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Abstract

The paper considers one of the standard processes for modeling returns in finance,
the stochastic volatility process with regularly varying innovations. The aim of the
paper is to show how point process techniques can be used to derive the asymptotic
behavior of the sample autocorrelation function of this process with heavy-tailed
marginal distributions. Unlike other non-linear models used in finance, such as
GARCH and bilinear models, sample autocorrelations of a stochastic volatility
process have attractive asymptotic properties. Specifically, in the infinite vari-
ance case, the sample autocorrelation function converges to zero in probability
at a rate that is faster the heavier the tails of the marginal distribution. This
behavior is analogous to the asymptotic behavior of the sample autocorrelations
of independent identically distributed random variables.
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1. Introduction

This paper can be considered as a continuation of the efforts made by the authors
and their colleagues [1, 8, 10, 11, 12, 13, 15, 21, 23] to understand the asymptotic
behavior of the sample autocorrelation function (ACF) of stationary ergodic processes
with heavy-tailed marginal distributions. Time series with heavy tails and dependence,
i.e. with bursty behavior, strong oscillations and clustering of extremes, are typical in
areas such as finance (see [17]) and telecommunications (see [27]). Not surprisingly,
they have attracted a lot of attention over the last few years, and various models have
been proposed to capture both heavy tails and dependence. Among them are the
familiar linear processes (such as ARMA, FARIMA processes) with regularly varying
or subexponential innovations (see [5], Section 13.3 or [17], Chapter 7 and Appendix
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A3.3) and some classes of non-linear processes, including the ARCH, GARCH and
stochastic volatility processes (see [18, 25]) which are particularly popular in finance.

The time series model that has been used most frequently in financial applications
is the GARCH (generalized autoregressive conditionally heteroscedastic) process. A
GARCH process {Xt} of order (p, q) (GARCH(p, q)) satisfies the recurrence equations

Xt = σt Zt and σ2
t =

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j (t ∈ Z), (1.1)

where {Zt} is an independent identically distributed (i.i.d.) sequence of random vari-
ables, the αis and βjs are non-negative parameters and p, q are given integers. Estima-
tion of the parameters in the GARCH model is rather straightforward (see [19]) and
this is certainly a major reason for its enormous popularity. However, the probabilistic
properties of the GARCH model are difficult to derive and far from being understood.
This includes the problem of the existence of a stationary solution to (1.1) given the
parameters αi, βj and the distribution of the innovations Zt. The tails of the finite-
dimensional distributions of {Xt} are regularly varying under general conditions on
the distribution of Zt but with the exception of the GARCH(1,1) model analytic ex-
pressions for the index of regular variation or its spectral measure are unavailable; see
[17, 8, 10, 21]. In the latter three references the limit theory of the sample autocorre-
lation function (ACF) of GARCH processes is treated. It turns out that the limits of
the sample autocorrelations are complicated functions of dependent infinite variance
stable random variables (see Section 2.1 below for a definition) and that the rates of
convergence in these limit theorems can be extremely slow, depending on the index
of regular variation. Moreover, the sample ACFs of GARCH processes, their absolute
values and squares converge in distribution to non-degenerate limits, if their variances
are infinite.

We note at this point that it is common practice in the financial time series literature
(see e.g. [26]) to consider significant values of the sample ACFs of the absolute and
squared returns of price series (such as stock indices, share prices, foreign exchange
rates) as evidence of stochastic volatility.

Interestingly, the behavior of the sample ACFs for the GARCH model (see [8, 10,
21]) is totally different from the sample ACF behavior of linear processes with heavy-
tailed innovations (see [5], Section 13.3). In the latter case the sample autocorrelations
of the process converge in probability even when the marginal distribution has infinite
variance to a quantity which depends only on the coefficients of the linear filter. This
quantity can be interpreted as the population autocorrelation even though it does
not exist. Moreover, the heavier the tail of the marginal distribution of the linear
process, the faster the rate of convergence of the sample ACF to the population ACF.
These properties are illustrated in a simulation study in [9] that compares the sampling
distributions of the ACF for GARCH and stochastic volatility models.

In this paper we consider another type of non-linear model popular in applications
to financial time series: the stochastic volatility processes given by

Xt = σt Zt (t ∈ Z), (1.2)

where {Zt} is a sequence of i.i.d. random variables, independent of another strictly
stationary volatility sequence {σt} of non-negative random variables. Because of the
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independence of the volatility process and the noise, the probabilistic structure of these
processes is much easier to understand than that of the GARCH processes. Indeed,
the dependence in {Xt} is essentially inherited from that in {σt}, and heavy tails, e.g.
regularly varying tails of Xt, can be easily modeled by innovations Zt with regularly
varying tails and ‘light tailed’ volatilities σt. Due to the difficulty of parameter estima-
tion in stochastic volatility models there are, however, some arguments in the literature
which support a preference for GARCH-type models; see e.g. [25] for discussion.

In this paper we give the limit theory for the sample ACF of stochastic volatility
processes whose marginal distributions have regularly varying tails and infinite vari-
ance. After dispensing with some preliminary results in Section 2 we show in Section
3 that the point processes constructed from the rescaled sequence {Xt} converge in
distribution to a Poisson process. Then a continuous mapping argument is applied to
derive the asymptotic behavior of the sample ACF. In Section 4 it is shown that the
(normalised) sample autocorrelations converge weakly to functions of infinite variance
stable limits. This implies that the sample autocorrelations converge to zero at a rate
which is faster the smaller the tail parameter. These results are in the same spirit as
those proved by Davis and Resnick [11, 12, 13] for the sample ACF of linear processes
with regularly varying tails. Moreover, the results for the stochastic volatility model
can be proved by similar methods as in those papers. At the end of Section 4 we also
indicate how to derive the sample ACF behavior for the sequences {|Xt|δ} for some
positive δ. Also for those processes, the limit theory of the sample ACF is much easier
to derive than in the GARCH case; see e.g. [8] for a comparison.

2. Preliminaries

2.1. Stable distributions

Recall that a random variable Z and its distribution are said to be α-stable for some
α ∈ (0, 2] if it has characteristic function

E eiλZ =

{
exp

[
i λ γ − σα |λ|α (

1− i β sign(λ) tan 1
2πα

)]
if α �= 1,

exp
[
i λ γ − σα |λ| (

1 + i β (2/π) sign(λ) ln |λ|)] if α = 1.

Here γ ∈ R, β ∈ [−1, 1] and σα > 0 represent the location, skewness, and scale param-
eters, respectively ([24] is a general reference on stable distributions and processes).

2.2. The tails of products of independent random variables

We will frequently make use of a result by Breiman [4] about the regular variation
of products of non-negative random variables ξ and η. Assume ξ is regularly varying
with index α > 0, i.e.,

lim
x→∞

Pr{ξ > cx}
Pr{ξ > x} = c−α , c > 0 .

If E ηα+ε < ∞ for some ε > 0, then ξη is regularly varying with index α and

Pr{ξη > x} ∼ E ηα Pr{ξ > x} (x → ∞). (2.1)
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2.3. The tails of a stochastic volatility model
Recall the definition of the stochastic volatility model from (1.2). Suppose Z is

regularly varying with index α and tail balancing condition

lim
x→∞

Pr{Z > x}
Pr{|Z| > x} = p and lim

x→∞
Pr{Z ≤ −x}
Pr{|Z| > x} = q , (2.2)

where p+ q = 1 for some p ∈ [0, 1]. Then by virtue of Breiman’s result (2.1), we know
that as x → ∞,

Pr{X > x} ∼ Eσα Pr{Z > x} and Pr{X ≤ −x} ∼ Eσα Pr{Z ≤ −x} , (2.3)

provided Eσα+ε < ∞ for some ε > 0. In what follows, we assume that (2.2) holds, and
we also require

E|Z|α = ∞ . (2.4)

Then Z1Z2 is also regularly varying with index α satisfying (see equations (3.2) and
(3.3) in [13])

Pr{Z1Z2 > x}
Pr{|Z1Z2| > x} → p̃ := p2 + (1 − p)2 (x → ∞).

Another application of (2.1) implies that X1Xh is regularly varying with index α:

Pr{X1Xh > x} = Pr{Z1Z2σ1σh > x} ∼ E[σ1σh]α Pr{Z1Z2 > x} ,
Pr{X1Xh ≤ −x} = Pr{Z1Z2σ1σh ≤ −x} ∼ E[σ1σh]α Pr{Z1Z2 ≤ −x} , (2.5)

provided E[σ1σh]α+ε < ∞ for some ε > 0.

3. Point process convergence

In this section we prove distributional convergence of the point processes constructed
from the stochastic volatility process (Xt} defined in (1.2). The innovations Zt are
always assumed to be regularly varying with index α > 0, satisfying the tail balancing
condition (2.2) and the moment condition (2.4). For an excellent account of point
processes and their weak convergence, see the monograph by Daley and Vere-Jones [6].

In Davis and Resnick [13], convergence in distribution for a sequence of point pro-
cesses with points based on cross-products of the sequence {Zt} was established. As
we show below, the same result holds for the cross-products based on the stochastic
volatility process. To describe the limit point process (and it is also germane to the
study of the sample ACF), let

∞∑
k=1

ε
P̃k,0

,

∞∑
k=1

ε
P̃k,1

, . . . ,

∞∑
k=1

ε
P̃k,h

be independent Poisson processes on R\{0} (here R= [−∞,∞] ) with intensity mea-
sures

λ̃0(dx) = α
[
px−α1(0,∞)(x) + (1− p)(−x)−α1(−∞,0)(x)

]
dx ,

λ̃i(dx) = α
[
p̃x−α1(0,∞)(x) + (1− p̃)(−x)−α1(−∞,0)(x)

]
dx (i = 1, . . . , h),
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respectively. (Here, εx(·) refers to the point measure with unit mass at the point {x}.)
Setting

Pk,0 = ‖σ1‖αP̃k,0 , Pk,i = ‖σ1σ1+i‖αP̃k,i (k ≥ 1, i = 1, . . . , h),

where ‖Y ‖α = (E|Y |α)1/α, it follows that

∞∑
k=1

εPk,0 ,

∞∑
k=1

εPk,1 , . . . ,

∞∑
k=1

εPk,h

are independent Poisson processes with intensity functions

λ0(dx) = ‖σ1‖α
α λ̃0(dx) and λi(dx) = ‖σ1σ1+i‖α

α λ̃i(dx) (i ≥ 1).

Let {an} and {bn} be the respective (1 − n−1)-quantiles of |Z1| and |Z1Z2| defined
by

an = inf
{
x: Pr{|Z1| > x} ≤ n−1

}
and bn = inf

{
x: Pr{|Z1Z2| > x} ≤ n−1

}
.
(3.1)

We start with a result for the case when the volatility process (σt} is m-dependent.

Theorem 3.1. Suppose {Xt} is the stochastic volatility process given by (1.2), where
the marginal distribution of Z satisfies (2.2) and (2.4). Let {σt} be a stationary m-
dependent sequence of non-negative random variables such that, for fixed h ≥ 1, and
some ε > 0,

Eσα+ε
1 < ∞ and E[σ1σ1+k]α+ε < ∞ (k = 1, . . . , h).

Let Yn,t = (a−1
n Xt, b

−1
n XtXt+1, . . . , b

−1
n XtXt+h), where {an} and {bn} are given in

(3.1). Then

Nn =
n∑

t=1

εYn,t

d→ N =
h∑

i=0

∞∑
k=1

εPk,iei
, (3.2)

where ei ∈ Rh+1 is the basis element with ith component equal to 1 and the rest 0.
Here

d→ denotes convergence in distribution in the spaceMp(R
h+1\{0}) of Radon point

measures on R
h+1\{0} equipped with the vague topology (cf. [6, 20, 22]).

Remark 3.2. The points of the limit point process N are concentrated on the coordi-
nate axes and distributed independently according to Poisson processes with intensity
measures λi. Using Laplace transforms, it is easy to see that N is a Poisson point
process with intensity measure ν(dy0, . . . ,dyh) =

∑h
i=0 λi(dyi)

∏
j �=i ε0(dyj).

Proof . It is clear that the stochastic volatility process {Xt} inherits the m-dependence
of the underlying volatility process {σt}. It then follows that (Yn,t)t≥1 is (m+ h+ 1)-
dependent for every n ≥ 1 and satisfies the mixing condition D∗ in Davis and Resnick
[14]. By Theorem 2.1 of the same paper, it suffices to show the following two conditions:

n Pr{Yn,1 ∈ ·} v→ ν(·) , (3.3)

where v→ denotes vague convergence in R
h+1\{0} and ν is the intensity measure of N

as specified in Remark 3.2, and for any non-negative continuous function g ≤ 1 with
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compact support on R
h+1\{0},

lim
k→∞

lim sup
n→∞

n

[n/k]∑
i=2

E[g(Yn,1)g(Yn,i)] = 0 . (3.4)

We obtain from (2.5) and (2.3) that for k ≥ 1,

n Pr{b−1
n X1X1+k > x} ∼ λk(x,∞) and n Pr{a−1

n X1 > x} ∼ λ0(x,∞) . (3.5)

For j > i > 1 fixed and M > 0 set X∗ = |X1|max(σi, σj) and An = {a−1
n X∗ > M}.

Then, for any x > 0 and j > i > 1,

Pr{b−1
n |X1Xi| > x, b−1

n |X1Xj | > x}
≤ Pr{b−1

n |Zi|X∗ > x, b−1
n |Zj |X∗ > x,An} + Pr{b−1

n |Zi|X∗ > x, b−1
n |Zj |X∗ > x,Ac

n}
≤ Pr{An}+ Pr{an b

−1
n |Z| > xM−1} .

An application of (2.1) shows that lim supn→∞ n Pr{An} ≤ E[σ1 max(σi, σj)]α M−α.
Since bn/an → ∞ (see (3.5) in [13]), lim supn→∞ n Pr{an b

−1
n |Z| > xM−1} = 0.

Consequently,
n Pr{b−1

n |X1Xi| > x, b−1
n |X1Xj | > x} → 0 , (3.6)

and using a similar argument we also have

n Pr{a−1
n |X1| > x, b−1

n |X1Xj | > x} → 0 . (3.7)

We are now in a position to prove (3.3) and (3.4). As in Davis and Resnick [13], we
introduce the class of sets S consisting of rectangles B of the form

B = (b0, c0]× (b1, c1]× · · · × (bh, ch]

which are bounded away from 0 and bi < ci, bi �= 0, ci �= 0, i = 0, . . . , h. Since B ∈ S
is bounded away from zero, either

B ∩ {yei: y ∈ R} = ∅ for i = 0, . . . , h, (3.8)

or

B ∩ {yei : y ∈ R} =
{ {0}j−1 × (bj , cj ] × {0}h−j+1 (i �= j),
∅, (i = j).

(3.9)

That is, B has either empty intersection with all of the coordinate axes or intersects
exactly one in an interval. Note that in (3.9), bi < 0 < ci for i �= j and 0 ∈ (bj , cj ].
The class S forms a DC-semi-ring (cf. e.g. [20]). It easily follows from (3.5) that

n Pr{Yn,1 ∈ B} → ν(B) :=
{

0 if B ∈ S satisfies (3.8),
λj(bj , cj ] if B ∈ S satisfies (3.9),

which proves (3.3) (here, λj(·) is defined by analogy with (3.5)).
As for (3.4), let g ≤ 1 be a non-negative continuous function with compact support

contained in the set

S =
h⋃

i=0

{(y0, . . . , yh) ∈ R
h+1

: |yi| > ε}
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for some ε > 0. Following the arguments given for (3.5)–(3.7), one can show that for
i > 1, nPr{Yn,1 ∈ S,Yn,i ∈ S} → 0. Using the m-dependence of the sequence {Xt},
we have for every fixed k ≥ 1,

lim sup
n→∞

n

[n/k]∑
i=2

E[g(Yn,1)g(Yn,i)] ≤ lim sup
n→∞

n

m+h+1∑
i=2

Pr{Yn,1 ∈ S,Yn,i ∈ S}

+ lim sup
n→∞

n

[n/k]∑
i=m+h+2

E[g(Yn,1) Eg(Yn,i)]

= k−1

(∫
g dν

)2

,

and the right-hand expression converges to 0 as k → ∞. This completes the proof of
(3.4) and the conclusion of the theorem now follows.

We now consider an extension of the above results to the case when the logarithm of
the volatility process {σt} is a linear process. Specifically, suppose {lnσt} is the linear
process given by

lnσt =
∞∑

j=−∞
ψjεt−j (t ∈ Z), (3.10)

where {εt} is a sequence of i.i.d. mean-zero Gaussian random variables and {ψj} satisfies
∞∑

j=−∞
ψ2

j < ∞ . (3.11)

Theorem 3.3. Let {Xt} denote the stochastic volatility process given by (1.2), where
the marginal distribution of Z satisfies (2.2) and (2.4), and {σt} has the representation
in (3.10). Then (3.2) holds.

Proof . For m a fixed positive integer let {Xt,m} be the stochastic volatility process
based on a (2m+ 1)-dependent volatility process given by

lnσt,m =
m∑

j=−m

ψjεt−j (t ∈ Z). (3.12)

If {N (m)
n } is the sequence of point processes corresponding to the sequence {Xt,m},

then by Theorem 3.1,

N (m)
n

d→ N (m) =
h∑

i=0

∞∑
k=1

ε
P

(m)
k,i

ei
,

where the points P (m)
k,i are defined the same way as the Pk,i but with σt replaced by

σt,m. To complete the proof, it suffices to show, by Theorem 4.2 in Billingsley [2], that

N (m) d→ N (3.13)

and for any η > 0
lim

m→∞ lim sup
n→∞

Pr{ρ(Nn, N
(m)
n ) > η} = 0 , (3.14)

where ρ is the metric inducing the vague topology.
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Since σ1,m and σ1 are log-normal and (3.11) holds, the α th powers of σi,m and of
their cross products are uniformly integrable. It follows that for m → ∞,

Eσα
1,m → Eσα

1 and E[σ1,mσ1+i,m]α → E[σ1σ1+i]α , (3.15)

and hence the intensity measures λ(m)
i for the Poisson points {P (m)

k,i , k ≥ 1} converge
vaguely to λi. This in turn implies that the intensity measure ν(m) for N (m) converges
vaguely to the intensity measure ν of N as m → ∞, which in turn implies (3.13).

Now turning to (3.14), we have for any γ > 0 and k ≥ 1,

Pr
{
b−1
n

n∨
t=1

|Xt,mXt+k,m −XtXt+k| > γ
}

= Pr
{
b−1
n

n∨
t=1

|ZtZt+k| |σt,mσt+k,m − σtσt+k| > γ
}

≤ n Pr{b−1
n |Z1Z1+k| |σ1,mσ1+k,m − σ1σ1+k| > γ} .

An application of (2.1) shows that the limit of the last expression is asymptotically (as
γ → ∞) of the order

γ−αE|σ1,mσ1+k,m − σ1σ1+k|α ,
which, by (3.15), converges to zero as m → ∞.

A similar result holds for the case when k = 0 and bn is replaced by a2
n.

The same argument provided in the proof of Theorem 2.4 of [11] can now be used
to establish (3.14).

Remark 3.4. The assumption that εt is Gaussian can be relaxed to any marginal
distribution such that (3.15) and the moment conditions in Theorem 3.1 hold.

4. Limit theory for the sample ACF

In this section we study the asymptotic behavior of the sample ACF and the sample
autocovariance function (ACVF) of the stochastic volatility process {Xt} defined in
(1.2). Define the sample ACVF (γ̃n,X(h)) and the sample ACF (ρ̃n,X(h)) of {Xt} by

γ̃n,X(h) =
1
n

n−h∑
t=1

XtXt+h and ρ̃n,X(h) =
∑n−h

t=1 XtXt+h∑n
t=1X

2
t

(h = 0, 1, 2, . . .).

Theorem 4.1. Assume {Xt} satisfies the conditions of Theorem 3.1. Let {an}, {bn}
be the normalizing sequences defined in (3.1).
(1◦) If α ∈ (0, 1), then

n
(
a−2

n γ̃n,X(0), b−1
n γ̃n,X(1), . . . , b−1

n γ̃n,X(r)
) d→ {Vh}h=0,...,r ,

where V0 =
∑∞

k=1 P
2
k,0 and Vh =

∑∞
k=1 Pk,h for h ≥ 1.

(2◦) If α = 1 and Z1 has a symmetric distribution, then

n
(
a−2

n γ̃n,X(0), b−1
n γ̃n,X(1), . . . , b−1

n γ̃n,X(r)
) d→ {Vh}h=0,...,r ,

where V0 =
∑∞

k=1 P
2
k,0 and {Vh}h=1,...,r is the distributional limit of{ ∞∑

k=1

Pk,h1{|Pk,h|>ε}

}
h=1,...,r
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as ε → 0. (See [7] for the existence of this limit.)
(3◦) If α ∈ (1, 2) and Z1 has mean 0, then

n
(
a−2

n γ̃n,X(0), b−1
n γ̃n,X(1), . . . , b−1

n γ̃n,X(r)
) d→ {Vh}h=0,...,r ,

where V0 =
∑∞

k=1 P
2
k,0 and {Vh}h=1,...,r is the distributional limit of{ ∞∑

k=1

[
Pk,h1{|Pk,h|>ε} −

∫
{ε<|x|<∞}

xλk(dx)
]}

h=1,...,r

as ε → 0. (See [7] for the existence of this limit.)
In all three cases, the random variables V0, V1, . . . , Vr are independent, V0 is positive

α/2-stable and V1, . . . , Vr are α-stable with index α (see Section 2.1). In addition,(
a2

nb
−1
n ρ̃n,X(h)

)
h=1,...,r

d→ (Vh/V0)h=1,...,r .

The proof of the theorem is omitted since it is nearly identical to that given for
Theorem 3.3 in [13] where the case of a linear process with regularly varying innovations
was treated.

The conclusion of (3◦) of the theorem remains valid if ρ̃n,X(h) is replaced by the
mean-corrected version of the ACF given by

ρ̂n,X(h) =
∑n−h

t=1

(
Xt −Xn

) (
Xt+h −Xn

)∑n
t=1

(
Xt −Xn

)2 ,

where Xn denotes the sample mean; see Corollary 1 in [13], p. 547.
Remark 4.2. By choosing the volatility process {σt} to be identically 1, we can recover
the limiting results obtained in Davis and Resnick [13] for the autocovariances and
autocorrelations of the process {Zt}. If (S0, S1, . . . , Sr) denotes the limit random vector
of the sample autocovariances based on {Zt}, then there is an interesting connection
between Sk and Vk, namely,

(V0, V1, . . . , Vr)
d=(‖σ1‖2

αS0, ‖σ1σ2‖αS1, . . . , ‖σ1σ1+r‖αSr).

It follows that (
a2

nb
−1
n ρ̃n,X(h)

)
h=1,...,r

d→
(‖σ1σh+1‖α

‖σ1‖2
α

Sh

S0

)
h=1,...,r

.

The following result shows that Theorem 4.1 remains valid for much wider classes
of stochastic volatility processes.

Theorem 4.3. The conclusions of Theorem 4.1 remain valid if {Xt} satisfies the
conditions of Theorem 3.3.

When the random variables Xt have finite variance and {σt} is strongly mixing with
a sufficiently fast rate, then standard central limit theory with normal limits and

√
n-

rates applies to the sample autocovariances and autocorrelations; see [16]. Indeed, the
sequence {Xt} then inherits the same rate of convergence from the {σt} sequence.
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Proof . As in the proof of Theorem 3.3, let {Xt,m} be the stochastic volatility process
based on the volatility process {σt,m} satisfying (3.12). Since Theorem 4.1 applies to
the {Xt,m} process it suffices, by Theorem 4.2 in [2] to show that for all η > 0

lim
m→∞ lim sup

n→∞
Pr

{
a−2

n

∣∣∣∣ n∑
t=1

(X2
t −X2

t,m)
∣∣∣∣ > η

}
= 0, (4.1)

lim
m→∞ lim sup

n→∞
Pr

{
b−1
n

∣∣∣∣ n∑
t=1

(XtXt+k −Xt,mXt+k,m)
∣∣∣∣ > η

}
= 0 (k = 1, . . . ,m), (4.2)

and
V

(m)
h

d→ Vh (h = 0, . . . , r). (4.3)

First we prove (4.2). Write Yt,m = σtσt+k − σt,mσt+k,m. Then for k ≥ 1 and x > 0,

b−1
n

n∑
t=1

(XtXt+k −Xt,mXt+k,m)

= b−1
n

n∑
t=1

[
ZtZt+k1{|ZtZt+k|≤bnx} − E(Z1Z11{|Z1Z2|≤bnx})

]
Yt,m

+ b−1
n

n∑
t=1

ZtZt+k1{|ZtZt+k|>bnx}Yt,m + b−1
n E(Z1Z11{|Z1Z2|≤bnx})

n∑
t=1

Yt,m

= I1 + I2 + I3 .

For any η > 0, we have

Pr{|I2| > η} ≤ n Pr{|Z1Z1+k| > bnx} → x−α (n → ∞), (4.4)

and the right-hand side converges to zero as x → ∞. Now if α ∈ (0, 1), we have by
Karamata’s theorem (see [3]),

lim sup
n→∞

E|I1| ≤ lim sup
n→∞

n b−1
n E

(|Z1Z1+k|1{|Z1Z1+k|≤bnx}
)
E|Y1,m|

= x1−α E|Y1,m| α

1− α
→ 0 (m → ∞), (4.5)

and similarly for I3. On the other hand, if α ∈ [1, 2) then by the independence of
{Yt,m} and {Zt}, we have that var(I1) is bounded above by

n b−2
n var(Z1Z1+k1{|Z1Z1+k|≤bnx}) EY 2

1,m

+2(n− 1) b−2
n |cov (

Z1Z1+k1{|Z1Z1+k|≤bnx}, Z1+kZ1+2k1{|Z1+kZ1+2k|≤bnx}
) |EY 2

1,m

≤ 3n b−2
n E

(
Z2

1Z
2
1+k1{|Z1Z1+k|≤bnx}

)
EY 2

1,m

→ 3x2−α EY 2
1,m

α

2 − α
(n → ∞),

→ 0 (m → ∞).
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If α = 1, then the symmetry of Z1 implies that EI3 = 0. If α > 1, then

|EI3| ≤ n b−1
n E

(|Z1Z1+k|1{|Z1Z1+k|>bnx}
)
E|Y1,m|

→ x1−α E|Y1,m| α

α− 1
(n → ∞),

→ 0 (m → ∞).

The limit in (4.2) now follows easily for all α ∈ (0, 2).
The argument for (4.1) is nearly identical so we omit it. Using the representation

described in Remark 4.2, we have

V
(m)
0 = ‖σ1,m‖2

α S0 and V
(m)
h = ‖σ1,mσ1+h,m‖α Sh .

By (3.15), the limits in (4.3) are immediate.

4.1. Other Powers
It is also possible to investigate the sample ACVF and ACF of the processes {|Xt|δ}
for any power δ > 0. This is common practice in financial time series analysis in order
to detect non-linearities. We illustrate the method in the case δ = 1.

Notice that |Xt| = |Zt|σt, t = 1, 2, . . ., has a structure similar to the original process
{Xt}. In particular, in the proofs of the point process convergence in Section 3 we
assumed only the conditions (2.2) and (2.4) on Z, which are also satisfied for |Z|, and
if E|Z| exists, also for |Z| − E|Z|, both for p = 1. Hence the results in Sections 3 and
4 with α < 1 immediately apply, with the limiting point process modified such that
{Zt} is replaced by {|Zt|}.

For α ∈ (1, 2), one can use the following decomposition for h ≥ 1 with γ|X| =
E|X0Xk|, Z̃t = |Zt| − E|Z| and X̃t = Z̃tσt:

n (γ̃n,|X|(h) − γ̃|X|(h)) =
n−h∑
t=1

Z̃tZ̃t+hσtσt+h + E|Z|
n−h∑
t=1

Z̃tσtσt+h

+ E|Z|
n−h∑
t=1

Z̃t+hσtσt+h − (E|Z|)2
n−h∑
t=1

(σtσt+h − Eσ0σh)

= I1 + I2 + I3 + I4 , say.

Since n−1I1 = γ̃
n,X̃

(h) and EZ̃ = 0, the results of Sections 3 and 4 are applicable

to {X̃t}. Also notice that {a−2
n γ̃n,|X|(0)} converges weakly to an α/2-stable random

variable, for the same reasons as given for {Xt}. It remains to show that

b−1
n Ij

P→0 (j = 2, 3, 4). (4.6)

The same arguments as for γ̃n,X(h) show that a−1
n Ij , j = 2, 3, converge to an α-stable

distribution, and so, since an/bn → 0, (4.6) holds for j = 2, 3. If the Gaussian process
{lnσt} has an absolutely summable ACVF, then so does the process {σtσt+h} and
hence var(b−1

n I4) → 0 as required.
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