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1 Introduction

Much of the early development of regular variation in the multivariate setting had its genesis in

extreme value theory. There is a natural connection between limit theory of component maxima

of iid random vectors and multivariate regular variation. Excluding some special degenerate cases,

a random vector with positive components is in the maximum domain of attraction of a multi-

variate extreme value distribution with the same Frechét marginals if and only if the vector has a

distribution which is regularly varying; for details see for example Resnick [18] and [17], Chapter 5.

Early on, multivariate regular variation has been used in the theory of summation of iid random

vectors to characterize the domains of attraction of stable distributions; see Rvačeva [19]. More

recently, multivariate regular variation has been found to be a key concept in problems that go

beyond extreme value theory. In particular, it has been used to describe the weak limits of point

processes constructed from stationary sequences of random vectors; see Davis and Hsing [6] and

Davis and Mikosch [7]. These weak convergence results provided the key ingredients for deriving

the weak limiting behavior of sample autocovariances and sample autocorrelations of stationary

sequences of random variables with regularly varying tails. In fact, one can apply a continuous

mapping argument to obtain the weak convergence of these and other sum-type functionals of a

stationary sequence from the weak convergence of appropriately chosen point processes, where the

joint distributions of the points constituting the process satisfy a multivariate regular variation

condition.

In the literature one can find various equivalent formulations of regular variation for tail prob-

abilities associated with a random vector. Basrak [1] has documented several of these equiva-

lences. The most commonly used condition is the following: The d-dimensional random vector

X = (X1, . . . , Xd)′ and its distribution are said to be regularly varying with index α ≥ 0 if there

exists a random vector Θ with values in S
d−1, where S

d−1 denotes the unit sphere in R
d with

respect to the norm | · |, such that for all t > 0,

P (|X| > tu , X/|X| ∈ · )
P (|X| > u )

v→ t−α P (Θ ∈ · ) , as u → ∞ .(1.1)

The symbol v→ stands for vague convergence on S
d−1; vague convergence of measures is treated in

detail in Kallenberg [12]. See de Haan and Resnick [10] and Resnick [17], Chapter 5, for background

on multivariate regular variation.

The aim of this note is to establish another characterization of multivariate regular variation

that not only further illuminates the notion of regular variation, but has useful applications in

its own right. In its simplest terms, this characterization states that the vector X is regularly

varying if and only if every linear combination, (t,X), t ∈ R
d, is regularly varying, where (·, ·)

denotes the usual inner product in R
d. This result is in the spirit of the analogous characterization



of a multivariate normal random vector and the use of the Cramér-Wold device for establishing

weak convergence for a sequence of random vectors. This characterization of multivariate regular

variation is known in some special cases, such as X has non-negative components with right tail of

power law type and α ∈ (0, 2) (see Kesten [13], Corollary on p. 236). It is noteworthy that such a

general characterization for regular variation is conspicuously absent from the literature.

The precise formulation of the condition that every linear combination of the random vector is

regularly varying is given by:

There exists an α > 0 and a slowly varying function L such that for all x

lim
u→∞

P ((x,X) > u)
u−α L(u)

= w(x) exists, and there exists one x0 �= 0 with w(x0) > 0.(1.2)

Our basic motivation for studying the equivalence between (1.1) and (1.2) comes from a classical

result of Kesten [13]; see also Goldie [11] for an alternate derivation of Kesten’s result. They con-

sidered the tail behavior of solutions to stochastic recurrence equations of type Xt = AtXt−1 +Bt,

where ((At,Bt)) is an iid sequence, At are random d×d matrices and Bt are d-dimensional random

vectors. Stationary GARCH processes can be embedded in this type of stochastic recurrence equa-

tions. It turns out that under mild (but rather technical) conditions on the distribution of (A1,B1),

the random vector X1 satisfies condition (1.2). However, in order to apply the well-developed limit

theory for sample autocovariance and autocorrelation functions and extreme values, it is crucial

that X1 is regularly varying in the sense of (1.1); see Davis and Hsing [6], Davis and Mikosch

[7], Basrak, Davis and Mikosch [2], Mikosch and Stărică [15] for various analyzes of GARCH and

bilinear processes.

Several equivalences between (1.1) and (1.2) for various choices of α are given in the following

theorem.

Theorem 1.1 Let X be a random vector in R
d.

1. If the random vector X is regularly varying with index α > 0 in the sense of condition (1.1),

then (1.2) holds with the same α.

2. If X satisfies the condition (1.2) where the α is positive and non-integer, then X is regularly

varying with index α and the distribution of Θ is uniquely determined.

3. If X assumes values in [0,∞)d and satisfies (1.2) for x ∈ [0,∞)d\{0}, where α > 0 is a

non-integer, then (1.1) holds with index α and the distribution of Θ is uniquely determined.

4. If X assumes values in [0,∞)d and satisfies (1.2), where α is an odd integer, then (1.1) holds

with index α and the distribution of Θ is uniquely determined.
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There are a few caveats to this theorem. First, we believe that part 4 remains valid even if α in

(1.2) is an even integer, but to date, an argument has not been provided. Second, it is critical that

for integer values of α, the linear combination of X involves both positive and negative coefficients

even if the components of X are assumed to be non-negative. Without this restriction counter-

examples to this theorem are easy to construct; see Section 2. Moreover, for the case α = 1,

Kesten [13], Remark 4, indicates that for general R
d-valued random vectors, condition (1.2) need

not imply (1.1). Meerschaert and Scheffler [14], Example 6.1.35, show that one can find regularly

varying vectors X1 and X2 with values in R
2 and index α = 1 for which (x,X1) and (x,X2) have

the same limits w(x) in (1.2), but the distributions of the corresponding vectors Θ1 and Θ2 on the

unit sphere, corresponding to X1 and X2, are not the same.

2 Proof of theorem

For ease of presentation, we assume throughout that the vector x0 in (1.2) is given by the vector

of ones 1 = (1, . . . , 1)′ and that

P ((1,X) > u) = u−α L(u) .

(1) Define the family of sets {Wx ,x ∈ R
d} by

Wx = {y ∈ R
d : (x,y) > 1} .

The quotient in (1.2) may be written as P (X ∈ uWx)/P (X ∈ uW1) which has a limit by the vague

convergence in (1.1).

(2) Define the family of measures

mt =
P (X ∈ t · )
P (X ∈ tW1)

, t ≥ 1 ,

on the space R
d \ {0}, where R = R ∪ {∞,−∞}. On this space bounded sets are those that are

bounded away from 0. We first note that this family of measures is tight. That is, for all bounded

Borel sets B on R
d \ {0},

sup
t≥1

mt(B) < ∞ .

To see this, for any bounded B, there exist x1, . . . ,xk such that B ⊂ ∪k
j=1Wxj and hence

sup
t≥1

mt(B) ≤ sup
t≥1

∑k
j=1 P (X ∈ tWxj )
P (X ∈ tW1)

< ∞

by (1.2).
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Lemma 2.1 If µ is any subsequential vague limit of (mt), then for any x �= 0,

µ(uWx) = w(x)u−α for all u > 0.(2.1)

Moreover, for any ε > 0 and any non-zero vector x,∫
|(x,y)|>ε

|(x,y)|γ µ(dy) < ∞ for all γ < α

and ∫
|(x,y)|<ε

|(x,y)|γ µ(dy) < ∞ for all γ > α.

Proof: The identity (2.1) follows directly from (1.2). To show the first bound, we have∫
|(x,y)|>ε

|(x,y)|γ µ(dy) =
∫
|(x,y)|>ε

∫ |(x,y)|

0
γvγ−1 dv µ(dy)

which by Fubini and (2.1) is

=
∫ ε

0
µ(|(x,y)| > ε) γ vγ−1 dv +

∫ ∞

ε
µ(|(x,y)| > v) γ vγ−1 dv

≤ const εγ +
∫ ∞

ε
const γ v−α+γ−1 dv < ∞

for γ < α. The proof of the second bound is similar. ✷

By tightness there exists a subsequential vague limit of the family (mt); see Kallenberg [12]. To

complete the proof of part (2) of the theorem, it then suffices to show that any two such limits,

µ1 and µ2, are the same. So now suppose α is between the two integers, 2n − 2 and 2n for some

n ≥ 1. Define the two measures ν1 and ν2 by

νj(A) = 2n

∫
A
(1− cos (2(1,y)))n µj(dy)

= (−1)n
∫

A

(
ei(1,y) − e−i(1,y)

)2n
µj(dy) , j = 1, 2 .

Since the integrand is bounded and of order |(1,y)|2n for y near the origin, it follows from Lemma

2.1 that these measures are finite. Also, ν1(R
d \ {0}) = ν2(R

d \ {0}), which follows from the fact

that µ1 and µ2 agree on all sets of the form Wx.

We now show that the characteristic functions of ν1 and ν2 agree from which we conclude that

the two measures are the same. To this end, for an arbitrary x ∈ R
d, consider

∫
Rd

ei(x,y) νj(dy) = (−1)n
∫

Rd

ei(x,y)
2n∑

k=0

(−1)k
(
2n
k

)
ei(k1,y)e−i((2n−k)1,y) µj(dy)

= (−1)n
∫

Rd

2n∑
k=0

(−1)k
(
2n
k

)
ei(x−2n1+2k1,y) µj(dy) .
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Using the following identity for binomial coefficients (see Riordan [20], Section 1.2):

�∑
k=0

(−1)k
(
�

k

)
km = 0 , for any 0 ≤ m < � and � ≥ 2 ,

and setting

em(z) = eiz − 1− iz − · · · − im

m!
zm ,

the above integral for α ∈ (2n− 1, 2n) can be written as

∫
Rd

ei(x,y) νj(dy) = (−1)n
∫

Rd

2n∑
k=0

(−1)k
(
2n
k

)
e2n−1((x− 2n1+ 2k1,y)) µj(dy)

= (−1)n
2n∑

k=0

(−1)k
(
2n
k

) ∫
Rd

e2n−1((x− 2n1+ 2k1,y)) µj(dy) .

Since e2n−1((x−2n1+2k1,y)) is of order |(x−2n1+2k1,y)|2n−1 at ∞ and |(x−2n1+2k1,y)|2n

at the origin, the integrals on the right hand side are finite by Lemma 2.1 which also justifies

the interchange of summation and integration. By virtue of the integrands’ dependence only on

the inner-product (x − 2n1 + 2k1,y), the integrals must be equal for j = 1, 2. For the case

α ∈ (2n − 2, 2n − 1) the function e2n−1 is replaced by e2n−2 and the same calculations as above

apply. This shows ν1 = ν2. An elementary argument shows that µj({y : (1,y) = c}) = 0 for all

c �= 0 and hence µj has zero measure on the zeros of the function 1 − cos(2(1,y)). It follows that

the measures µ1 and µ2 are equal.

(3) The proof of this part is nearly the same as above, only using Laplace transforms instead of

characteristic functions. In this case, the measure νj is defined by

νj(A) =
∫

A

(
1− e−(1,y)

)2n
µj(dy) .

(4) Before embarking on the proof of this part, we first establish two lemmas, the first of which

may be of independent interest. It is a partial converse to Breiman’s lemma which states that if

Y > 0 is a regularly varying random variable with index α and Z > 0 is independent of Y with

EZγ < ∞ for some γ > α, then ZY is regularly varying with index α. Specifically,

P (ZY > x)
P (Y > x)

→ EZα as x → ∞.(2.2)

Lemma 2.2 Let N be a standard normal random variable which is independent of the non-negative

random variable Y . If (NY )+ is regularly varying with index α > 0, then Y is regularly varying

with the same index.
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Proof. By the regular variation assumption, there exists a slowly varying function L(x) such that

for x > 0,

L(x)x−α = P (NY > x) =
∫ ∞

0
P (Y > x/z)ϕ(z) dz

= x

∫ ∞

0

P (Y > 1/
√
2s)√

2s
e−x2s

√
2π

ds ,

where ϕ(z) is the standard normal density function. This implies that

Û(x) =
∫ ∞

0
e−xs U(ds) ∼

√
2πx−(α+1)/2L(

√
x) as x → ∞,

where

U(z) =
∫ z

0

P (Y > 1/
√
2s)√

2s
ds .

An application of Karamata’s Tauberian Theorem (see Feller [9], XIII, §5) yields that

U(s) ∼
√
2πL(1/

√
s)s(α+1)/2

/
Γ

(
1 +

α+ 1
2

)
as s ↓ 0.

Since

U(y) =
∫ √

2y

0
P (Y > 1/z) dz

and the integrand is monotone in z, an application of the Monotone Density Theorem (see Theorem

1.7.2.b in Bingham et al. [4]), yields that

P (Y > x) ∼ 2−α/2√πL(x)x−α
/
Γ

(
α+ 1
2

)
as x → ∞.

✷

If the random vector X is regularly varying with index α > 0 in the sense of (1.1), then it is not

difficult to show that for any p > 0, the vector

Xp = (|X1|p, . . . , |Xd|p)′

is regularly varying with index α/p, and by virtue of part (1) of the theorem, Xp satisfies (1.2)

with index α/p in (1.2). The following lemma establishes a similar result under the assumption

that (1.2) holds.

Lemma 2.3 If X is a non-negative-valued vector satisfying (1.2) with index α and a slowly varying

function L, then the vector X2 satisfies (1.2) with index α/2 and a slowly varying function L̃.
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Proof. Let N = (N1, . . . , Nd)′ be a vector of iid standard normal random variables independent

of X. Since N2
1 (x

2,X2) and (N1x1X1 + · · ·+NdxdXd)2 are equal in distribution, we have for any

x �= 0 and x > 0,

P (N2
1 (x

2,X2) > x2) = 2 P (N1x1X1 + · · ·+NdxdXd > x) ,

where x2 = (x2
1, . . . , x

2
d). Then, by (1.2),

fx =
P (N1x1X1 + · · ·+NdxdXd > x | N)

P ((1,X) > x)
a.s.→ f = w(x1N1, . . . , xdNd) .

Let gx and g be the dominating functions for fx and f , respectively, given by

gx =
P ((|N1x1|+ · · ·+ |Ndxd|)(1,X) > x | N)

P ((1,X) > x)
a.s.→ g = (|x1N1|+ · · ·+ |xdNd|)α ,

where the limit follows from (1.2). An application of (2.2) yields

Egx → Eg as x → ∞.

An appeal to Pratt’s Lemma (see Pratt [16], cf. Resnick [17], p. 289) gives

Efx =
P (N1x1X1 + · · ·+NdxdXd > x)

P ((1,X) > x)
→ Ef = Ew(x1N1, . . . , xdNd) ,

whence

lim
x→∞

P (N2
1 (x

2,X2) > x2)
P ((1,X) > x)

= 2 Ew(x1N1, . . . , xdNd) .(2.3)

The right hand expectation is positive for all x �= 0 with all nonzero components. To see this, it

suffices to show that w(x) > 0 for all x with positive coefficients. For the ease of argument, assume

d = 2. Then for any positive x1 and x2,

w(2x1, 0) + w(0, 2x2) = lim
x→∞

P (x1X1 > x/2) + P (x2X2 > x/2)
P (X1 +X2 > x)

≥ lim
x→∞

P (x1X1 + x2X2 > x)
P (X1 +X2 > x)

= w(x1, x2)

≥ lim
x→∞

P (x2X2 > x)
P (X1 +X2 > x)

= w(0, x2).

If w(0, 1) > 0, w(x1, x2) > 0 for all positive x1, x2. If w(0, 1) = 0, we must have w(1, 0) > 0, and

the same argument as above (interchanging the roles of X1 and X2) gives that w(x1, x2) > 0 for

positive x1, x2.

Hence the right hand expression in (2.3) is positive for all choices of x �= 0. Since (1,X) is

regularly varying with index α > 0, N2
1 (x

2,X2) is regularly varying with index α/2, and Lemma 2.2

implies that (x2,X2) is regularly varying with index α/2, and so (1.2) holds for X2 for any x �= 0
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with non-negative components. ✷

Now we are ready to proceed with the proof of part (4) of the theorem. Assume (1.2) holds for the

non-negative-valued random vector X with α = 2n+1 for some integer n ≥ 0. By Lemma 2.3, X2

satisfies (1.2) for any x �= 0 with non-negative components. Moreover, the corresponding index in

(1.2) is α/2 = n+0.5 which is non-integer. Applying part (3) of the theorem, we conclude that X2

is regularly varying with index α/2, and an easy argument shows that X is regularly varying with

index α. This concludes the proof of part (4). ✷

Counter-example. Here we give an example of two positive-valued random vectors that have

different limits in (1.1) with α = 2, yet have the same limits in (1.2) for all non-negative x. To

construct the example, let Θ1 and Θ2 be two random variables defined on (0, π/2) with unequal

distribution functions such that

E sin2(Θ1) = E sin2(Θ2) and E sin(2Θ1) = E sin(2Θ2) .(2.4)

The existence of two such random variables satisfying (2.4) is easy to verify. Now define the measure

µi on (0,∞)× [0, 2π) by

µi(dr, dθ) = (2r−3dr)× P (Θi ∈ dθ) .

For i = 1, 2, let Xi = (R cosΘi, R sinΘi)′, where (R,Θi) has distribution given by µi restricted to

the set (1,∞)× (0, π/2). For x = (x1, x2)′ ∈ [0,∞)2, we have

x2P ((x,Xi) > x) = x2P (x1R cosΘi + x2R sinΘi > x)

= x2

∫ ∞

1
P (x1 cosΘi + x2 sinΘi > x/r) 2 r−3 dr

=
∫ x2

0
P ((x1 cosΘi + x2 sinΘi)2 > v) dv

→ x2
1 E cos2 Θi + x1 x2 E sin(2Θi) + x2

2 E sin2(Θi) ,

as x → ∞. By (2.4), the right hand side is the same for i = 1, 2 and all x1, x2 ≥ 0. It follows that

X1 and X2 have the same limit in (1.2) for all x1, x2 ≥ 0. On the other hand, a routine calculation

shows that

P (|Xi| > tu , Xi/|Xi| ∈ · )
P (|Xi| > u )

v→ t−2 P ((cos(Θi), sin(Θi))′ ∈ · ) , as u → ∞ .

which have distinct limits for i = 1, 2.
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3 Applications

3.1 Stochastic recurrence equations

We mentioned in the introduction that linear stochastic recurrence equations

Xn = AnXn−1 +Bn , n ∈ Z ,(3.1)

where ((An,Bn)) is an iid sequence of d × d random matrices An and d-dimensional random

vectors Bn, were the motivating examples to consider different characterizations of multivariate

regular variation. Stationary causal solutions to (3.1) satisfy a general regular variation condition

in the sense of (1.2). This follows from a fundamental result of Kesten [13] which we present here

in a modified form (a combination of his Theorems 3 and 4). In these results, ‖ · ‖ denotes the

operator norm defined in terms of the Euclidean norm | · |.

Theorem 3.1 Let (An) be an iid sequence of d × d matrices with non-negative entries and (Bn)

be non-negative-valued d-dimensional vectors. Assume that the following conditions hold:

• For some ε > 0, E‖A1‖ε < 1.

• A1 has no zero rows a.s.

• The set

{ln ρ(an · · ·a1) : n ≥ 1, an · · ·a1 > 0 and an · · ·a1 ∈ the support of PA1}

generates a dense group, where ρ(C) is the spectral radius of the matrix C and C > 0 means

that all entries of this matrix are positive.

• There exists a κ0 > 0 such that

E


 min

i=1,...,d

d∑
j=1

Aij


κ0

≥ dκ0/2

and

E
(‖A1‖κ0 ln+ ‖A1‖

)
< ∞ .

Then the following statements hold:

1. There exists a unique solution κ1 ∈ (0, κ0] to the equation

0 = lim
n→∞

1
n
E ln ‖An · · ·A1‖κ1 .
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2. There exists a unique strictly stationary causal solution (Xn) to the stochastic recurrence

equation (3.1).

3. If E|B1|κ1 < ∞, then X1 satisfies the following regular variation condition:

For all x ∈ R
d \ {0} , lim

u→∞uκ1 P ((x,X1) > u) = w(x) exists(3.2)

and is positive for all non-negative-valued vectors x �= 0.

Clearly, (3.2) is a special case of (1.2). An appeal to Theorem 1.1 immediately gives the following

result.

Corollary 3.2 Under the assumptions of Theorem 3.1, the marginal distribution of the unique

strictly stationary causal solution (Xn) of the stochastic recurrence equation (3.1) is regularly vary-

ing in the following sense. If the value κ1 in (3.2) is not an even integer, then there exist a positive

constant c and a random vector Θ with values in the unit sphere S
d−1 such that

uκ1P (|X1| > tu , X1/|X1| ∈ · ) v→ c t−κ1 P (Θ ∈ · ) , as u → ∞ .

This result is crucial for the understanding of the finite-dimensional distributions of GARCH pro-

cesses which are used for modeling stock returns in the econometrics literature. The above corollary

is directly applicable to GARCH processes since they can be embedded in multivariate stochastic

recurrence equations of type (3.1); see Section 8.4 in Embrechts et al. [8], Davis and Mikosch [7],

Mikosch and Stărică [15] for some special cases and Basrak et al. [3] for the case of general GARCH

processes.

3.2 Point process convergence and maximum domains of attraction of multi-
variate extreme value distributions

Regular variation conditions of type (1.1) are used for the characterization of maximum domains of

attraction of extreme value distributions; see Resnick [17], Chapter 5, and are crucial assumptions

for the weak convergence of point processes. In what follows, we mention a few results which follow

from the characterization of multivariate regular variation given in Theorem 1.1.

Let (Xn) be an iid sequence of d-dimensional random vectors satisfying the regular variation

condition (1.1) for some α > 0. Define the sequence of positive numbers an by

P (|X1| > an) ∼ n−1 as n → ∞.

Let µ be the measure on R
d\{0} which is determined by the vague limit in (1.1), i.e., for any

measurable set of the form (t,∞)× S in the product space (0,∞)× S
d−1,

µ(x : (|x|,x/|x|) ∈ (t,∞)× S) = t−αP (Θ ∈ S) .
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It is well known (see Resnick [18]) that the sequence of point processes

n∑
t=1

εXt/an

d→ N =
∞∑

j=1

εΓj
,(3.3)

where d→ denotes convergence in distribution in the space of point measures on R
d\{0} endowed

with the vague topology andN is a Poisson RandomMeasure (PRM) on R
d\{0} with mean measure

µ. Moreover, multivariate regular variation of X1 is also necessary for (3.3); see Resnick [18], Corol-

lary 3.2. If the multivariate points Xt/an in (3.3) are replaced by linear combinations (x,Xt)/an

for some x �= 0, then limn→∞ nP ((x,X1)/an > u) = w(x) exists. The same argument as for (3.3)

gives that

n∑
t=1

ε(x,Xt)/an

d→
∞∑

j=1

ε(x,Γj)
,

and the limit is again PRM with corresponding mean measure. The converse, as recorded in the

corollary below, is also true by Theorem 1.1.

Corollary 3.3 Assume that X1 satisfies one of the following conditions:

• X1 satisfies (1.2) for some positive non-integer α.

• X1 assumes values in [0,∞)d\{0} and satisfies (1.2) for some odd integer α.

Then for every x �= 0,

n∑
t=1

ε(x,Xt)/an

d→ Nx ,(3.4)

where Nx is PRM whose mean measure depends on x. Moreover, (3.4) implies that there exists a

PRM with mean measure determined by the vague limit of nP (a−1
n X1·).

This result can be applied to the limit behavior of extreme order statistics. For example,

a−1
n maxt=1,...,nXt has a non-degenerate limit distribution if and only if a−1

n maxt=1,...,n(x,Xt) has

a limit for all x �= 0 which is non-degenerate for some x.
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