Continuous-time Gaussian Autoregression
Peter Brockwell, Richard Davis and Yu Yang

Statistics Department, Colorado State University

Abstract: The problem of fitting continuous-time autoregressions (linear and non-
linear) to closely and regularly spaced data is considered. For the linear case Jones
(1981) and Bergstrom (1985) used state-space representations to compute exact
maximum likelihood estimators and Phillips (1959) did so by fitting an appropriate
discrete-time ARMA process to the data. In this paper we use exact conditional
maximum likelihood estimators for the continuously-observed process to derive ap-
proximate maximum likelihood estimators based on the closely-spaced discrete ob-
servations. We do this for both linear and non-linear autoregressions and indicate
how the method can be modified also to deal with non-uniformly but closely-spaced

data. Examples are given to indicate the accuracy of the procedure.
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1. Introduction

This paper is concerned with estimation for continuous-time Gaussian au-
toregressions, both linear and non-linear, based on observations made at closely-
spaced times. The idea is to use the exact conditional probability density of
the (p — 1)t derivative of an autoregression of order p with respect to Wiener
measure in order to find exact conditional maximum likelihood estimators of the
parameters under the assumption that the process is observed continuously. The
resulting estimates are expressed in terms of stochastic integrals which are then
approximated using the available discrete-time observations.

In Section 2 we define the continuous-time AR(p) (abbreviated to CAR(p))
process driven by Gaussian white noise and briefly indicate the relation between
the CAR(p) process {Y (¢),t > 0} and the sampled process {Yn(h) :=Y(nh),n =
0,1,2,...}. The process {Yn(h)} is a discrete-time ARMA process, a result em-
ployed by Phillips (1959) to obtain maximum likelihood estimates of the parame-
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ters of the continuous-time process based on observations of {YTEh), 0<nh<T}.
From the state-space representation of the CAR(p) process it is also possible
to express the likelihood of observations of {Yn(h)} directly in terms of the pa-
rameters of the CAR(p) process and thereby to compute maximum likelihood
estimates of the parameters as in Jones (1981) and Bergstrom (1985). For a
CAR(2) process we use the asymptotic distribution of the maximum likelihood
estimators of the coefficients of the ARMA process {Yéh)} to derive the asymp-
totic distribution, as first 7' — oo and then h — 0, of the estimators of the
coefficients of the underlying CAR process.

In Section 3 we derive the probability density with respect to Wiener measure
of the (p — 1)%! derivative of the (not-necessarily linear) autoregression of order
p. This forms the basis for the inference illustrated in Sections 4, 5 and 6.
In the non-linear examples considered we restrict attention to continuous-time
threshold autoregressive (CTAR) processes, which are continuous-time analogues
of the discrete-time threshold models of Tong (1983).

In Section 4 we apply the results to (linear) CAR(p) processes, deriving
explicit expressions for the maximum likelihood estimators of the coefficients and
illustrating the performance of the approximations when the results are applied
to a discretely observed CAR(2) process. In Section 5 we consider applications to
CTAR(1) and CTAR(2) processes with known threshold and in Section 6 we show
how the technique can be adapted to include estimation of the threshold itself.
The technique is also applied to the analysis of the Canadian lynx trappings,
1821 - 1934.

2. The Gaussian CAR(p) and corresponding sampled processes
A continuous-time Gaussian autoregressive process of order p > 0 is defined

symbolically to be a stationary solution of the stochastic differential equation,
(2.1) a(D)Y (t) = bDW (t),

where a(D) = DP+a; DP~1+- - - +a,, the operator D denotes differentiation with
respect to ¢ and {W (¢),¢ > 0} is standard Brownian motion. Since DW () does
not exist as a random function, we give meaning to equation (2.1) by rewriting

it in state-space form,

(2.2) Y () = (b,0,...,0)X(t),
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where the state vector X(t) = (Xo(t),... , X, 1(t))! satisfies the It6 equation,

(2.3) dX(t) = AX(t)dt + edW (t),
with _ ) o
0
0 1
A= f f f N and e= | :
0 0 0 SRR | 0
L —Gp —Gp-1 —Gp-2 -+ —a1 | L+

From equation (2.3) we see that X;(t) is the j mean-square and pathwise deriva-
tive DI Xy(t),5 =0,...,p—1. We are concerned in this paper with inference for
the autoregressive coefficients, ay, ... ,a,, based on observations of the process
Y at times 0, h, 2h, ... ,h[T/h], where h is small and [z] denotes the integer part
of .

One approach to this problem, due to Phillips (1959), is to estimate the coef-
ficients of the discrete-time ARMA process {Yn(h) :=Y(nh),n=0,1,2,...} and
from these estimates to obtain estimates of the coefficients ay,... ,a, in equa-
tion (2.1). The sampled process {Yn(h)} is a stationary solution of the Gaussian
ARMA (p',¢') equations,

(2.4) H(BYY,P) = 0(B)Zn, {Zn} ~ WN(0,0?),

where ¢(B) and 0(B) are polynomials in the backward shift operator B of orders
p' and ¢ respectively, where p’ < p and ¢’ < p'. (For more details see, e.g.,
Brockwell (1995).)

An alternative approach is to use equations (2.2) and (2.3) to express the
likelihood of observations of {Yn(h)} directly in terms of the parameters of the
CAR(p) process and then to compute numerically the maximum likelihood esti-
mates of the parameters as in Jones (1981) and Bergstrom (1985).

In this paper we take a different point of view by assuming initially that the
process Y is observed continuously on the interval [0,7]. Under this assump-
tion it is possible to calculate exact (conditional on X(0)) maximum likelihood
estimators of ay,... ,a,. To deal with the fact that observations are made only

at times 0, h,2h,..., we approximate the exact solution based on continuous
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observations using the available discrete-time observations. This approach has
the advantage that for very closely spaced observations it performs well and is
extremely simple to implement.

This idea can be extended to non-linear (in particular threshold) continuous-
time autoregressions. We illustrate this in Sections 4, 5 and 6. The assumption
of uniform spacing, which we make in all our examples, can also be relaxed
providing the maximum spacing between observations is small.

Before considering this alternative approach, we first examine the method
of Phillips as applied to CAR(2) processes. This method has the advantage
of requiring only the fitting of a discrete-time ARMA process to the discretely
observed data and the subsequent transformation of the estimated coefficients
to continuous-time equivalents. We derive the asymptotic distribution of these

estimators as first 7' — oo and then h — 0.

Example 1. For the CAR(2) process defined by
(D? + a1 D + a3)Y (t) = bDW (1),
the sampled process {Yn(h) =Y(nh),n=0,1,...} satisfies
Yy — My ™ _ My ™) — 7 oWz, | {2} ~ WN(0,02(h)).

For fixed h, as T — oo, the maximum likelihood estimator of 8 = (qbgh), qbgh), o
based on observations Yl(h), e ,Y[(Th/)h} satisfies (see Brockwell and Davis (1991),
p.258)

(2.5) VT/h(B - B) = N(0, M(B)).

where
-1
EU, Ul Ev,UT
(2.6) M@ =o*| L
EU V] EV,V]
and the random vectors U; and V; are defined as U; = (Uy, ... ,UtH,p)T and

Vi = (V4. ,Viz1-g)', where {U;} and {V;} are stationary solutions of the

autoregressive equations,

(2.7) d(BW, =7, and O(B)V;=Z.
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In order to determine the asymptotic behaviour as T" — oo of the maximum
likelihood estimators (¢ (h), $2(h)), we consider the top left 2x2 submatrix Mo
of the matrix M. For small A we find that M has the representation,

1 -1 2
1 1 ] (2a1h+—(2—\/§)a%h2+

373
7 2 — V3)aih?)

(2.8) My = [ 3

01
—i—[l 0]a1a2h3+0(h4) as h — 0.

The mapping from (¢1, ¢2) to (a1, az) is as follows:

a) = — lOg(—¢2)/h,

> >
ap = h21 g(q;1+\/¢—+¢2>log<%— Zl+¢2>-

The matrix

dar  day

— 0¢p 0

C=1 b0 a0

0p1 02

therefore has the asymptotic expansion
(2.9)
2
0 l(1+a1h+“lh2 )

C =

<1+a1h+a1+2a2h2 ) _%(l_i_alh_i_al 4a2h2 )
From (2.8) and (2.9) we find that

2(11 0

1+ o0(1)) as h — 0.
0 2aa, ( (1))

(2.10) CM,CT = - [

and hence, from (2.5) that the maximum likelihood estimator & of a = (a1, as)”
based on observations of Y at times 0, h, 2h, ... , h[T/h], satisfies

VT(a—a)= N(0,V), as T — oo,

where

2(11 0

(2.11) V=
0 2&1@2

(14+o0(1)) as h = 0.
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Remark 1. Since the moving average coefficient (") of the sampled process
is also a function of the parameters a; and as, and hence of ¢§h) and gbgh), the
question arises as to whether the discrete-time likelihood maximization should
be carried out subject to the constraint imposed by the functional relationship
between qbgh), qbgh) and 6. However, as we shall see, the unconstrained estima-
tion which we have considered in the preceding example leads to an asymptotic
distribution of the estimators which, as A — 0, converges to that of the max-
imum likelihood estimators based on the process observed continuously on the
interval [0,7]. This indicates, at least asymptotically, that there is no gain in
using the more complicated constrained maximization of the likelihood, so that
widely available standard ARMA fitting techniques can be used.

Remark 2. As the spacing h converges to zero, the autoregressive roots exp(—A\;h)
converge to 1, leading to numerical difficulties in carrying out the discrete-time
maximization. For this reason we consider next an approach which uses exact
results for the continuously observed process to develop approximate maximum
likelihood estimators for closely-spaced discrete-time observations. The same ap-
proach can be used not only for linear continuous-time autoregressions, but also
for non-linear autoregressions such as continuous-time analogues of the threshold
models of Tong (1983).

3. Inference for Continuously Observed Autoregressions

We now consider a more general form of (2.1), i.e.
(3.1) (DP + a1 DP 1 + -+ a,)Y () = b(DW (1) + ¢),

in which we allow the parameters ai,...,a, and ¢ to be bounded measurable
functions of Y'(¢) and assume that b is constant. In particular if we partition the
real line into subintervals, (—oo,y1], (y1,92), -- -, (Ym,00), on each of which the
parameter values are constant, then we obtain a continuous-time analogue of the
threshold models of Tong (1983) which we shall refer to as a CTAR(p) process.
Continuous-time threshold models have been used by a number of authors (e.g.
Tong and Yeung (1991), Brockwell and Williams (1997)) for the modelling of
financial and other time series).

The equation (3.1) has a state space representation analogous to (2.2) and

(2.3), namely
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(3.2) Y (t) = bXo(t),

where

dXo = X, (t)dt,
dX, = Xo(t)dt,

dXp_y = X,_1(t)dt,
pr—l = [—ang(t) — = alXp_l(t) + C]dt + dW(t),

and we have abbreviated a;(Y (t)) and ¢(Y (¢)) to a; and ¢ respectively. We show
next that (3.3) with initial condition X(0) = x = (g, 1, -+ ,Zp—1)’ has a unique
(in law) weak solution X = (X(¢),0 < ¢ < T') and determine the probability den-
sity of the random function X,_; = (X,-1(t),0 < ¢ < T) with respect to Wiener
measure. For parameterized functions a; and ¢, this allows the possibility of max-
imization of the likelihood, conditional on X(0) = x, of {X,, 1(¢),0 <t < T},
Of course a complete set of observations of {X,_1(¢),0 <t < T} is not generally
available unless X is observed continuously. Nevertheless the parameter values
which maximize the likelihood of {X,,_(¢),0 <t < T} can be expressed in terms
of observations of {Y (¢),0 < t < T} as described in subsequent sections. If ¥
is observed at discrete times, the stochastic integrals appearing in the solution
for continuously observed autoregressions will be approximated by corresponding
approximating sums. Other methods for dealing with the problem of estimation
for continuous-time autoregressions based on discrete-time observations are con-
sidered by Stramer and Roberts (2004) and by Tsai and Chan (1999, 2000).

Assuming that X(0) = x, we can write X(¢) in terms of {X,,_;(s),0 < s <t}
using the relations, X, o(t) = xp,g—i-fot Xp-1(s)ds, ..., Xo(t) = zo +f[;t X1 (s)ds.
The resulting functional relationship will be denoted by

(3.4) X (1) = F(Xp1,1).

Substituting from (3.4) into the last equation in (3.3), we see that it can be

written in the form,

(3.5) dX, 1 = G(X,_y, t)dt + dW (t),



8 Peter Brockwell, Richard Davis and Yu Yang

where G(X,_1,1), like F(X,,_;,t), depends on {X, 1(s),0 <s <t}

Now let B be standard Brownian motion (with B(0) = z,—1) defined on the
probability space (C[0,T], B[0,T], Py, ,) and, for t < T, let F; = o{B(s),s <
t} VN, where N is the sigma-algebra of P,,_,-null sets of 5[0, T]. The equations

dZy = Z,dt,
A7, = Zydt,
(3.6) :
dZy o = Z, 1dt,
dZy 1 = dB(1),
with Z(0) = x = (20,71, ,Zp—1)T, clearly have the unique strong solution,

Z(t) = F(B,t), where F is defined as in (3.4). Let G be the functional appearing
in (3.5) and suppose that W is the Ito integral defined by W(0) = z, ; and

(3.7) AW (t) = —G(B, t)dt + dB(t) = —G(Zp—1, t)dt + dZp_1 (t).
For each T', we now define a new measure PX on Fr by

(3.8) dP, = M(B,T)dP,

Tp—1"

where
(3.9) M(B,T) = exp [—%/OT G*(B, s)ds +/0TG(B,s)dW(s)] .

Then by the Cameron-Martin-Girsanov formula (see e.g. ) ksendal (1998),
p.152), {W(t), 0 < t < T} is standard Brownian motion under Py. Hence we
see from (3.7) that the equations (3.5) and (2.3) with initial condition X(0) = x
have, for ¢t € [0,T], the weak solutions (Z,_1(t), W (t)) and (Z(t), W (t)) respec-
tively. Moreover, by Proposition 5.3.10 of Karatzas and Shreve (1991), the weak
solution is unique in law, and by Theorem 10.2.2 of Stroock and Varadhan (1979)
it is non-explosive.

If f is a bounded measurable functional on C|0,7],

Exf(Zp—1) = By, ,(M(B,T)f(B))

- [ .., o).
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In other words, M (£,T) is the density at £ € C[0,T], conditional on X(0) =
x, of the distribution of X}, with respect to the Wiener measure P, , and,
if we observed X,_1 = ¢, we could compute conditional maximum likelihood
estimators of the unknown parameters by maximizing M (&, T).
4. Estimation for CAR(p) Processes

For the CAR(p) process defined by (2.1), denoting the realized state process
on [0,7] by {x(s) = (zo(s),z1(s),... ,2p-1(s))T,0 < s < T}, we have, in the

notation of Section 3,

(4.1) —2log M(zp_1,s) = /OT G?ds — 2 /OT Gdz,_1(s),

where

(4.2) G = —a1zp_1(8) — aszp_2(s) — -+ — apxo(s).

Differentiating log M partially with respect to ai,... ,a, and setting the deriva-

tives equal to zero gives the maximum likelihood estimators, conditional on
X(0) = x(0),

. T o T T
ay fo xp_lds fo Tp_1Tods fo Tp—1dTp_1

(4.3)

ap fOT Tp_1Tods - -- fOT w%ds fOT zodTp_1

Note that this expression for the maximum likelihood estimators is unchanged if
x is replaced throughout by y, where yy denotes the observed CAR(p) process
and y; denotes its j*' derivative.

Differentiating log M twice with respect to the parameters aq, ... ,a,, taking
expected values and assuming that the zeroes of the autoregressive polynomial o
all have negative real parts, we find that
0% log M
~ da?
where Y is the covariance matrix of the limit distribution as 7" — oo of the
random vector (X, 1(t), Xp-2(t),...,Xo(t))?. It is known (see Araté (1982))
that

(4.4) —-E ~TY as T — o0,

(4.5) St =2mylt
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where m;; = m;; and for j > i,

0 if 7 — 4 is odd,
mi; =
S o= a;1_pajik  otherwise,
where ag := 1 and a; := 0 if j > p or 7 < 0, and that the estimators given by
(4.3) satisfy

(4.6) VT(a—a) = N(0,571),

where X! is given by (4.5). The asymptotic result (4.6) also holds for the
Yule-Walker estimates of a as found by Hyndman (1993).

In the case p = 1, 7! = 2a; and when p = 2, ¥~! is the same as the leading
term in the expansion of the covariance matrix V' in (2.11).

In order to derive approximate maximum likelihood estimators for closely-
spaced observations of the CAR(p) process defined by (2.1) we shall use the

result (4.3) with the stochastic integrals replaced by approximating sums. Thus

if observations are made at times 0, h, 2h, ..., we replace, for example,
T 1 [T/h]-1
/0 d(sVds by 3 D (el(i+1)h) —aih),
i=0

[

- | [r/m=s
| @) by gz > (el 0h) —a(ih)
0

x(z((i 4+ 3)h) —2z((i + 2)h) + z((7 + 1)h)),

taking care, as in the latter example, to preserve the non-anticipating property

of the integrand in the corresponding approximating sum.

Example 2. For the CAR(2) process defined by
(D? + a1D + az)Y (t) = bDW (t),

Table 1 shows the result of using approximating sums for the estimators defined
by (4.3) in order to estimate the coefficients a; and as.
As expected, the variances of the estimators are reduced by a factor of ap-

proximately 5 as T increases from 100 to 500 with A fixed. As h increases with T
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Table 1. Estimated coefficients based on 1000 replicates on [0, T'] of the linear CAR(2)
process with a; = 1.8 and as = 0.5

T=100 T=500
h Sample mean Sample variance | Sample mean Sample variance
of estimators of estimators of estimators of estimators

0.001 a 1.8120 0.03585 1.7979 0.006730

as 0.5405 0.02318 0.5048 0.003860
0.01 1.7864 0.03404 1.7727 0.006484

as 0.5362 0.02282 0.5007 0.003799
0.1 ay 1.5567 0.02447 1.5465 0.004781

as 0.4915 0.01902 0.4588 0.003217

fixed, the variances actually decrease while the bias has a tendency to increase.
This leads to mean squared errors which are quite close for h = .001 and h = .01.
The asymptotic covariance matrix X! in (4.6), based on continuously observed
data, is diagonal with entries 3.6 and 1.8. For h = .001 and h = .01, the variances
3.6/T and 1.8/T agree well with the corresponding entries in the table.
5. Estimation for CTAR(p) Processes

The density derived in Section 3 is not restricted to linear continuous-time
autoregressions as considered in the previous section. It applies also to non-linear
autoregressions and in particular to CTAR models as defined by (3.2) and (3.3).
In this section we illustrate the application of the continuous-time maximum
likelihood estimators and corresponding approximating sums to the estimation
of coefficients in CTAR(1) and CTAR(2) models.

Example 3. Consider the CTAR(1) process defined by
DY (t) + a\VY (t) = bDW (1), if Y(t) <0,

DY (t) + Y (t) = bDW (1), if Y(t) >0,
with b > 0 and agl) # aEZ). We can write
Y(t) =b X(t),

where

dX () + a(X (£)) X (t)dt = dW (t),
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and a(z) = agl) if z <0 and a(x) = a?) if z > 0. Proceeding as in Section 4,
—2log M is as in (4.1) with
(5.1) G = ~ai(s) Loy <o — a7 () Lue)z0.

Maximizing log M as in Section 4, we find that

A(1) f()T Ix(s)<0x(3)dx(8)

ay)’ = —
f()T Ix(s)<0$(s)2d5

and

(2) I Lugsy>0m(5)dz(s)

a;’ =— ,
fOT L0 (s)%ds

where, as in Section 4, z can be replaced by y in these expressions. For observa-
tions at times 0, h, 2h, ... , with h small the integrals in these expressions were
replaced by corresponding approximating sums and the resulting estimates are

shown in Table 2.

Table 2. Estimated coefficients based on 1000 replicates on [0, 7] of the threshold
AR(1) with threshold r = 0, a{") =6, a{® = 1.5

T=100 T=500
h Sample mean Sample variance | Sample mean Sample variance
of estimators of estimators of estimators of estimators

0.001 ol 6.0450 0.41207 5.9965 0.07185

al? 1.5240 0.04824 1.4986 0.00891
001 oY 5.8978 0.39427 5.8472 0.06785

al? 1.5135 0.04771 1.4875 0.00883
01 al! 4.7556 0.27969 4.7085 0.04506

al? 1.3891 0.03840 1.3682 0.00711

Again we see that as T increases from 100 to 500, the variances of the
estimators are reduced by a factor of approximately 5. As h increases with T
fixed, the variances decrease while the bias tends to increase, the net effect being

(as expected) an increase in mean squared error with increasing h.
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Example 4. Consider the CTAR(2) process defined by

D2y (t) + VDY (t) + oY (1) = bDW (1), if Y(t) <0,

DY (t) + P DY (t) + oY (t) = bDW (1), if Y(t) >0,

with agl) # a?) or agl) # agQ), and b > 0. We can write

Y (t) = (b,0) X(#),
where

dX(t) = AX(t)dt + e dW (t),

and A =AW if z <0 and A = A® if £ > 0, where

0 1 0 1 0
A(l) - ) A(Z) - y = .
[ —agQ) —a?) © 1

_agl) _agl)
Proceeding as in Section 4, —2log M is as in (4.1) with

(652) G = (~al"21(5) = a2(9)) Luyo + (—ai21(5) = af2(5)) Loy

Maximizing log M as in Section 4, we find that

_ -1
[cﬁ” ] __ [ R hw<dt@ds [T Lg<om(s)ols)ds ] .
| = T T
(1) I fo Ix(s)<0$1(s)$0(s)ds fo Iw(s)<0x%(s)ds

[ [T Loy comi (s)d (s)
[T Lsy<owo(s)da (s) |
(2) ~(2)

while [a;”, a5 |7 satisfies the same equation with I(s)<o replaced throughout by
Ly(s)>0-

As in Section 4, z can be replaced by y in these expressions. For observations
at times 0, h, 2h, ... , with h small, the integrals in these expressions were replaced

by corresponding approximating sums and the resulting estimates are shown in
Table 3.

The pattern of results is more complicated in this case. As T is increased from
100 to 500 with h fixed, the sample variances all decrease, but in a less regular

fashion than in Tables 1 and 2. As h increases with T' fixed, the variances also
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Table 3. Estimated coefficients based on 1000 replicates on [0, 7] of the threshold
AR(2) with threshold r = 0, a{) = 1.5, a{” = 0.4, a!? = 4.6, a{? =

T=100 T=500
h Sample mean Sample variance | Sample mean Sample variance
of estimators of estimators of estimators of estimators
0.001 alV 1.5187 0.05441 1.5071 0.01128
al! 0.4763 0.04119 0.4163 0.00480
al? 4.6084 0.21224 4.5755 0.03995
al? 2.3186 0.72069 2.0456 0.08881
001 oY 1.5262 0.05234 1.5163 0.01095
al! 0.4729 0.04056 0.4135 0.00473
al? 4.3819 0.19823 4.3480 0.03746
al? 2.2697 0.68915 2.0025 0.08509
01 oV 1.5091 0.04177 1.4928 0.00805
al! 0.4402 0.03489 0.3851 0.00411
al? 2.7053 0.11312 2.7014 0.01874
al? 1.7654 0.41380 1.5599 0.05221
decrease. The mean squared errors for h = .001 and A = .01 are again quite
close.

6. Estimation when the threshold is unknown

In the previous section we considered the estimation of the autoregressive
coefficients only, under the assumption that the threshold r is known. In this
section we consider the corresponding problem when the threshold also is to be es-
timated. The idea is the same, that is to maximize the (conditional) likelihood of
the continuously-observed process, using the closely spaced discrete observations
to approximate what would be the exact maximum likelihood estimators if the
continuously-observed data were available. We illustrate first with a CTAR(1)
process. The goal is to use observations {y(kh),k =1,2,... ;0 < kh < T}, with
h small, to estimate the parameters agl),a?),cgl),cg?),b and r in the following

model.

(6.1)
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The process Y* =Y — r, satisfies the threshold autoregressive equations,

)= bDW,, Y*(t) <0,
) = bDW,, Y*(t) >0,

DY*(t) +

DY*(t) + *

agl + cgl
a?)Y (t) + 052

with state-space representation,

Y*(t) = bX(¢),
where
dX(t) = G(X,t)dt + dW (t),

as in equation (3.5), and

(1) (2)
C C
G(z,s) = — (agl)m(s) + 17) Ip(sy<o — (agz)m(s) + 17) Iy (5)>0-

Substituting for G in the expression (4.1), we obtain

T T
—2log M (x(s), s) :/0 G2ds—2/0 Gdx(s)

2 2
T D T A2
= /0 (agl)w(s) + IT Lp(sy<ods + /0 aEZ)x(s) + IT Lp(s)>0ds
T (1) T (2)
+2 / (a§”x(s> + %) Ly(sy<odaz(s)+2 / (a%”ac(s) + %) Ly(o)>0dz(s)
1 T 2 T 2
= ﬁ |:/ (agl)y* + Cgl)) Iy* <0d8 + / (agZ)y* + 052)) Iy*zods
0 0

T T
+2/ (agl)y* + cgl)> Iy cody™ + 2/ (a?)y* + c§2)> Iy*>0dy*] )
0 0

Minimizing —2log M (z(s), s) with respect to agl), a?), cgl), and ch) with b fixed

gives,

W T ) T T 2
ay () / y" Iy*<0d5/ Iy <ods — (/ y*Iy*<0ds)
0 0 0
T T T T
— [ | vty [ tpcods— [ 1oty [ y*Iy*<ods]
0 0 0 0
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W T ) T T 2
4] (r) / y* Iy*<0d3/ Iy« <ods — (/ ?/*Iy*<0d3>
0 0 0
T T T T
= — [/ Iy*<0dy*/ Y Iy <ods —/ y*Iy*<ody*/ y*Iy*<0d3] :
0 0 0 0

with analogous expressions for &52) and égQ). An important feature of these equa-

tions is that they involve only the values of y* = y — r and not b.

For any fixed value of r and observations y, we can therefore compute the
maximum likelihood estimators dgl)(r), d?) (r), égl)(r) and é?) (r) and the cor-
responding minimum value, m(r), of —2b?log M. The maximum likelihood esti-
mator 7 of r is the value which minimizes m(r) (this minimizing value also being
independent of b). The maximum likelihood estimators of agl), a?),cgl) and ch)
are the values obtained from (6.2) with » = #. Since the observed data are the
discrete observations {y(h),y(2h),y(3h),... }, the calculations just described are
all carried out with the integrals in (6.2) replaced by approximating sums as
described in Section 4.

If the data y are observed continuously, the quadratic variation of y on the

interval [0, T is ezactly equal to b*T. The discrete approximation to b based on

{y(h),y(2n),...} is

[T'/h]—1

(6.3) b=y > (y((k+1)h) —y(kh))?/T.

k=1

Example 5. Table 4 shows the results obtained when the foregoing estimation
procedure is applied to a CTAR(1) process defined by (6.1) with agl) =6, cgl) =
5,02 =15 Y =4, b=1and r = 10.

The pattern of results is again rather complicated. As expected however
there is a clear reduction in sample variance of the estimators as T' is increased
with h fixed. For T' = 1000 the mean squared errors of the estimators all increase
as h increases, with the mean squared errors when A = .001 and h = .01 being

rather close and substantially better than those when h = .1.
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Table 4. The sample mean and sample variance of the estimators of the parameters of
the model (6.1) based on 1000 replicates of the process on [0,T]. The parameters of the

simulated process are agl) =6, cgl) =.5, a§2) = 1.5, 052) =4,b=1andr =10.
T=100 T=500 T=1000
h Sample Sample Sample Sample Sample Sample
mean variance mean variance mean variance

0.001 oV | 59179 15707 | 59758  0.1950 | 5.9835  0.0904
V| 03787 07780 | 0.3448  0.1561 | 0.3832  0.0753
o | 17149 04105 | 15370  0.0511 | 15178  0.0224
d? | 02801 01476 | 03415  0.0273 | 03601  0.0133
b | 09996 5.00x1076 | 0.9991 4.78x10~7 | 0.9991 4.84x10~7
r | 99963  0.0244 | 99769  0.0041 | 9.9818  0.0020
001 oY | 57200 13175 | 57507  0.1834 | 5.7614  0.0910
AV | 04271 07524 | 03235 0.1699 | 0.3535  0.0705
o | 17373 04248 | 1.5567  0.0538 | 1.5360  0.0239
d? | 02877 01598 | 03227  0.0357 | 0.3407  0.0162
b | 09914 4.82x1077 | 0.9913 4.55x10° | 0.9907 4.91x10~°
r | 10011 0.0278 | 9.9807  0.0058 | 9.984  0.0024
0.1 a{” | 41166 07861 | 41087  0.1587 | 41115  0.0720
AV | 03953 05638 | 02834  0.2287 | 0.2708  0.0944
o | 17308 05109 | 1.5924  0.0805 | 1.5851  0.0324
¢ | 02636 02391 | 0.2658  0.1003 | 0.2666  0.0472
b | 09191 5.00x10~* | 0.9208 4.60x10~5 | 0.9160 4.79x10~>
r | 10074  0.0425 | 10.038  0.0191 | 10.030  0.0086

Example 6. Although the procedure described above is primarily intended for
use in the modelling of very closely spaced data, in this example we illustrate
its performance when applied to the natural logarithms of the annual Canadian
lynx trappings, 1821 - 1934 (see e.g. Brockwell and Davis (1991), p.559). Linear
and threshold autoregressions of order two were fitted to this series by Tong and
Yeung (1991) and a linear CAR(2) model using a continuous-time version of the
Yule-Walker equations by Hyndman (1993).

The threshold AR(2) model fitted by Tong and Yeung (1991) to this series
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was
D2y (t) + DY () + oY (1) = by DW (1), if Y(t) <,
(6.4)
DY (t) + dPDY(#) + DY (t) = byDW (t), Y () >,
with
65) ol = 354, a{¥ = 521, by = .707,
6.5
al? = 1.877, o) = 247, by = 870,

and threshold r = 0.857.

An argument exactly parallel to that for the CTAR(1) process at the begin-
ning of this section permits the estimation of the coefficients and threshold of a
CTAR(2) model of this form with by = by = b, h = 1 and with time measured in

years. It leads to the coefficient estimates,

al) = 3163, o{? =.1932, b, = 1.150,
(6.6)
al? =1.2215, a{? = 9471, by = 1.150,

with estimated threshold r = 0.478. (Because of the large spacing of the obser-
vations in this case it is difficult to obtain a good approximation to the quadratic
variation of the derivative of the process. The coefficient b was therefore esti-
mated by a simple one-dimensional maximization of the Gaussian likelihood (GL)
of the original discrete observations (computed as described by Brockwell(2001)),
with the estimated coefficients fixed at the values specified above.)

In terms of the Gaussian likelihood of the original data, the latter model
(with —2log(GL) = 220.15) is considerably better than the Tong and Yeung
model (for which —2log(GL) = 244.41). Using our model as an initial approxi-
mation for maximizing the Gaussian likelihood of the original data, we obtain the
following more general model, which has higher Gaussian likelihood than both
of the preceding models (—2log(GL) = 161.06).

(6.7)
D?Y (t) + 1.181DY (t) + 0.308Y () — 0.345 = 1.050DW (¢), if Y (t) < —0.522,

D2Y (t) + 0.0715DY (t) + 0.452Y (t) 4+ 0.500 = 0.645DW (t), if Y(t) > —0.522,
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Simulations of the model (6.4) with parameters as in (6.5) and (6.6) and of the
model (6.7) are shown together with the logged and mean-corrected lynx data in
Figure 1. As expected, the resemblance between the sample paths and the data

appears to improve with increasing Gaussian likelihood.

(a) Model (6.5) (b) Model (6.6)
< <
o W N
< <

o 20 40 60 80 100 o 20 40 60 80 100

time time
(c) Model (6.7) (d) Lynx data

< <
¥ A ¥

o 20 40 60 80 100 o 20 40 60 80 100

time time

Figure 6.1: Figures (a) and (b) show simulations of the CTAR model (6.4) for the
logged and mean-corrected lynx data when the parameters are given by (6.5) and (6.6)
respectively. Figure (c) shows a simulation (with the same driving noise as in Figures
(a) and (b)) of the model (6.7). Figure (d) show the logged and mean-corrected lynx
series itself.

7. Conclusions

From the Radon-Nikodym derivative with respect to Wiener measure of the
distribution of the (p — 1) derivative of a continuous-time linear or non-linear
autoregression, observed on the interval [0, 7], we have shown how to compute
maximum likelihood parameter estimators, conditional on the initial state vector.
For closely-spaced discrete observations, the integrals appearing in the estimators
are replaced by approximating sums.

The examples illustrate the accuracy of the approximations in special cases.

If the observations are not uniformly spaced but the maximum spacing is small,
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appropriately modified approximating sums can be used in order to approximate
the exact solution for the continuously observed process.
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