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Abstract

Recalling errors project a commonly documented limitation of
‘How many X’s do you know?’ type surveys (see Killworth et
al. (2003) for example). These errors often come from respon-
dents’ tendency to under-report the number of their acquain-
tances in larger sub-populations. A calibration curve that cor-
rects for under-recalling is proposed based on the results of
Zheng et al. (2006). A description of how to apply this correc-
tion to the Zheng et al. (2006) type of model is also discussed.

KEY WORDS: Recalling Bias, Estimating Degree, Social
Networks

1. Introduction

Surveys that ask questions of the form “How many X’s do
you know?” are currently of great interest to social network
researchers. Such surveys have been used to estimate the de-
gree1 and degree distribution of individuals as well as to esti-
mate the size of hard to count populations (Killworth, Johnsen,
McCarty Shelley, and Bernard 1998a; Killworth, McCarty,
Bernard, Shelley, and Johnsen 1998b).

To this point, surveys of this form have been kept from their
full potential because respondents have limited ability to recall
accurately their ties with large subpopulations. Consider the
question “How many college or university faculty members
do you know?” Since the size of this group is rather large for
most people in academia, it is difficult to recall each member
of the group in the limited time given on a typical survey.

Killworth et al. (2003) documents these effects and pro-
poses several mechanisms to explain under-recall in large
subpopulations. One possible explanation is a process that
Killworth et al. calls “dredging,” whereby a respondent re-
calls one-by-one the first m acquaintances and then estimates
for all groups larger than some size m. This mechanism
would, in theory, produce accurate responses for small groups
(less than m acquaintances) but less reliable responses for
larger groups where respondents are estimating total group
size rather than counting specific acquaintances (McCarty et
al. 2001). Though this mechanism seems plausible, there is no
specific process for determining m or modeling how estimat-
ing rather than enumerating would impact the overall accuracy
of the results. Additionally, both Killworth et al. and McCarty
et al. point out that the relatively short time given to answer
each question likely creates difficulty for respondents and is
confounded with “dredging.”

1In social network research, the degree refers to the size of an individual’s
personal network.

In the following sections we propose a calibration curve
which corrects for under-recalling and describe how this cor-
rection can be applied to models of the type proposed by
Zheng et al. (2006). We start by reviewing the development
of the Zheng et al. (2006) model. We then show evidence of
recalling bias based on the results from this paper and propose
a correction. Finally, we describe how to fit this correction to
the Zheng et al (2006) model and give a brief data example.

2. Developing the calibration curve

2.1 Recall bias and its effect on model estimates

Zheng et al. (2006) used data collected by McCarty et al.
(2001). The data consist of 1,370 adults who were asked to
identify the number of acquaintances they have in each of
32 groups including names (e.g. Michael, Christina), occupa-
tions and organizations (e.g. commercial pilot, member of the
Jaycees), and life events or conditions (e.g. opened a business
in the past year, diabetic).

The data were modeled using a multilevel Poisson model
with overdispersion. To fit the model, Bayesian computation
was carried out under a negative binomial parameterization.
More specifically, let yik be the ith individual’s response to
the question “how many people do you know in group k.” We
assume

yik ∼ NegBin(mean = eαi+βk , overdispersion = ωk),

where eαi is individual i’s degree, eβk estimates the propor-
tion of ties that link to subpopulation k in the social network
and α’s, β’s and ω’s follow upper-level models (The details
omitted here. Interested readers are referred to Zheng et al.
2006).

This model has a nonidentifiability since the likelihood de-
pends on αi and βk only through their sum. To identify the α’s
and β’s the model is renormalized by adding a constant to all
α′is and subtracting the constant from the β′ks. One intuitive
way of calculating the renormalzing constant is to set

∑
eβk =

∑
{population proportion}k. (1)

This is equivalent to assuming that the average degree of indi-
viduals in these subpopulations equals the average degree of
the population. Obviously, this assumption does not apply to
all 32 subpopulations used in McCarty et al. survey. Some-
one who is a member of the Jaycees, for example, likely has a
larger than average degree because of the social nature of the
organization. When restricted to the subpopulations defined
by the first names, however, this assumption is fairly reason-
able.



The above strategy also requires that the acquaintance ties
recorded in the survey reflect the distribution of ties in the so-
cial network. However, the survey did not accurately measure
the social network but rather the recalled social network by
the respondents. For rare groups, the respondents can recall
almost all their ties with these groups. The number of ties to
a large subpopulation k is under-recalled. The estimated pro-
portion eβk from data therefore only estimate the proportion of
ties involving subpopulation k in the recalled social network.
Consequently,

∑
eβk =

∑
f ({population proportion}k)

≤
∑

{population proportion}k.

Here, f(·) represents the recall function. If the renormalizing
constant is computed based on equation (1) and some popu-
lar first names, the degrees of the respondents will be under-
estimated.2

Among the first names used in the McCarty et al. surveys,
the most popular name is Michael, representing 1.8% of the
population. For someone whose personal network size is 600,
he is expected to know 600 × .018 ≈ 11 Michaels. Though
imaginable, it is difficult to recall 11 Michaels during the lim-
ited amount of time of such a survey; therefore, the actual
reported count is likely to be much lower. In fact, in the Mc-
Carty et al. data, respondents reported knowing an average of
just under 5 Michaels.

In Figure 5 of Zheng et al. (2006), it is shown that for rare
names the estimated βk’s and the log population proportions
fall closely to the line with slope 1. As the population size
increases, the slope of the regression line between βk and log
population proportion is approximately 0.5. Killworth et al.
(2003) also discovered this phenomenon. In their explana-
tion, they propose a model for the expected number members
of a subpopulation recalled as a fraction of the total number
known. They then demonstrate that this model is well approx-
imated by a square-root curve.

To accommodate recall bias in the McCarty et al. data, the
normalization in Zheng et al. (2006) is based on the rarest
names in the data (such as Jacqueline, Christina, and Nicole)
with a correction for the fact that these names are female and
that people tend to know more individuals of their own sex.

2.2 Derivation of the calibration curve

The choice to use the rarest names in Zheng et al. (2006) was
somewhat arbitrary and was from visual checking based on
Figure 5 in Zheng et al. (2006). In this section, we propose
to use a calibration curve fitted to all 12 names to adjust for
under-recalling as a function of subpopulation size.

Let eβk be the proportion of ties in the social network that
involve individual in subpopulation k. And let eβ′k denote the
proportion of ties in the recalled social network that involve
subpopulation k. Assume β′k = f(βk) and f(·) is an increas-
ing function.

2In Zheng et al. (2006), we observed that the average degree is about 384
while using all 12 names to normalize and then becomes 739 while using the
rarer names.

Based on our observation and also independent discussion
by Killworth et al. (2003), we assume that

f ′(x) → 1 as ex → 0 (x → −∞)
→ 1

2 as ex → 1 (x → 0).

To simplify the inference, we assume that f(x) = x for small
populations with proportion as small as ex = eb (b < 0) and
f ′(x) decreases as x increases (at most) to 1

2 as x goes to zero.
More specifically, we assume

f ′(x) =
1
2

+
1
2
e−a(x−b), a ≥ 0, for x ≥ b,

where a controls how fast and how close f ′(x) approaches 1
2 .

This gives us

f(x) = b +
1
2
(x− b) +

1
2a

(
1− e−a(x−b)

)
.

In this paper, we use b = −7, which corresponds to sub-
populations that are < .1% of the population and a is to be
fitted using βk originally estimated and the population pro-
portions of first names. This is because, as discussed ear-
lier, we assume that in the absence of recall bias, βk ≈
{population proportion}k on average. Incidentally, we found
that an a of approximately one yielded the best fit.

Figure 1 plots the original estimates of βk against the the
known size of the twelve first names used in McCarty et al.
data. This is a reproduced version of Figure 5 in Zheng et
al. (2006) with the calibration curve. If there were no recall
bias, points in Figure 1 should scatter about the y=x line. In
Figure 1, however, we see that the y=x line is an acceptable fit
for the rarest names, but becomes less reasonable as the size
of the subpopulation increases.

3. Modeling using the calibration curve

The calibration curve can be included in the model suggested
by Zheng et al. with only minor modifications. We simply
adjust βk in the negative binomial mean by applying the cali-
bration curve.

yi,k ∼ Neg Bin(mean = eαi+β′k , overdispersion = ωk)

where β′k = f(βk).
By including the calibration curve, the estimated parame-

ters remain β′ks and their magnitude has been corrected for
recalling.

To see the effects of this correction, consider Figure 2. This
figure shows the same log-log plot as in Figure 1, except we
have now also included our estimates of βk after adjusting for
recall.

Two things are worth noting on this figure. First, the esti-
mates produced using the recall correction fall generally along
a line with a slope of one, indicating that our estimates in-
crease proportionally as the subpopulation size increases. Sec-
ond, notice that the size of the correction is dependent on the
subpopulation size. Smaller subpopulation estimates are cor-
rected less than larger ones, an observation that is consistent
with the idea that recall is more accurate in smaller subpopu-
lations.
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Figure 1: The solid line is the y = x line while the light green line
is a least-square regression line fitted that has a slope of 0.53. The
red broken line indicate best-fit calibration curve that captures both
the y = x pattern at the lower end and the diminishing recall at the
higher end of x.
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Figure 2: The estimated subpopulation proportions for the twelve
names plotted against values obtained from the Census before and
after applying the calibration curve (both on the log scale). Blue
squares are estimates without the calibration curve and red triangles
are recall corrected.

4. Discussion and Conclusion

Though the calibration curve performs well when comparing
estimates based on names, researchers are often interested in
other categories. It is possible that the mechanism used by
individuals recalling names is different than for recalling other
categories. If this is the case, the calibration curve may not
adjust adequately.

Additionally, Killworth et al. (2003) note that recall bias is
only one potential source for inaccurate responses to ‘How
many X’s do you know?’ questions. Additional bias is
known to come from barrier effects (some respondents are pre-
vented from knowing members of the subpopulation group)
and transmission effects (respondent knows someone in a sub-
population but is stopped from knowing that they are in that
subpopulation). The calibration curve does not account for
these effects, though additional modifications to the Zheng et
al. model proposed by Salganik, McCormick, and Zheng can
address these issues.

In this paper we have proposed a method for addressing re-
call issues that are a major limitation of using ‘How many
X’s do you know?’ type questions to estimate personal net-
work size. Our calibration curve is derived from observations
made in previous independent research and observations made
in Zheng et al. (2006). We also incorporate the calibration
curve into the Zheng et al. type model and demonstrate that
the effectiveness of the curve using the McCarty et al. (2001)
data.

The calibration curve we propose in this paper is based on
the 12 names in this particular data. A potential extension of
this work could include integrating a routine to estimate the
optimal value of a to fit the calibration curve seamlessly to
different sets of data.
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