Observational study

- Random sample individuals out of the population.
- Variable values are measured through observations.
- Care is taken to ensure that the STUDY would NOT affect the variable values.
- Retrospective study: measures past values.
- Prospective studies: follow the individuals and measure future values.
- Sample survey is a special case of observational study, where the measurement is taken through a survey.

Question of causation in observational studies

- When a strong association is observed, one may need to ask a question: whether X is the 'reason' of the variation in Y.
- Association may result from different scenarios and causal relation is one of them.

Association does not mean causal relation

To establish causation

- Experimentation is the best way to establish causation—controlling other variables that can possibly affect the response variable.
- When we can not do an experiment, we look for association is strong, consistent, progressive, reproducible, agrees with common sense or supported by scientific results.
Introduction to experimentation

- **Terms**
 - Individual: experimental units (subjects for human experimental units)
 - Treatments: different experiment conditions that are applied to experimental units, which may be controlled by different variables (factors).
 - Specific values of factors that decide a treatment condition are usually referred as levels of the factors.

Principles of Experimentation

- A good experiment in statistical terms
 - Control: the effects of lurking variables
 - Randomization: the experiments are governed by the laws of probability
 - Replication: reduce variation caused by chance.

Control

- Control against effects from factors other than the experimental treatments.
- Control against placebo effects:
 - "The placebo effect is a well-documented medical phenomenon. Often, a patient taking pills will feel better, regardless of what the pills contain, simply because they believe the pills will work. Doctors studying the placebo effect have noticed that large pills work better than small pills and that coloured pills work better than white ones" (BBC Horizon)
- Thus, in a lot of studies, the group of individuals that receive the placebo is called the control group.
- Placebo control group can take a lot of forms.

Randomization

- Problem with non-randomized treatment groups—unbalanced grouping of experimental units.
- Example: study on medicine for chronic human disorders
 - Matching: researcher can match similar individuals and assign them to different treatments so that the treatment groups are similar in nature.
 - Issue: expensive, tedious, may not be adequate
- Randomization: produces groups only differ by chance.

Logic behind Randomization

- In a controlled experiment: different treatment groups have two sources of differences
 - Treatment differences
 - Differences due to random group assignment (by chance)
- If differences are observed in the responses (experiment outcomes)
 - Can it be due to the random differences between the treatment groups?
 - If unlikely, must be due to the treatment differences between the groups

Statistical significance

- Some results are called statistically significant (or of statistical significance) if they are unlikely to be observed by chance:
 - e.g. Shaquille O'neal's free throws: making 10 out of 10 in one game? (Background: his career FT% is 0.533). NOTE THAT this is not an experiment.
Special designs

- **Complete random design**: subjects are assigned to treatment groups completely random.
- **Matched pair design**: hand cream example
- **Block design**: more similar groups
 - Example: antidepressant medicine trials
 - Blocks:
 - patients that are mildly depressed
 - patients that are severely depressed
- Matched pair is a special case of block design.
- **Before-and-After design** and "self" control.

Cautions about experiment

- **Double blindness**
 - Blind to patients: to reduce psychological reaction to the treatments received
 - Blind to examiners: to avoid unbalanced ‘attention’ to specific treatment group
- Double blindness is not always possible. Example: new teaching tools
- **Lack of realism**. Example: antidepressant medicine, patients need to meet psychiatrists regularly and usually need to keep diaries.

Regression analysis

- Regression line is the **mathematical model** for a linear relation between X and Y
- A regression line is of the form: $Y = a + bX$
- ‘a’ and ‘b’ are regression coefficients, while ‘a’ is called the **intercept**, ‘b’ is referred as the **slope**
- It is an estimation of the real relation and can be used to give prediction on Y using given X values.
- Regression analysis is to find values of ‘a’ and ‘b’ for a set of data under study

Least-square (errors) method

- **Regression (linear) model**: $Y = a + bX$
- At a **given value X**, the prediction given by the regression line is: $\hat{Y} = a + bX$
- For an observed value Y of the response variable at this value X, the prediction error $Y - \hat{Y}$ measures how the model **differs** from the reality (presented in the data).

L-S method (cont’d)

- A data set on X and Y contains n **pairs** of real observed values (X_i, Y_i) (as shown in a scatterplot).
- For any "candidate" line (model), one can evaluate the **difference between the model and data** using
 $$\sum_i (Y_i - a - bX_i)^2$$

Reading

- Chapter 13
- Chapter 7 (review)
- Chapter 8