal stopping time
tj and the optimal stopping time set for t� tj+1 relative to the
Australian option with M-1 exercise rights.

It can be inferred from Eq. �19� that the optimal stopping time
set ��k

M�t�tj
is completely resolved when information of the opti-

mal stopping time set relative to an Australian option with M-1
exercise rights, ��k

M−1�t�tj+1
, is known. Moreover, it can be shown

that the optimal stopping time set relative to an Australian option
with y exercise rights, ��k

y�, depends on information of the optimal
stopping time set of an Australian option with one exercise less,

y−1
��k �, as shown in Fig. 3.
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Eventually, in order to solve the optimal stopping time set
��k

M�, the analyst must run additional M-1 optimization proce-
dures applied to the same Australian option with exercise rights
ranging from 1 to M-1. Proceeding backward with the dynamic
programming approach, we can calculate the optimal stopping
time set ��1

M ,�2
M , . . . ,�M

M� for the ith simulated path. Once the op-
timal stopping time set is known, it is possible to calculate the
option value for the ith simulated path

V
�M�

i�0,Xi� = �
k=1

M

e−r�k
M

���k
M,X

�k
M

i � �20�

If the same procedure is applied to all n simulated paths, then
the estimate of the Australian option value may be computed as

�̂ = V
�M�

ˆ

�0,X� =
1

n�
i=1

n

V
�M�

i�0,Xi� =
1

n�
i=1

n

�
k=1

M

e−r�k
M

���k
M,X

�k
M

i �

�21�

The option estimate Eq. �21� is a low biased estimate of Eq.

�5�, i.e., �̂	�̂, because we have approximated the continuation
value in Eq. �15�. Ideally, the value of the Australian option is
determined by a stopping rule that maximizes the value of the
option. The LSM method, however, computes an approximated
estimate of the continuation value both because we consider only
a finite number of elements of the orthonormal basis �Z� 
 � and
because we substitute the set of coefficients �ak�tj�� with their
approximation �âk�tj��. Eventually, using the approximated esti-

mate of the continuation value, Ĉ
�K�

, instead of its true value, C
�K�

,

leads to a stopping rule that is less than or equal to the optimal
one, i.e., a suboptimal stopping rule. Accordingly, the computed
estimate of the option value will be biased low.

Hypothetical Case Example

The approach to value an Australian option is now applied to
value a limited revenue guarantee within a BOT toll road project
with a 30-year concession period. The project’s total capital ex-
pense is $160 million, and $120 million is provided by senior
debt and $40 million is provided by equity. A simplified cash flow
model �Esty 1999� to determine the project’s annual net revenue
available to the sponsors, i.e., annual equity cash flow �ECF�, is
given by

ECFi = gross revenuei-total costi-taxi-debt servicei �22�

The cost of equity and the borrowing interest rate considered in
this example are 15 and 10%, respectively. The project’s base
case financial projections as well as the NPV computations are
presented in Table 2. The base case yields a NPV of roughly $4.3
million and an IRR of 19.7%.

A Monte Carlo simulation risk analysis is then performed
where traffic volume is the only risk variable considered. The
traffic volume is modeled as a random variable with a dynamic
variance. This representation of the traffic volume uses a variance
model, which has a deterministic component, the expected value
vector of the traffic volume, and a random component, the uncer-
tainty of the process. See Chiara �2006� for further details. In this
case, the column of the average daily traffic values in Table 1 is
assumed to be the vector of the forecasted traffic volume,
¯ ¯ ¯ ¯
W= �W1 ,W2 , . . . ,WT	. The uncertainty of the process can be de-
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b/w y
fined by three parameters: an independently distributed random
sequence with a mean of zero and a unit variance ��t�, a variance
function H�t�, and the variance of the process at t=1, 
2. In this
case, the random sequence is defined as ��t�
beta�a=3,b=3�,
the variance function is defined as H�t�=
2t, and the variance 
2

is estimated by considering a lower and an upper bound of the
traffic forecast relative to year one, low�25,000 vehicles and
high�35,000 vehicles, respectively. The risk analysis generates a
NPV distribution with an expected NPV of $4.3 million and the
probability that NPV is negative of 36.3%.

With such a high likelihood that the project has a negative
NPV, the government could choose to offer the sponsor a revenue
guarantee with multiple-exercise opportunities. This multiple-
exercise governmental guarantee is modeled as an Australian op-
tion with payoff

��t,ECF� = max�K − ECF,0� �23�

where K�amount of revenue that the government pledges to
guarantee, so if the annual equity cash flow is less than K, then
the government will pay the difference.

A minimum equity cash flow equal to K generates a sponsor’s
rate of return of 15%, i.e., as much as the cost of equity.

The fair price of a multiple-exercise governmental guarantee
covering the revenue risk for x years �which can be nonconsecu-
tive years� is given by the value of an Australian option with
payoff Eq. �23� and M =x exercise rights. With K= $6.5 million, a
real option analysis is performed varying both the number of
exercise rights, M, and number of simulations. A discount factor
with a discretely compounded discount rate, 1 / �1+r��t, was used
in the option computations. The assumed discount rate, r, which

Table 2. Case Example Valuation Model

Financial projection

Period

Avgerage
daily
traffic

Toll
per vehicle

�$�

Gross
revenue

�$�

Total cost �operation,
maintenance, etc.�

�$�

1

2

3 30,000 1.50 16,425,000 �7,000,000�

4 32,100 150 17,574,750 �7,210,000�

5 34,347 150 18,804,983 �7,426,300�

6 36,751 150 20,121,331 �7,649,089�

7 39,324 150 21,529,824 �7,878,562�

8 42,077 200 30,715,883 �8,114,919�

9 43,339 200 31,637,359 �8,358,366�

10 44,639 200 32,586,480 �8,609,117�

11 45,978 200 33,564,075 �8,867,391�

12 47,358 200 34,570,997 �9,133,412�

13 48,778 200 40,059,143 �9,407,415�

14 50,242 225 41,250,917 �9,689,637�

— — — —

— — — —

29 78,275 250 15,096,139

30 80,623 250 15,549,023

31 83,042 250 16,015,494

32 85,533 250 16,495,959

Note: NPV�ECF��PV�ECF�-PV�WQUITY��44,293,530-40,000,000�$4
=10%. �c� Initial average daily traffic: 30,000 vehicle; traffic growth: 7%
depends on the presumed credit risk of the government, was cho-
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sen as r=6%. The least-square regression was performed using
�1,X ,X2� as basis functions. The results of the real option analysis
for different numbers of simulated paths are shown in Table 3.

With respect to the values relative to 100,000 simulated paths,
the revenue risk may be quantified as the expected value of the
ECF shortfalls over the entire operational period �i.e., project rev-
enue risk�$8.169 million�. As much as 99% of the revenue risk
�i.e., $ 8.169 million�0.99= $8.08 million� can be mitigated by a
revenue guarantee with 15 exercise rights. Furthermore, a revenue
guarantee with eight exercise rights can mitigate as much as
80% of the project revenue risk �i.e., $8.169 million�0.80
= $6.53 million�, and a revenue guarantee with four exercise
rights can mitigate as much as 54% of the project revenue
risk �i.e., $8.169 million�0.54= $4.41 million�. These results
strongly suggest that, before providing a full coverage guarantee,
the Government and the sponsor should perform an Australian
option analysis to determine alternative guarantee structures that
may better fit their revenue risk mitigation strategy.

Conclusion

A revenue guarantee in a BOT project takes the form of a
discrete-exercise real option. It may be valued by treating the
guarantee as one of three classes of discrete-exercise options:
European, Bermudan, and simple multiple-exercise �Australian�
options. Current valuation approaches represent the guarantee as a
European option where the quantity and the time of exercise op-
portunities must be specified beforehand. Such “static” contracts
do not permit the TPG to make use of information as it is revealed

Valuation

x
�

Debt service
�$�

Captial
expenditure

�$�
ECF
�$�

Discounted ECF
�$�

�100,000,000�

�60,000,000�

�4,000,000� 5,425,000 3,567,026

,500� �4,000,000� 5,137,250 2,937,239

,425� �4,000,000� 5,869,258 2,918,058

,605� �4,000,000� 6,658,638 2,878,713

,673� �4,000,000� 7,509,590 2,823,133

,379� �14,274,472� 5,831,113 1,906,201

48� �13,874,472� 8,506,574 2,418,099

,356� �13,474,472� 9,281,535 2,294,253

,867� �13,074,472� 10,071,345 2,164,767

,664� �12,647,472� 10,876,449 2,032,886

,934� �20,274,472� 8,148,322 1,324,330

,177� �19,474,472� 8,183,631 1,156,582

— — —

— — —

,743 9,156,814 32,879,043 571,060

,177 8,329,366 34,655,943 523,411

,378 7,501,919 36,468,774 478,948

,951 6,674,472 27,477,450 313,795

44,293,530

30 IRR�19.7%. �a� Cost of equity Ke=15%. �b� Borrowing Interest rb
ear 3 and 9 and 3% b/w 10 and 32.
s

Ta
�$

0

�1,227

�1,509

�1,813

�2,141

�2,495

�897,9

�1,221

�1,550

�1,886

�2,228

�3,913

—

—

14,293

15,034

15,789

27,400

,293,5
during the operational period. Moreover, if these “static con-



tracts” are arranged to fully cover the revenue risk, they become a
costly long-term commitment. The multi-least-squares Monte
Carlo method was developed and presented to support the struc-
turing of a “dynamic contract” that allows BOT project partici-
pants to be extremely flexible in dealing with the revenue risk
during the project operational phase.

This novel valuation framework has been developed by
extending current option theory. Specifically, the work expands
the least-squares Monte Carlo technique, the LSM method,
to value Australian real options. An Australian option has embed-
ded M claims that can be redeemed at M stopping times
��1

M ,�2
M , . . ,�M

M�, which are chosen by the holder of the option.
Presumably, the option holder will choose the stopping times that
maximize the value of the option. An option holder at any time
step t must decide whether to redeem one of the claims immedi-
ately or to wait and redeem all of them in the future. This multi-
stage decision process has a return associated with each decision,
and the objective in analyzing such a process is to determine an
optimal policy, one that results in the best total return. The value
associated with this best total return is then the option value.

The techniques were illustrated using a hypothetical case
study. The case example illustrated the application of Australian
options to mitigate the revenue risk of BOT toll road project with

Table 3. Multiple-Exercise Guarantee Analysis

n. simulations

Option rights
M 1,000 5,000 10,000 50,000 100,000

1 1.322a 1.302 1.294 1.318 1.318

2 2.526 2.525 2.541 2.545 2.545

3 3.543 3.583 3.561 3.588 3.581

4 4.389 4.462 4.435 4.466 4.459
5 5.023 5.128 5.08 5.122 5.111

6 5.532 5.666 5.616 5.667 5.654

7 5.967 6.145 6.087 6.144 6.13

8 6.338 6.552 6.486 6.551 6.536

9 6.702 6.908 6.829 6.903 6.887

10 6.975 7.223 7.129 7.21 7.195

11 7.208 7.748 7.412 7.489 7.47

12 7.440 7.938 7.641 7.711 7.697

13 7.610 8.083 7.826 7.890 7.874

14 7.752 8.187 7.966 8.027 8.011

15 7.853 8.208 8.066 8.120 8.106
16 7.879 8.222 8.086 8.139 8.125

17 7.898 8.233 8.100 8.152 8.138

18 7.912 8.240 8.111 8.161 8.147

19 7.921 8.245 8.118 8.168 8.153

20 7.931 8.249 8.124 8.173 8.158

21 7.938 8.251 8.129 8.177 8.162

22 7.942 8.252 8.132 8.18 8.165

23 7.945 8.253 8.135 8.181 8.166

24 7.946 8.254 8.137 8.184 8.167

25 7.947 8.254 8.138 8.183 8.167

26 7.948 8.254 8.138 8.184 8.168

27 7.948 8.254 8.138 8.184 8.168

28 7.948 8.254 8.138 8.184 8.169

29 7.948 8.254 8.138 8.184 8.169

30 7.948 8.254 8.138 8.184 8.169
a$million.
a concession period of 30 years. As shown, 99% of the revenue

JOUR
risk is mitigated with a governmental guarantee covering 15
years, or half of the concession period. Moreover, a governmental
guarantee covering only 4 years can mitigate the revenue risk by
54%. These results have important implications for the BOT mar-
ket. Foremost, credible methods to value revenue guarantees can
improve the assessment and allocation of risks in BOT projects.
Such methods will permit governments, lenders, and sponsors to
determine the fair value of this risk mitigation strategy, which can
preclude conferring substantial subsidies or undervaluing invest-
ment opportunities. Additionally, the valuation techniques illus-
trated could lead to the development of a secondary market for
revenue guarantees where single or multiple party guarantors
provide revenue “insurance” in exchange for a premium. Both
possibilities are important developments for the expanding BOT
marketplace.
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