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Introduction

Ensuring drug safety begins with extensive pre-approval
clinical trials

This process continues after approval when drugs are in
widespread use: post-marketing surveillance

Drugs taken by more people, for longer periods of time,
and in different ways than in pre-approval trials

May identify adverse health outcomes associated with
drug exposure that were not previously detected

1997

2004

Statistical Objectives

Identify drug-condition pairs that may be linked
Find drug interactions linked with conditions
Estimate the strength of these associations
Fundamental Difficulties

- Large size: Millions of people, 10000’s of conditions
- High dimension: 10000’s of drugs, millions of interactions

Current System: FDA AERS

.

Current approach to surveillance is based on the FDA’s
Adverse Event Reporting System (AERS)

Anyone can voluntarily submit a report on adverse
events (AEs) that may be related to drug exposures
Difficulties with AERS

- Messy —spelling errors, etc.
- Bias — underreporting, duplicate reports, media
- Unreliable temporal information

Multiple drugs and AEs may be listed on one report

AEj
Yes No * 15000 drugs x 16000 AEs
w Yes| a | b =240 million tables
=]
S No|c|d * Most AEs do not occur with
Total: | N most drugs; small counts in a

FDA uses 2 x 2 summaries, applies Bayesian shrinkage
methods to deal with variability due to small counts

Limitations
- No adjustment for confounding drugs

- lIgnores interactions
- May not utilize temporal information

A Bayesian self-controlled method for drug safety

surveillance in large-scale longitudinal data
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Longitudinal Healthcare Databases

Sentinel Initiative - FDA plans to establish an active
surveillance system using data from healthcare
information holders

Observational Medical Outcomes Partnership (OMOP) -
Researching methods for analyzing healthcare databases
to evaluate safety profiles of drugs on the market

Advantages « Disadvantages

- Little baseline data
- No OTC information

- Automated
- Better temporal data

Potential analysis techniques: maxSPRT, cohort methods,
case control, case-crossover, self-controlled case series ...

Self-Controlled Case Series

Method developed to estimate relative incidence of AEs
to assess vaccine safety [Farrington, 1995]

One drug, one adverse event (AE)
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Person i observed for T, days; (i,d) is their dth day
yiq = # of events observed on (i,d)
X;q = 1 if exposed to drug on (i,d), 0 otherwise

Events arise according to a non-homogeneous Poisson
process, exposure modulates the event rate

Intensity on (i,d) = e ®i + O

Yid | Xig ~ Poisson( e #i+Axd
i
= Py, -y Vi, | X1, oo Xin ) = Py [ xi) = H P(yig | xia )
d=1
Condition to remove o,

Could use ML to get estimates, but drug effect B is of
interest and the ¢,’s are nuisance parameters

Condition on sufficient statistic n, = 2y,

ni| % ~ Poisson(z e $itPxia)
d

Conditional likelihood for i
e Bxia

g i ()

d=1

= P(yi|x, ni)

Maximize /¢ =3} log Lf toget ﬁCMLE — consistent,
asymptotically Normal [Cameron and Trivedi, 1998]
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Data Reduction to Cases Only

If i has no events (y; = 0) then L = 1, so we only need
cases (i.e. n; 2 1) in the analysis

SCCS does within-person comparison of event rate during
exposure to event rate while unexposed (‘self-controlled’)

Multiple Drugs and Interactions
We extend the model to one AE and multiple drugs
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X = 1 if exposed to drug j, 0 otherwise

Xig = (Xid1, -+ -, Xidp )T yél

Intensity with drug interactions, time-varying covariates:

e {¢i + BTxiq + 3 ross Vrs Xidr Xids + a'zig}

Bayesian Extension of SCCS
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. Normal prior (ridge regression)

. Laplacian prior (lasso)

Longitudinal databases have 10000’s of potential drugs
Intensity model: e (main effects) + (2-way interactions)

—> high dimensionality with millions of predictors
Standard ML leads to overfitting; need to regularize

Our approach — put a prior on B parameters to shrink the
estimates toward zero, smooth out estimation, and

reduce overfitting
[
8 ~ N(0, 03)

»
max lik subjectto > 47 <s —

B; ~ Laplace(0, 1/X)

»
max lik subject to SMgl<s
j=1

Convex optimization: Posterior modes via cyclic
coordinate descent [Genkin et al, 2007]

Handles millions of predictors in logistic case (BBR)

Results: OMOP Methods Evaluation

.

Methods evaluation:

- Chose 10 drugs, 10 conditions of interest

- 9 drug-condition pairs with a true association

- Pairs determined to have no link serve as negative controls
Evaluation is based on mean average precision (mAP)
score: measures the degree to which a method
maximizes ‘true positives’ while minimizing ‘false
positives’

MSLR database (1.5M people)

Method mAP_score
23 BCPNN 0.209197
23 CHI-SQ 0.2144175
12 BCPNN@S 9.1832317
SCCS (1 AE, 1 drug) 0.2216072
Bayesian SCCS, Normal prior, 0.26065568
precision 1 (1 AE, 1 drug)
Bayesian Logistic Regression, 0.2665139,
Normal prior, precision 1
(1 AE, multiple drugs)

Further Work

Hierarchical modeling of drugs into drug classes

drug class [1] drug class [D)
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Hierarchical modeling of conditions into classes
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Relax independence
assumptions to allow
dependence between
events

Allow events to influence future exposures
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