Criticality in Epidemic Models

Epidemic models often exhibit the so-called threshold phenomena, or quantitatively different behavior above and below criticality. In general, below criticality the major epidemic is impossible or unlikely, whereas when the reproductive number is above one, a major epidemic is possible. We will describe the final outcome of the infection spread for several epidemic models in both subcritical and supercritical cases.

$$S \to I \to R$$

- $(S_t, I_t) = \text{state at time } t = 0, 1, 2, \dots$ $S_t = \# \text{ susceptible at time } t$ $I_t = \# \text{ infected at time } t$
- 1 unit time \approx incubation period \approx recovery time

- p = 1 q = probability of encounter for any (S, I) pair
 - \Rightarrow S-person at time t remains S at t+1 w/prob. q^{I_t}

$$\Rightarrow S_{t+1} \sim \operatorname{Bin}(S_t, q^{I_t})$$
$$I_{t+1} = S_t - S_{t+1}$$

• $(S_0, I_0) = (n, m)$

epidemic continues until

$$\tau = \inf\{t : I_t = 0\}$$

• $S_{\tau} = \#$ susceptibles that avoid infection $K = n + m - S_{\tau}$ $= I_0 + I_1 + I_2 + \ldots = \text{total damage}$

Distribution of S_{τ} ? ($\Rightarrow K$?)

• Let
$$m=I_0={\rm o}(n)$$
, and
$$q=e^{-\lambda/n} \Rightarrow p={\rm O}(n^{-1})$$
 $\Rightarrow {\rm E}(\#{\rm contacts}) \approx {\rm fixed}$

 \Rightarrow in the beginning

$$I_{t+1} \approx \operatorname{Bin}\left(S_t, 1 - e^{-\lambda I_t/n}\right)$$

 $\approx \operatorname{Bin}(n, \lambda I_t/n)$
 $\approx \operatorname{Poisson}(\lambda I_t),$

so that

 $I_{t+1} \approx \text{sum of } I_t \text{ indep. } \mathbf{Poisson}(\lambda) \text{ r.v.'s}$

- Initially, $I_0, I_1, I_2, ...$ is \approx G-W process w/offspring $\sim \mathbf{Poisson}(\lambda)$
- Such G-W process is

```
\lambda \leq 1 \Rightarrow \underline{\text{subcritical}}
\Rightarrow \text{progeny is finite (known Lap. tnsf.)}
\lambda > 1 \Rightarrow \underline{\text{supercritical}}
\Rightarrow \text{w/prob. } \sigma^m < 1
\Rightarrow \text{progeny is finite (known Lap. tnsf.)}
\Rightarrow \text{w/prob. } 1 - \sigma^m
\Rightarrow \text{I}_t \text{ gets large, G-W approx. breaks}
```

When $\lambda > 1$ w/prob. $1 - \sigma^m$ both S_t and I_t are large, LLN gives

$$\begin{cases} S_{t+1} = S_t q^{I_t} \\ I_{t+1} = S_t (1 - q^{I_t}) \end{cases}$$

$$s_t = S_t/n, \ i_t = I_t/n \Rightarrow s_0 = 1, i_0 = \frac{m}{n} = \mu$$

$$\begin{cases} s_{t+1} = s_t e^{-\lambda i_t} \\ i_{t+1} = s_t (1 - e^{-\lambda i_t}) \end{cases}$$
 and

$$s_{\infty} = 1 \cdot e^{-\lambda(i_0 + i_1 + \dots)} = e^{\lambda(1 + \mu - s_{\infty})}$$
$$I_{\infty} \approx ni_{\infty} = n(1 - s_{\infty})$$

 $K = I_0 + I_1 + I_2 + \ldots = \text{total epidemics}$

• If
$$\frac{m}{n} \to \mu > 0 \implies \frac{K - n(1 - s_{\infty})}{\sqrt{n(1 - s_{\infty})}} \to N(0, 1)$$

- If $\frac{m}{n} \to \mu = 0$ \Longrightarrow
 - $\lambda \leq 1 \Rightarrow K \sim$ progeny of G-W process
 - $-\lambda > 1 \Rightarrow$
 - * w/prob. σ^m $K \sim$ progeny of G-W
 - * $\underline{\mathsf{w/prob.}} \ 1 \sigma^m \ \frac{K n(1 s_\infty)}{\sqrt{n(1 s_\infty)}} \to N(0, 1)$

- Continuous time, $S_0 = n$, $I_0 = m$
- Again $S \to I \to R$ w/transition probabilities conditional on $(S_t, I_t) = (S, I)$

$$P_{t}\left((S_{t+h}, I_{t+h}) = (S_{-}, I+1)\right) = \theta SIh + o(h)$$

$$P_{t}\left((S_{t+h}, I_{t+h}) = (S, I-1)\right) = \rho Ih + o(h)$$

$$P_{t}\left((S_{t+h}, I_{t+h}) = (S, I)\right) = 0$$

$$= 1 - \theta SIh - \rho Ih + o(h),$$

all other transitions w/prob. o(h)

Sellke's beautiful coupling argument

- wlog take $\theta = 1$
- Index S-indiv. by i and I-indiv. by j, so $1 \le i \le n$ and $1 \le j \le m$.
- $\left\{l_i\right\}_{i=1}^n$ "resistance to infection" $l_{(1)} < l_{(2)} < \ldots < l_{(n)}$ order statistics i.i.d. $\operatorname{Exp}(1)$.
- $\left\{\hat{r}_j\right\}_{j=1}^m$ "infectious period" for I-indiv. $\left\{r_i\right\}_{i=1}^n$ "infectious period" for S-indiv. i.i.d. $\mathbf{Exp}(\rho)$. $r^{(k)}=r_i$ if $l_{(k)}=l_i$

- ullet Originally infected remain for \widehat{r}_j time units
- ullet S-indiv. indexed i accumulates "exposure" at rate I_t at time t
- When "exposure" $> l_i \Rightarrow S \rightarrow I$ then stays infected for r_i time units

- ν = number of new infections
- If $l_{(1)}>\sum_{j=1}^m \hat{r}_j$ then $\nu=0$ else S-indiv. with $l_{(1)}$ is infected and $\nu\geq 1$
- Induction

$$\nu + 1 = \min \left\{ k : l_{(k)} > \sum_{j=1}^{m} \hat{r}_j + \sum_{i=1}^{k-1} \hat{r}^{(i)} \right\}$$

if inequality doesn't hold for $\forall k$ then $\nu = n$.

Processes indexed by k

Theorem. If $n_k \to \infty$, $\rho_k \to \infty$, and

$$n_k \exp\left\{-\frac{n_k + m_k}{\rho_k}\right\} \to b, \qquad 0 < b < \infty,$$

then $S_k(\infty) = n_k - \nu_k \to_{\mathcal{D}} \mathbf{Poisson}(b)$.

Let $R = \sum_{j=1}^{m} \hat{r}_j + \sum_{i=1}^{\nu} \hat{r}^{(i)}$ total exposure.

Outline of the proof

$$\bullet \ \rho = \mathrm{o}(n+m)$$

- Almost birth-and-death process
- Death-rate to birth-rate is

$$\frac{\rho I_t}{S_t I_t} = \frac{\rho}{S_t} < \frac{\rho}{\epsilon(n+m)} \equiv q$$
 on $\{S_t > \epsilon(n+m)\}$.

• Prob. of extinction with $S(\infty) > \epsilon(n+m)$

< Prob. of extinction with D-B ratio q

$$= q^m \rightarrow 0.$$

Outline of the proof (cont'd)

Most people become infected, LLN gives

$$R \approx \sum_{j=1}^{m} \hat{r}_j + \sum_{i=1}^{n} \hat{r}^{(i)} \approx \frac{n+m}{\rho}$$

$$S(\infty) = \#\text{of } l_i \text{'s} > R \approx \frac{n+m}{\rho}$$

 $\approx \text{Bin}\left(n, e^{-\frac{n+m}{\rho}}\right)$
 $\approx \text{Poisson}(b).$

General sampling procedure

- $(S_0, I_0) = (n, m)$.
- I-person draws size of contacts $\sim p$ $p = (p_0, p_1, p_2, ...)$, moments $= (\lambda, \sigma^2)$
- I_t contacts <u>all</u> at time t: $\{S_t\} \cup \{I_t\}$
- $U_k = \#$ of susceptibles after k samplings.

$$U_0 = S_0 = n, I_0 = m$$

 $K_t = I_0 + I_1 + \dots + I_t = n + m - S_t$

can recover

$$S_{t+1} = U_{K_t}, I_t = S_t - S_{t+1}$$

General sampling procedure

ullet The process runs until $I_t=0$

$$\Rightarrow S_t = S_{t+1}$$
, and therefore

$$K_t = n + m - S_t = n + m - S_{t+1}$$

= $n + m - U_{K_t}$

for the first time.

• Let $Y_k \equiv U_k - nw^k$, $(w \equiv 1 - \lambda/n)$

2 moments + tightness show that

$$\{n^{-1/3}Y_{tn^{2/3}}\} \Rightarrow \sigma W_t.$$

General sampling procedure

The outcome of an almost critical epidemic Martin Löf (1998)

- Total epidemic $K=\sum_t I_t=$ first time when U_k hits n+m-k, or equivalently when $n-U_k-k$ hits -m
- Let $\lambda = 1 + a/n^{1/3}$ and $m = bn^{1/3}$, same as

$$n^{1/3} (at - t^2/2 + O(n^{-1/3})) - Y_{tn^{2/3}}$$

hits $-bn^{1/3}$, simplifies to

$$W_t$$
 hits $b + at - t^2/2 \rightsquigarrow T$.

• Finally, recall $K = n^{2/3}T$.