Semi-supervised segmentation of neurons from brainbow images

Uygar Sümbül, Suraj Keshri, Min-hwan Oh, Dawen Cai, John Cunningham, Liam Paninski

The Brainbow construct

A tool to identify individual neurons by color

The structural substrate beneath

Livet et al, 2007

The structural substrate beneath

Livet et al, 2007

Noise sources

Livet et al, 2007

3D image stacks of neuronal tissues

Dawen Cai UMich

Maximum intensity projections

Noise in the Improved Brainbow

The task: segment individual neurons

Partition the set of foreground voxels S = { [x_v y_v z_v r_v g_v b_v] }_v

Dawen Cai UMich

Very large apparent size

Supervoxels: connected voxels with similar colors

- Identify the foreground
- Obtain an oversegmentation

- Summarize each supervoxel's color with the mean:
- # voxels / # supervoxels ~ 100

Collaborative filtering and watershed transformation

STD projection of 3d stack to be segmented

Dawen Cai UMich

- 764 x 704 x 223 voxels ~ 76µ x 70µ x67µ
- 125K supervoxels

A first approach: weighted k-means

- Transform to LUV color space
- Weights: Color SNR $\alpha \sqrt{voxel count}$

Utilize both space and color

Morphology

"Neurons are connected components."

"Brainbow promises consistent colors."

Color

1. Undersegment with weighted k-means

2. Retain big connected components

3. Cluster-level user manipulation

Supervoxels are the nodes of a graph

- Edge weights decay with color (and spatial) distance
- Small supervoxels can have local edges only
- Need sparse connectivity due to size
- The task: cluster the nodes of the graph

Semi-supervised spectral clustering

Kamvar et al, 2003 Kulis et al, 2005

- Calculate affinity matrix (<2% dense)
- Impose edge weights from user input
- Calculate normalized eigenvectors of Laplacian

- Weighted k-means on the <u>feature vectors</u>
- Impose cluster memberships from user input

4. Spectral clustering

Another image stack (BM4d filtered)

Dawen Cai UMich

- 1020 x 1020 x 225 voxels ~ 102µ x 102µ x67µ
- 86K supervoxels

4. Spectral clustering

Challenges

- Number of neurons
- Edge weights (spatio-color)
- Warmer starts for more user interaction