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ABSTRACT

In this ongoing work, we propose a Bayesian model that
can be used to detect targets in multispectral images when
the signals from the materials in the image mix linearly,
the noise is Gaussian, and abundance parameters are non-
negative. By using efficient implementations of the Gibbs
sampler, the expectation of any measurable functional of
the abundance parameters, relative to the posterior
distribution, can be computed easily. This general
approach can be used to include additional constraints.

1. INTRODUCTION

In the linear mixing model, the spectrum of a mixed pixel
is represented as a linear combination of component
spectra, i.e.,

y = Mαα + n, (1)

where M is an N × r matrix whose columns correspond to
the spectra of the r materials present in the pixel, αα is an
r×1 vector consisting of the abundances of the materials
in a pixel, and n is an N ×1 vector corresponding to the
noise [10], [14]. Due to physical considerations the
components of the vector αα are considered to be non-
negative. These constraints can be expressed as αα ∈ T :=
[0, ∞)r = [0, ∞)×…×[0, ∞). The matrix M is assumed to
be of full rank and the noise in the model is assumed to
be Gaussian, i.e. n ~ N(0, σ2IN).
      In section 2 we list standard results for the truncated
multivariate distribution that are used in this work and
we prove the main result of this work. In section 3 a
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Bayesian framework for the model in (1) is described. In
section 4 we briefly review the basic idea behind the
Gibbs sampler. In section 5 we propose various
implementations of this technique for the model and
discuss our findings.

2. TRUNCATED MULTIVARIATE NORMAL
DISTRIBUTION

Definition 1. (Truncated Multivariate Normal Distn). Let
φφ(x; µµ, ΣΣ) denote a k-variate normal density with mean µµ
and covariances ΣΣ. Then X ~ NR(µµ, ΣΣ) denotes a random
vector whose density is proportional to φφ(x; µµ, ΣΣ)IR(x),
where R ⊂ℜk has positive Lebesgue measure and IR(.) is
the indicator function for R. We call NR a truncated
normal distribution.

Result 1. Let T be a subset of ℜk that has positive
Lebesgue measure. Suppose X ~ NT(µµ, ΣΣ). Define 0 < k1

< k, and partition µµ and ΣΣ as
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where µµ1 is a vector with k1 components and Σ11 is a
k1×k1-matrix. Then the generalized Gauss-Markov
theorem for the truncated normal distribution NT is

i) pX(x1, x2) ∝ φφ(x1; µµ1, ΣΣ11) φφ(x2; ,*
2µµ ,)()I22 xT

*ΣΣ

where
*
2µµ  = µµ2 + ΣΣ21(ΣΣ11)

-1(x1 - µµ1),

*
22ΣΣ  = ΣΣ21(ΣΣ11)

-1ΣΣ12.

ii) If T = T1×T2, where T1 and T2 are subsets of ℜk1 and
ℜk2, respectively, with positive Lebesgue measure, then

X2|X1 ~ )( 2222

** ,N ΣΣµµT n



      Let Z be a vector of order k, i.e. Z  = [Z1,…, Zk]
T. We

define Z[j:l] := [Zj,…, Zl]
T. Also, given a square matrix A =

{aij} of order k, A[j:l, m:n] denotes the submatrix of A
containing the rows j thru l and columns m thru n. When
j=l or m=n we can write A[j, m:n] to denote a subrow and
A[j:l, m] to denote a subcolumn, respectively. When j = l
and m = n then A[j:l, m:n] = A[j, m] = ajm.
      The following result establishes the action of linear
transformations on truncated normal distributions. This
result is crucial to implement an efficient Gibbs sampler
for the Bayesian linear mixing model proposed in this
work.

Result 2. Suppose X ~ NT(µµ, σ2ΣΣ), where T ⊆ ℜk has
positive Lebesgue measure, and ΣΣ is positive definite.
Moreover, let A be a real k×k matrix of full rank and
define αα := Aµµ, Y := AX, and S := {Ax : x ∈ T}. Now, let
Sj(y1,…, yj-1, yj+1,…, yk) denote the subset of ℜ, defined by

Sj(y1,…, yj-1, yj+1,…, yk) := {yj: (y1,…, yk) ∈ S}. (2)

Then
(a) Y ~ NS(αα, σ2AΣΣAT).
(b) If in particular A is a lower triangular matrix such

that AΣΣAT = Ik, then writing αα = [α1,…,αk]
T,

yj|(y1,…,  yj-1,  yj+1,…, yk) ~ 
jSN (αj, σ2), (3)

provided that Sj := Sj(y1,…, yj-1, yj+1,…, yk) has
positive Lebesgue measure.

 (c) If A and Sj are as in (b) and T := [0, ∞)k, then

Sj = {aj + ajjz : bjz ≤ cj, z ≥ 0}, (4)
where

aj := A[j, 1:j-1] x[1:j-1] (5)

bj := (A[j+1:k,  j+1:k])
 –1A[j+1:k, j] (6)

cj := rj - (A[j+1:k, j+1:k])
 –1A[j+1:k, 1:j-1] x[1:j-1] (7)

rj := (A[j+1:k, j+1:k])
 -1

 y[j+1:k]

x[1:j-1] := (A[1:j-1, 1:j-1])
 -1

 y[1:j-1]. (8)

For the particular cases j=1 and j=k we take

a1 := 0 (9)

c1 := (A[2:k, 2:k])
 -1

 y[2:k] (10)

Sk(y1,…, yk-1) := {ak + akkz : z ≥ 0}. (11)

Proof. Only (c) needs to be shown. Note that S has the
form

S = {y ∈ ℜk: y = Ax,  x ∈ T}. (12)

For j ∈ {2, …, k-1}, partition x and y, respectively, as
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Then from y = Ax we obtain

y[1:j-1] = A[1:j-1, 1:j-1] x[1:j-1] (13)

yj =  A[j, 1:j-1] x[1:j-1] + ajjxj (14)

x[j+1:k] = (A[j+1:k, j+1:k])
-1

(y[j+1:k] - A[j+1:k, 1:j-1]x[1:j-1] - A[j+1:k, j]xj)
(15)

Then (8) follows from (13). Now, taking aj, bj and cj as in
(5)-(7), respectively, (14) and (15) become

yj =  aj + ajjxj (16)

x[j+1:k] = cj – bj xj (17)

Thus, (4) follows using (16), (17) and (12) in (2). When j
= 1 or j = k, partitioning appropriately the system y = Ax,
and repeating the previous procedure, produces equations
(9) to (11).         n

Example 1. Consider the case AΣΣAT = I, where
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Thus, if X ~ NT(µµ, σ2ΣΣ), and Y= AX, where T = [0, ∞)2

then from (a) of Result 2, Y ~ NS(αα, σ2I) where S = {Ax :
x ∈ T} and αα := Aµµ = [µ1, -4µ1/3+5µ2/3]T. Moreover,
from (3),

y1|y2 ~ ),( 2
11

σµ ,NS

y2|y1 ~ ),(- 2
23

5
13

4
2

σµµ ,NS +

where S1 := S1(y2) and S2 := S2(y1) can be found using (c)
of Result 2 as follows: from (6), (9) and (10) we obtain b1

= -4/5, a1 = 0, and c1 = 3y2/5. Thus, from (4), S1 =
[max{0, -3y2/4}, ∞). Now, using (8), (5) and (11) we find
that x[1:1] = y1, a2 = (-4/3)y1 and S2 = [-4y1/3, ∞). The
regions T and S for this problem are shown in Figure 1.
Although S1 and S2 could have been obtained directly
from this figure, in general for higher dimensions the
calculation of Sj must be coded as in Result 2.

Figure 1. Regions T and S = {Ax : x ∈ T}. n

For T := [0, ∞)k, Result 2 suggests how to implement an
efficient Gibbs sampler for a truncated multivariate
normal distribution. First we shall transform as in (b).
Then (3) gives the distributions to be sampled in each
cycle of the Gibbs sampler (see Section 4). This



implementation gives a chain that solves the problem of
slow mixing that may appear in the standard Gibbs
sampler implementation for the truncated multivariate
normal distribution [5] with T of the above form. For a
general convex region such as T := {x ∈ ℜk: a ≤ Bx ≤ b},
where B is a full rank matrix of dimension m×k (m ≤ k)
and the components of a and b are allowed to be -∞ and
+∞, respectively, a procedure as in (c) of Result 2 can be
obtained with only minor adjustments.

3. MODEL

The model in (1) describes the conditional distribution of
y given the parameter vector θθ := (αα, σ2) consisting of
abundances αα and noise variance σ2. Now we assume the
prior distribution for θθ to be

p(αα, σ2) = p(αα) p(σ2),

αα ~ NT(µµ0, σ0
2(MTM)-1),

σ2 ~ IG(ν, λ),

(18)

where T := [0, ∞)k and IG is the inverse gamma
distribution (see [15]). We assume  σ0

2, ν and λ  are
known positive scalars, and µµ0 is a known vector. Let
p(αα, σ2| D) denote the posterior distribution of θθ, given
the pixel values D. Then

p(αα, σ2| D) ∝ L(y; αα, σ2) p(αα) p(σ2), (19)

where L is the likelihood of θθ given y from the model (1),
when n ~ N(0, σ2IN).
      The problem addressed in this work is to obtain a
sample θθ1,…, θθn from the posterior density p(θθ|D), for
which functionals of the posterior can be estimated. Such
functionals can be expressed as

,dphhE ∫= θθθθθθθθ )|()(]|)([ DD (20)

where h(.) is a real-valued function of θθ that is integrable
relative to p(θθ | D). Notice that (20) reduces to
(a) the posterior mean of θθ  when h(θθ) = θθ.
(b) the posterior covariance of θj and θi when h(θθ) = (θj -

E(θj|D))( θi - E(θi|D)).
(c) the posterior probability of a set A if h(θθ) = IA(θθ).

4. GIBBS SAMPLER

To draw a sample from the posterior distribution p(αα, σ2|
D) in (19) we consider the Gibbs sampler, an example of
a Markov Chain Monte Carlo (MCMC) simulation. The
latter originated with the algorithm of [11] and
immediately found widespread use in Physics and
Chemistry. This algorithm, known as the Metropolis
algorithm, was generalized in [9], but this work did not
find extensive use in statistics until the appearance of the
Gibbs sampler introduced by [3] in the context of image

restoration. The basic idea is to simulate a stationary
ergodic Markov chain, whose stationary distribution has
the desired posterior density.
      To implement the Gibbs sampler, write the
components of the vector θθ as (θ1,…, θq) where the θi’s
are either uni- or multidimensional. Assuming that we
can simulate a random value from the conditional density
functions p(θi|θ1,…, θi-1, θi+1, …, θq, D), then the basic
scheme of the Gibbs sampler is given as follows

Step 0. Choose an arbitrary starting point θθ0= (θ1,0…,θq,0)
in the support of p(θθ   | D) and set t = 0.

Step 1. Generate θθt+1 = (θ1, t+1…, θq,t+1) as follows:
Generate θ1,t+1 from p(θ1|θ2,t,…, θq,t,D).
Generate θ2,t+1 from p(θ2|θ1,t+1, θ3,t…, θq,t,D).
 M
Generate θq,t+1 from p(θq|θ1, t+1, θ2, t+1, …, θq-1,t+1,D).

Step 2. Set t = t + 1 and go to step 1.

Notice that each component of the vector θθ is updated in
the natural order, using most recent updates of all other
components of  θθ, and that a cycle in the scheme requires
the generation of q random quantities. Under certain
regularity conditions (see [2] for example), the Markov
chain {θθ0, θθ1, θθ2, θθ3, ...} has a stationary distribution
which is the posterior density p(θθ   | D).

5. GIBBS SAMPLER IMPLEMENTATIONS

Using (18) in (19) we find the following posterior
conditional densities

αα|(σ2, D) ~ NT(µµ1, ΣΣ1),

σ -2|(αα, D) ~ (SS(αα) + 2λ)-1 2
2νχ +N ,

(21)

(22)
where χ2

N+2ν denotes a chi-squared distribution with N +
2ν degrees of freedom, and

µµ1= 22
0

2
0

σσ
σ
+

αα̂ + 22
0

2

σσ
σ
+

µµ0,

ΣΣ1 = 22
0

22
0

σσ
σσ
+

(MTM)-1,

SS(αα):= (y- Mαα)T(y- Mαα).

Here αα̂ is the ordinary least squares estimates of αα from
the model in (1). Notice that µµ1 is a convex lineal
combination of prior µµ0 and αα̂ and SS(αα) is the residual
sum of squares; also ΣΣ1 is the least squares covariance
matrix, scaled by the factor for αα̂  in µµ1.

5.1. Full conditionals (scalar Gibbs)

As a first implementation of the Gibbs sampler for the
posterior density p(αα, σ2| D), we consider the set of
unidimensional conditional distributions. Hence, to



update the current value (αα i, σi
2) = (α1,i,..., αr,i, σi

2) of
the i-th iteration we proceed as follows:

• draw α1,i+1 from p(α1|α2,i,..., αr,i, σi
2, D),

• draw α2,i+1 from p(α2|α1,i+1, α3,i,..., αr,i, σi
2, D),

M

• draw αr,i+1 from p(αr|α1,i+1, α2,i+1,..., αr-1,i, σi
2, D),

• draw σ2
i+1 from p(σ2|αα i+1, D).

The conditional distribution p(σ2|αα i+1, D) is given in (22)
while αj|(α1,i+1,..., αj-1,i+1, αj+1,i,..., αr,i, σi

2, D) are
truncated normal, as (21) and (ii) of Result 1 show.
      With this standard implementation of the Gibbs
sampler the MC values may not properly mix (i.e., the
chain does not move rapidly through the "entire" support
of the posterior distribution). This problem is particularly
acute when the abundance parameters are highly
correlated in the stationary distribution [6], [12].

5.2. Grouping (vector Gibbs)

Blocking highly correlated components into a higher-
dimensional components may improve mixing [12]. By
grouping the abundance parameters, i.e., write θθ = (θ1,
θ2) = (αα, σ2), the modified updating process of the Gibbs
sampler becomes:
Given θθi := (αα i, σi

2) = (α1,i,..., αk,i, σi
2), update θθi+1 in

two steps:

   generate αα i+1 from p(αα|σi
2, D),

   generate σ2
i+1 from p(σ2|αα i+1, D),

where the required distributions are given in (21) and
(22), respectively.

5.3. Reparameterization (transformed Gibbs)

A reparameterization may improve the mixing of the
chain ([6]). Result 2 allows us to reparameterize the
abundance parameters as follows. Let U be an upper
triangular matrix for which UTU = (MTM)-1. Denote A :=
U-T and consider the transformation

ηη := Aαα.

Let us suppose that we have already finished the i-th
iteration of the Gibbs sampler, i.e., the last term of the
current path is given by (α1,i, ..., αr,i, σi

2). From (21) we
know that

αα|(σi
2, D) ~ NT(µµi, ΣΣi),

where
µµi =γi αα̂ +(1-γi)µµ0,

ΣΣi = σi
2γi (M

TM)-1,
γi := σ0

2/(σ0
2 + σi

2).

Using this and Result 2, it follows that

ηη|(σi
2, D) ~ NS(Aµµi, σi

2γiI),   S = {Ax : x ∈ T} (23)

Let ηηi = (η1,i,..., ηr,i) = Aαα i. We update (α1,i, ..., αr,i, σi
2)

via (η1,i, ..., ηr,i, σi
2) as follows: For j = 1, …, r,

• Draw ηj,i+1 from p(ηj|(η1,i+1,..., ηj-1,i+1, ηj,i,…, ηr,i, σi
2,

D).
Obtain αj,i+1 = (ηj,i+1 - aj)/ajj (see (16)).

• Draw 2
1+iσ  from p(σ2|αα i+1, D).

From Result 2 and (23), the posterior conditionals
p(ηj|η1,i+1, ..., ηj-1,i+1, ηj,i, …, ηr,i σi

2, Y), j = 1, …, r are
truncated normal. Also, p(σ2|αα i+1, Y) is given in (22).

6. NUMERICAL EXAMPLE

In a model with two variables and n=20, we set α1=0.98,
α2=0.02, and σ2=1. With simulated values from model
(1), the least squares estimates of αα and σ2 are [1.0133, -
0.0162]T and 0.894, respectively. The constrained
maximum likelihood estimates (CMLE) of these
parameters are [0.9983, 0]T and 0.9951, respectively.
Now, to define the prior in (18) we use σ0

2=0.9951, µµ0 =
[0.9983, 0]T (the CMLE), r=0.001 and λ=0.001. Using
this prior, we obtained Gibbs paths of length 1600 for
each Gibbs sampler from section 5. The scalar and
transformed Gibbs implementations in sections 5.1 and
5.3 need to draw from a univariate truncated normal. We
followed the procedures described in [5] and [13]. The
implementation of the Gibbs sampler in section 5.2 needs
a procedure to draw from a multivariate truncated normal
density. We followed the naive procedure, consisting in
generating successively from the unrestricted normal
until a value in the region of interest is obtained.
Alternative procedures are the Accept-Reject method
from [7] and the Geweke-Hajivassiliou-Keane simulator
(GHK) [4], [8]. In Figure 2, the autocorrelation plots of
the first component (α1) of the chain are shown for the
scalar and transformed Gibbs samplers. The scalar Gibbs
sampler was approximately two times faster than the
Gibbs with transformation. However its draws are highly
correlated. As commented in [1], slow decay in the
autocorrelations of monitored functionals suggests slow
mixing within a chain and usually slow convergence to
the posterior distribution. Thus, following [1] we observe
slow mixing within the scalar Gibbs chain and fast
mixing within the transformed Gibbs. The corresponding
plot obtained with vector Gibbs, which shows better
mixing even than the transformed Gibbs is not shown.
Even though the chain that results with the vector Gibbs
implementation is "ideal", we warn that this
implementation can be computationally expensive. The
naive method becomes impractical when the conditional
probability of the unconstrained abundance parameters,
given noise variance, is small. We are unaware of the



existence of an efficient accept-reject procedure to
simulate a truncated multivariate normal.
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Figure 2. Autocorrelation plots of the monitored first
component (α1) of the chains  for the scalar and transformed
Gibbs Samplers.

In Figure 3 we show the posterior density p(α1|D)
obtained using the transformed implementation of the
Gibbs sampler and the prior p(α1). We include also
p(α1|D) when no constraints are imposed on the
abundance parameters.
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Figure 3. Constrained and unconstrained density p(α1|D) and
prior p(α1).

7. CONCLUSIONS

We have derived three different Gibbs samplers for
drawing non-negative multispectral abundances from the
posterior distribution density of the abundances.
Of these MCMC methods, the scalar Gibbs mixes poorly.
While the vector and transformed Gibbs speed up the
mixing, the former mixes better than the latter.
Computationally, however, the scalar implementation is
the cheapest, and the vector Gibbs is the most expensive.
The Gibbs with transformation requires only little
additional computational cost over that of scalar Gibbs.
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