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Abstract

This paper is concerned with an observation driven model for time series of counts
whose conditional distribution given past observations follows a Poisson distribution.
This class of models, called GLARMA, is capable of modeling a wide range of de-
pendence structures and is readily estimated using conditional maximum likelihood.
Recursive formulae for carrying out maximum likelihood estimation are provided and
the technical components required for establishing a central limit theorem of the max-
imum likelihood estimates are given in a special case.

1 Introduction

In recent years there has been considerable development of models for non-Gaussian time
series. A review of models for the special case of time series of counts is contained in
Davis et al. (1999). There, a new class of models, which we will refer to as generalized
linear autoregressive moving average (GLARMA) models is introduced. These GLARMA
models are developed further in Davis et al. (2003) where, for a simple example, ergodicity
of the process is established and asymptotic normality of the maximum likelihood estimates
is stated. The primary objective of this paper is to provide some of the technical details
required to establish asymptotic normality of the maximum likelihood estimate in the first-
order GLARMA model. While equivalent results for the fully general GLARMA models
are difficult to establish, the proofs are likely to follow the lines of argument for the cases
considered here.

To introduce the general version of our model, assume that the observation Yt given the
past history Ft−1 = σ(Ys, s ≤ t− 1) is Poisson with mean µt which will be denoted by

Yt|Ft−1 ∼ P (µt).

It is further assumed that the state process log(µt) is a moving average driven by noise that
is a martingale difference sequence generated from the data. Formally, the state process is
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given by

Wt := log(µt) = β +

q∑
j=1

τj(γ)et−j, (1)

where 1 ≤ q ≤ ∞,
et = (Yt − µt)/µ

λ
t , λ ≥ 0

is a martingale difference sequence, and γ is a parameter vector. Even if q = 1, the condi-
tional mean E(Yt|Y(t−1)) depends on the whole past and hence is not Markov. On the other
hand, the mean process log(µt) is qth order Markov. For q = 1, it was shown in Proposition
2 of Davis et al. (2003) that the process {Wt} has a unique stationary distribution and is
uniformly ergodic.

One desirable way in which to parameterize the moving average weights τj(γ) in (1),
is to allow them to be the coefficients in an autoregressive-moving average (ARMA) filter.
Specifically, set

τ(z) :=
∞∑

j=1

τj(γ)zj = θ(z)/φ(z)− 1,

where φ(z) = 1 − φ1z − · · · − φpz
p and θ(z) = 1 + θ1z + · · · + θqz

q are the respective
autoregressive and moving average polynomials of the ARMA filter, each having all their
zeros outside the unit circle, and γ is the parameter vector consisting of the φi’s and θj’s.
Writing Wt = β + Zt, where

Zt =
∞∑

j=1

τj(γ)et−j, (2)

it follows that {Zt} satisfies the ARMA-like recursions,

Zt =

p∑
i=1

φi(Zt−i + et−i) +

q∑
i=1

θiet−i. (3)

When this condition holds for the {Wt} process, the model is referred to as a generalized
ARMA or GLARMA (see Davis et al. (2003)).

2 Estimation and Inference for the Model

2.1 Maximum Likelihood Estimation

The likelihood and its first and second derivatives can easily be computed recursively and
used in a Newton-Raphson update procedure for the GLARMA model. Standard errors
for the parameter estimates that properly account for serial dependence are also readily
available. The details follow.

Let δ = (β, γT )T and define Lt(δ) = log f(yt|Ft−1), where f is the conditional Poisson
density of Yt given Ft−1. The log-likelihood can then be written as

∑n
t=1 Lt(δ) which, upon

ignoring terms which do not involve the parameters, becomes

L(δ) =
n∑

t=1

(
YtWt(δ)− eWt(δ)

)
, (4)
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where

log(µt) = Wt(δ) = β +

q∑
i=1

τi(γ)et−i(δ)

and
et(δ) = (Yt − µt)/µ

λ
t .

For brevity, we will often suppress the dependence of Wt and et on δ. The first and second
derivatives of L are given by the following expressions

∂L

∂δ
=

n∑
t=1

(Yt − µt)
∂Wt

∂δ
=

n∑
t=1

etµ
λ
t

∂Wt

∂δ

and

∂2L

∂δ∂δT
=

n∑
t=1

[
(Yt − µt)

∂2Wt

∂δ∂δT
− µt

∂Wt

∂δ

∂Wt

∂δT

]

=
n∑

t=1

[
etµ

λ
t

∂2Wt

∂δ∂δT
− µt

∂Wt

∂δ

∂Wt

∂δT

]
.

The remaining recursive expressions needed to calculate these derivatives are given below.
Asymptotic results for these estimates are given in Section 2.2 for the case where λ = 1
and q = 1. Under these conditions, the asymptotic distribution of the maximum likelihood
estimates is N(0, V −1), where

V = lim
n→∞

1

n

n∑
t=1

eWtẆtẆ
T
t , (5)

with Ẇt = ∂Wt(δ)
∂δ

.
To initialize the Newton Raphson recursions we have found that using the GLM estimates

without the autoregressive moving average terms together with zero initial values for et, t ≤
0, gives reasonable starting values. Convergence in the majority of cases that we have
considered occurred within 10 iterations from these starting conditions.

The remaining expressions needed to calculate the derivatives of the likelihood are derived
below. These can be readily programmed and implementation in the S-language is available
from the second author upon request. First we note that

∂et

∂δ
= −[e(1−λ)Wt + λet]

∂Wt

∂δ
.

and
∂Wt

∂δ
=

β

∂δ
+

∂Zt

∂δ
,

where {Zt} is defined in (2). From the recursion (3), it follows that

∂Zt

∂δ
=

p∑
i=1

∂φi

∂δ
(Zt−i + et−i) +

p∑
i=1

φi

(
∂Zt−i

∂δ
+

∂et−i

∂δ

)

+

q∑
i=1

∂θi

∂δ
et−i +

q∑
i=1

θi
∂et−i

∂δ
.
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In particular:

∂Zt

∂β
=

p∑
i=1

φi

(
∂Zt−i

∂β
+

∂et−i

∂β

)
+

q∑
i=1

θi
∂et−i

∂β
,

∂Zt

∂φa

= Zt−a + et−a +

p∑
i=1

φi

(
∂Zt−i

∂φa

+
∂et−i

∂φa

)
+

q∑
i=1

θi
∂et−i

∂φa

and
∂Zt

∂θa

=

p∑
i=1

φi

(
∂Zt−i

∂θa

+
∂et−i

∂θa

)
+ et−a +

q∑
i=1

θi
∂et−i

∂θa

.

The second derivatives are then

∂2et

∂δ∂δT
= −[e(1−λ)Wt + λet]

∂2Wt

∂δ∂δT

−
[
∂Wt

∂δ
(1− λ)e(1−λ)Wt + λ

∂et

∂δ

]
∂Wt

∂δT

and
∂2Wt

∂δ∂δT
=

∂2β

∂δ∂δT
+

∂δ2Zt

∂δ∂δT
=

∂δ2Zt

∂δ∂δT
,

in which

∂2Zt

∂δ∂δT
=

p∑
i=1

[
∂φi

∂δ

(
∂Zt−i

∂δT
+

∂et−i

∂δT

)
+

(
∂Zt−i

∂δ
+

∂et−i

∂δ

)
∂φi

∂δT

]

+

p∑
i=1

φi

(
∂2Zt−i

∂δ∂δT
+

∂2et−i

∂δ∂δT

)
+

q∑
i=1

[
∂θi

∂δ

∂et−i

∂δT
+

∂et−i

∂δ

∂θi

∂δT

]

+

q∑
i=1

θi
∂2et−i

∂δ∂δT
.

2.2 Asymptotic Distribution of MLE

In this section we establish asymptotic properties of the MLEs given in Section 2.1 for the
first order model with λ = 1 :

Wt = β + γ
(
Yt−1 − eWt−1

)
e−Wt−1 . (6)

Uniform ergodicity and stationarity of {Wt} are the key ingredients of the argument.
We first note that by the ergodic theorem,

n−1L(δ) := n−1

n∑
t=1

(YtWt(δ)− eWt(δ)) → S(δ) := Eδ0(Y1W1(δ)− eW1(δ))

a.s., where Eδ0 represents the expectation operator when the true parameter value is equal
to δ0. The following result establishes identifiability of the model parameterization.
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Proposition 2.1 The function S(δ) has a unique maximum at the true parameter value
δ = δ0.

Proof: We have

S(δ) = Eδ0(e
W1(δ0)(W1(δ)−W1(δ0) + W1(δ0)− eW1(δ)−W1(δ0))

≤ Eδ0(e
W1(δ0)(W1(δ0)− 1))

= S(δ0) ,

where the inequality follows from the relation x− ex ≤ −1. The inequality is an equality if
and only if W1(δ) = W1(δ0) a.s. However, in this case, we have

0 = β0 − β + (γ0e
−W0(δ0) − γe−W0(δ))Y0 − (γ0 − γ)

for Y0 = 0, 1, . . .. It follows that β = β0 and γ = γ0 which completes the proof. 2

We next consider the normalized score function evaluated at δ0,

Hn := n−1/2∂L(δ0)

∂δ
= n−1/2

n∑
t=1

ete
WtẆt , (7)

where Wt = Wt(δ0), Ẇt = ∂Wt(δ0)
∂δ

, and et =
(
Yt − eWt

)
/eWt . The following result establishes

the asymptotic normality of the score function, which is typically the primary factor in
establishing the asymptotic normality of maximum likelihood estimates.

Proposition 2.2 If γ > 0 and γ(1 + eγ−β)1/2 < 1, then the normalized score function Hn

is asymptotically normal with mean 0 and covariance matrix V (δ0) given by

1

n

n∑
t=1

eWtẆtẆ
T
t

a.s.−→ V (δ0) := E(eW1Ẇ1Ẇ
T
1 )

Proof: It is easy to see that Hn is a sum of a triangular array of vector martingale differences,

ηnt = n−1/2etbt,

where
bt = Ẇte

Wt = Ẇtµt.

In order to apply a martingale central limit theorem, it suffices to show (see Corollary 3.1 of
Hall and Heyde [4]) that

n∑
t=1

E(ηntη
T
nt | Ft−1)

P−→ V (δ0), (8)

where Ft = σ(Ys, s ≤ t), and, for all ε > 0,

n∑
t=1

E
(
ηntη

T
ntI[|ηnt| > ε]

∣∣ Ft−1

) P−→ 0. (9)
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Under these two conditions, we have

Hn
d→ N(0, V ).

To establish conditions (8) and (9), we see from (6) that

Ẇt =

[ ∂Wt

∂γ
∂Wt

∂β

]
=

[
Ẇt,1

Ẇt,2

]

=

[
Yt−1e

−Wt−1 − 1− γYt−1e
−Wt−1Ẇt−1,1

1− γYt−1e
−Wt−1Ẇt−1,2

]

=

[
Ut + AtẆt−1,1

1 + AtẆt−1,2

]
=

[
Ut +

∑∞
i=1 At · · ·At−i+1Ut−i

1 +
∑∞

i=1 At · · ·At−i+1

]
, (10)

where Ut = Yt−1e
−Wt−1 − 1 and At = −γYt−1e

−Wt−1 . Since Ẇt is a function of {Ws, s ≤ t},
it also is a strictly stationary ergodic process. Now,

n∑
t=1

E(ηntη
T
nt | Ft−1) =

1

n

n∑
t=1

eWtẆtẆ
T
t ,

which is a function of two stationary ergodic processes, {Wt} and {Ẇt}. By the ergodic
theorem we then have

1

n

n∑
t=1

eWtẆtẆ
T
t

a.s.−→ V = E(eW1Ẇ1Ẇ
T
1 )

if E|eWt(δ0)ẆtẆ
T
t | < ∞. Conditions under which this holds will now be derived for a

particular choice of parameter values of β and γ. It suffices to show E|eWtẆ 2
t,i| < ∞, i = 1, 2.

First we will consider the case i = 1. Using ‖ · ‖2 to denote the L2 norm, we have from (10),

‖eWt/2Ẇt,1‖2 ≤ ‖eWt/2Ut‖2 +
∞∑
i=1

‖eWt/2At · · ·At−i+1Ut−i‖2.

Using properties of the moment generating function for a Poisson distributed random variable
and the fact that the process Wt is bounded below by β − γ, we have

‖eWt/2Ut‖2
2 = E

[
eβ−γeγYt−1e−Wt−1

(Yt−1e
−Wt−1 − 1)2

]

= eβ−γE
[
E

(
eγYt−1e−Wt−1

(Y 2
t−1e

−2Wt−1 − 2Yt−1e
−Wt−1 + 1) | Wt−1

)]

= eβ−γE

[
e−Wt−1eγe−Wt−1

eeWt−1 (eγe
−Wt−1−1) + e2γe−Wt−1

eeWt−1 (eγe
−Wt−1−1)

−2eγe−Wt−1
eeWt−1 (eγe

−Wt−1−1) + eeWt−1(eγe
−Wt−1−1)

]

= eβ−γE

[
eeWt−1 (eγe

−Wt−1−1)
[
1 + eγe−Wt−1

(
eγe−Wt−1

+ e−Wt−1 − 2
)]]

≤ eβ−γeeβ−γ(eγe−(β−γ)−1)
[
1 + eγe−(β−γ)

(
eγe−(β−γ)

+ e−(β−γ) − 2
)]

:= c2
1, (11)
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where the last inequality follow from the fact that the function x(exp(γx−1)−1) is decreasing
in x > 0.

E
[
eWtA2

t | Ft−1

]
= E

[
γ2eβ−γY 2

t−1e
−2Wt−1eγYt−1e−Wt−1 | Wt−1

]

= γ2eβ−γ

[
e−Wt−1eγe−Wt−1

eeWt−1(eγe
−Wt−1−1) + e2γe−Wt−1

eeWt−1 (eγe
−Wt−1−1)

]

≤ γ2eβ−γeeβ−γ(eγe−(β−γ)−1)eγe−(β−γ)
(
eγe−(β−γ)

+ e−(β−γ)
)

:= b2
1,

E
[
A2

t | Ft−1

]
= E

[
γ2Y 2

t−1e
−2Wt−1 | Wt−1

]

= γ2
(
1 + e−Wt−1

)

≤ γ2(1 + e−(β−γ))

and

E
[
U2

t | Ft−1

]
= E

[
Y 2

t−1e
−2Wt−1 − 2Yt−1e

−Wt−1 + 1 | Wt−1

]

= e−Wt−1

≤ e−(β−γ) := b2
2.

Applying these results, ‖eWt/2At · · ·At−i+1Ut−i‖2
2 may be calculated recursively:

‖eWt/2At · · ·At−i+1Ut−i‖2
2 = E

(
eWtA2

t · · ·A2
t−i+1U

2
t−i

)

= E
[
E

(
eWtA2

t · · ·A2
t−i+1U

2
t−i | Ft−1

)]

= E
[
A2

t−1 · · ·A2
t−i+1U

2
t−iE

(
eWtA2

t | Ft−1

)]

≤ b2
1E

[
E

(
A2

t−1 · · ·A2
t−i+1U

2
t−i | Ft−2

)]

= b2
1E

[
A2

t−2 · · ·A2
t−i+1U

2
t−iE

(
A2

t−1 | Ft−2

)]

≤ b2
1γ

2(1 + e−(β−γ))E
[
A2

t−2 · · ·A2
t−i+1U

2
t−i

]
...

≤ b2
1

(
γ2(1 + e−(β−γ))

)i−1
E [E (Ut−i | Ft−i−1)]

≤ b2
1b

2
2

(
γ2(1 + e−(β−γ))

)i−1
.

Therefore,

‖eWt/2Ẇt,1‖2 ≤ c1 + c2

∞∑
i=1

γi−1(1 + eγ−β)(i−1)/2,

where c2 = b1b2. Likewise

‖eWt/2Ẇt,2‖2 ≤ ‖eWt/2‖2 +
∞∑
i=0

‖eWt/2At · · ·At−i‖2

≤ c3 + c4

∞∑
i=1

γi−1(1 + eγ−β)(i−1)/2,

where
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c3 =
[
eβ−γeeβ−γ(eγe−(β−γ)−1)

]1/2

,

and

c4 =
[
γ2eβ−γeeβ−γ(eγe−(β−γ)−1)eγe−(β−γ)

(
eγe−(β−γ)

+ e−(β−γ)
)]1/2

.

It follows that E|eWtẆtẆ
T
t | will be finite for γ(1 + eγ−β)1/2 < 1.

The convergence required in condition (9) is easily established using condition (8) and
the stationarity of {Wt}. Now,

n∑
t=1

E
(
ηntη

T
ntI[|ηnt| > ε]

∣∣ Ft−1

)

=
1

n

n∑
t=1

E
[
(Yt−1 − eWt−1)2ẆtẆ

T
t I[|(Yt−1 − eWt−1)Ẇt| > ε

√
n]

∣∣ Ft−1

]

≤ 1

n

n∑
t=1

E
[
(Yt−1 − eWt−1)2ẆtẆ

T
t I[|(Yt−1 − eWt−1)Ẇt| > M ]

∣∣ Ft−1

]

n→∞−→ E
[
(Y1 − eW1)2Ẇ1Ẇ

T
1 I[|(Y1 − eW1)Ẇ1| > M ]

]

−→ 0 as M →∞.

2

To argue that the MLE is asymptotically normal, consider the the linearized version of
the log-likelihood obtained by linearizing Wt(δ) in a neighborhood of the true value δ0 in
(4). Specifically, let

W †
t (δ) = Wt(δ0) + (δ − δ0)

T Ẇt,

so that the linearized log-likelihood takes the form

L†(δ) =
n∑

t=1

(
YtW

†
t (δ)− eW †

t (δ)
)

.

After re-parameterizing with the transformation u = n1/2(δ − δ0), we have

R†
n(u) := L†(δ0)− L†(δ0 + un−1/2)

= −uT n−1/2

n∑
t=1

YtẆt +
n∑

t=1

eWt

(
euT n−1/2Ẇt − 1

)

= −uT n−1/2

n∑
t=1

(
Yt − eWt

)
Ẇt +

n∑
t=1

eWt

(
euT n−1/2Ẇt − 1− uT n−1/2Ẇt

)
. (12)

Note that R†
n(u) is a convex function of u. The first term in (12) is −uT Hn which, by

Proposition 2.2, is asymptotically normal with mean 0 and variance −uT V (δ0)u. The second
term in (12) is

uT

[
(2n)−1

n∑
t=1

eWtẆtẆ
T
t

]
u + Op

(
n−3/2

n∑
t=1

eWt(uT Ẇt)
3

)
= 2−1uT V (δ0)u + oP (1),
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so that R†
n(u)

d→ R(u) where

R(u) = −uT N(0, V ) + uT V u/2.

This convergence extends to finite dimensional distributions and since R†
n is convex, the

convergence is actually on C(R2), the space of continuous functions on R2 (see Remark 1 of

Davis et al. (1992)). Moreover, the convexity implies that the minimizer, ûn = n1/2(δ̂
†
n−δ0),

of R†
n converges in distribution to the unique minimizer of R(u). It is easy to see that this

minimizer is V −1N(0, V ) which has a N(0, V −1) distribution.
Under suitable smoothness conditions, the convergence of R†

n(u) can be transferred to

Rn(u) := L(δ0) − L(un−1/2 + δ0). That is, R†
n(u) − Rn(u)

P→ 0 uniformly for |u| ≤ K. In

this case, δ̂
†
n and the maximum likelihood estimator δ̂n have the same limiting distribution,

namely, N(0, V −1).
Simulation results from these models (see Davis et al. (2003)) show close agreement

between the theoretical values and the model estimates, thereby supporting the derived
theory.
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