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Abstract

An autoregressive-moving average model in which all of the roots of the autoregressive poly-
nomial are reciprocals of roots of the moving average polynomial and vice versa is called an
all-pass time series model. All-pass models generate uncorrelated (white noise) time series, but
these series are not independent in the non-Gaussian case. An approximation to the likelihood
of the model in the case of Laplace (two-sided exponential) noise yields a modi�ed absolute
deviations criterion, which can be used even if the underlying noise is not Laplace. Asymp-
totic normality for least absolute deviation estimators of the model parameters is established
under general conditions. Behavior of the estimators in �nite samples is studied via simulation.
The methodology is applied to exchange rate returns to show that linear all-pass models can
mimic \non-linear" behavior, and is applied to stock market volume data to illustrate a two-step
procedure for �tting noncausal autoregressions.
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1 Introduction

In the analysis of returns on �nancial assets such as stocks, it is common to observe lack of serial

correlation, heavy-tailed marginal distributions, and volatility clustering. Volatility clustering is

the name given to the phenomenon noticed by Mandelbrot (1963), in which small observations

tend to be followed by small observations, and large observations by large observations. This

kind of dependence is not re
ected in the second-order properties of the series, which is serially
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uncorrelated, but can be detected through the analysis of higher-order moments, such as in the

autocorrelations of the squared returns.

Typically, nonlinear models with time-dependent conditional variances, such as the autoregres-

sive conditionally heteroskedastic (ARCH) models (Engle, 1982; Bollerslev, Chou, and Kroner,

1992) or the stochastic volatility models (Clark, 1973; Jacquier, Polson, and Rossi, 1994) are sug-

gested for such time series. In this paper we consider a class of linear, non-Gaussian models which

can display exactly this behavior. This class is a particularly striking illustration of a known result

that linear, non-Gaussian models can display \nonlinear" behavior (Bickel and B�uhlmann, 1996).

The linear models which we will consider are all-pass models: autoregressive-moving average

models in which all of the roots of the autoregressive polynomial are reciprocals of roots of the

moving average polynomial and vice versa. All-pass models generate uncorrelated (white noise)

time series, but these series are not independent in the non-Gaussian case.

While all-pass models can generate examples of linear time series with \nonlinear" behavior,

their dependence structure is highly constrained, limiting their ability to compete with ARCH. A

far more important application of all-pass models is in the �tting of noncausal autoregressions.

Noncausal models are important tools in a number of applications, including deconvolution of ab-

sorption spectra (Blass and Halsey, 1981), design of communication systems (Benveniste, Goursat,

and Roget, 1980), processing of blurry images (Donoho, 1981; Chien, Yang, and Chi, 1997), de-

convolution of seismic signals (Wiggins, 1978; Ooe and Ulrych, 1979; Donoho, 1981; Godfrey and

Rocca, 1981; Hsueh and Mendel, 1985), modeling of vocal tract �lters (Rabiner and Schafer, 1978;

Chien, Yang, and Chi, 1997), and analysis of astronomical data (Scargle, 1981). In many of these

applications, the models are essentially one-dimensional random �elds, in which the direction of

\time" is irrelevant. Rosenblatt (2000) is a monograph which covers identi�cation, estimation, and

prediction aspects of noncausal models.

All-pass models are widely used in the �tting of noncausal models, where they arise as the result

of whitening a series with a causal �lter (all of the roots of the autoregressive polynomial outside

the unit circle) when in fact the true model is noncausal. The whitened series in this case can then

be represented as an all-pass of order r, where r is the number of roots of the true autoregressive

polynomial which lie inside the unit circle.

Estimation methods based on Gaussian likelihood, least-squares, or related second-order mo-

ment techniques are unable to identify all-pass models. Instead, cumulant-based estimators using
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cumulants of order greater than two are often used to estimate such models (Wiggins, 1978; Donoho,

1981; Lii and Rosenblatt, 1982; Giannakis and Swami, 1990; Chi and Kung, 1995; Chien, Yang,

and Chi, 1997).

In this paper we consider estimation based on a quasi-likelihood approach. In Section 2, an

approximation to the likelihood of an all-pass model in the case of Laplace (two-sided exponential)

noise is derived, yielding a modi�ed absolute deviations criterion. This criterion can be used even if

the underlying noise is not Laplace. Asymptotic normality for least absolute deviation estimators

of the model parameters is established under general conditions in Section 3, and order selection

is considered. This asymptotic theory relies on two preliminary results stated and proved in the

appendix. The �rst result extends a theorem of Davis and Dunsmuir (1997) to the case of two-

sided linear processes, and the second result uses the �rst in establishing a functional convergence

theorem for the modi�ed absolute deviations criterion.

Behavior of the estimators in �nite samples is studied via simulation in Section 4.1. For illus-

tration purposes, the estimation procedure is applied to exchange rate data in Section 4.2 and to

noncausal autoregressive modeling in Section 4.3. In the latter, the two-step procedure for �tting

noncausal models is applied not to a standard engineering deconvolution problem but to a non-

standard example: time series of daily log volumes of Microsoft stock. A noncausal AR(1) model

is shown to provide a reasonable �t to these data. Though the purpose of this example is purely

illustrative, it is interesting to note that causal AR models are found to provide better �ts for the

log volumes of Atmel and Microchip, two smaller companies with considerably less public exposure.

A brief discussion follows in Section 5.

2 Preliminaries

2.1 All-Pass Models

Let B denote the backshift operator (Bk
Xt = Xt�k, k = 0;�1;�2; : : :) and let

�(z) = 1� �1z � � � � � �sz
s

be an sth-order autoregressive polynomial, where �(z) 6= 0 for jzj = 1. The polynomial is said to

be causal if all its roots are outside the unit circle in the complex plane. In this case, for a sequence
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fWtg,

�
�1(B)Wt =

0
@ 1X
j=0

 jB
j

1
AWt =

1X
j=0

 jWt�j;

a function of only the past and present of the fWtg. Note that the �lter �(B�1) is purely noncausal

in the sense that

�
�1(B�1)Wt =

0
@ 1X
j=0

 jB
�j

1
AWt =

1X
j=0

 jWt+j ;

a function of only the present and future of the fWtg. See, for example, Chapter 3 of Brockwell

and Davis (1991).

We introduce notation which will be useful in our later discussion of order selection. Consider

the sth-order autoregressive polynomial

�0(z) = 1� �01z � � � � � �0sz
s
;

where �0(z) 6= 0 for jzj � 1 and s is known. De�ne �00 = 1 and assume

� A1 �0r 6= 0 for some r 2 f0; 1; : : : ; sg and �0j = 0 for j = r + 1; : : : ; s.

That is, r is the unknown, real model order, while s is a known, su�ciently large model order. Then

a causal all-pass time series is the autoregressive-moving average (ARMA) fXtg which satis�es the

di�erence equations

�0(B)Xt =
B
s
�0(B

�1)

��0r
Zt; (1)

where fZtg is an independent and identically distributed (iid) sequence of random variables. In

principle, it is possible to consider all-pass models with both causal and noncausal factors. We

restrict attention to causal all-pass models because they su�ce for our main application: the �tting

of noncausal autoregressive models.

We assume

� A2 fZtg is iid with mean 0, �nite variance �
2
> 0, and common distribution function F�.

� A3 F� has median zero and is continuously di�erentiable in a neighborhood of zero. Let

f� (z) = �
�1
f(��1z) denote the density function corresponding to F�, where � is a scale

parameter.

� A4 f� (0) > 0.
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A2 implies that the mean of fXtg in (1) is zero. This su�ces for the applications we consider,

in which fXtg is a zero-mean white noise sequence. In the case of non-zero mean, it is possible to

center by subtracting o� the sample mean, which is n1=2-consistent and asymptotically equivalent

to the best linear unbiased estimator (Brockwell and Davis, 1991, Section 7.1). Another possibility

is to include the mean when constructing the approximate likelihood. A comparison of these

alternatives is beyond the scope of this paper.

Note that the spectral density of fXtg in (1) is

je�is!j2j�0(ei!)j2
�
2
0rj�0(e�i!)j2

�
2

2�
=

�
2

�
2
0r2�

;

which is constant for ! 2 [��; �], hence fXtg is an uncorrelated sequence. In the case of Gaussian

fZtg, this implies that fXtg is iid N(0; �2��20r ), but independence does not hold in the non-Gaussian
case (e.g., Breidt and Davis, 1991).

Rearranging (1), we have the backward recursion

zt�s = �01zt�s+1 + � � � + �0szt � (Xt � �01Xt�1 � � � � � �0sXt�s); (2)

where zt := Zt�
�1
0r . In practice, the model order r is unknown. We propose a model order p � s

and a corresponding causal autoregressive polynomial �(z) = 1� �1z � � � � � �pz
p 6= 0 for jzj � 1,

where �p 6= 0. The analogous recursion to (2) is then

zt�s(�) =

�
0; t = n+ s; : : : ; n+ 1;

�1zt�s+1(�) + � � � + �szt(�)� �(B)Xt; t = n; : : : ; s+ 1,
(3)

where the s� 1 vector � is de�ned as (�1; : : : ; �p; 0; : : : ; 0)
0.

Let �0 = (�01; : : : ; �0s)
0 = (�01; : : : ; �0r; 0; : : : ; 0)

0. Note that fzt(�0)g is a close approximation

to fztg, in which the error is due to the initialization with zeros. Though fztg is iid, fzt(�)g, in
general, is not iid, even after ignoring the transient behavior due to initialization.

2.2 Approximating the Likelihood

The modi�ed absolute deviations criterion we consider is motivated by a likelihood approximation.

In this subsection, we ignore the e�ect of recursion initialization in (3), and write

��(B�1)Bs
zt(�) = �(B)Xt: (4)

We then approximate the likelihood of a realization of length n, (X1; : : : ;Xn); from the model

(1) using techniques similar to those in Breidt, Davis, Lii, and Rosenblatt (1991) and Lii and

Rosenblatt (1992, 1996).
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Consider the augmented data vector

x := (X1�s; : : : ; X0; X1; : : : ;Xn; zn�s+1(�); : : : ; zn(�))
0

and the augmented noise vector

z := (X1�s; : : : ;X0; z1�s(�); : : : ; z0(�); z1(�); : : : ; zn�s+1(�); : : : ; zn(�))
0
:

Note that when � = �0, the �rst 2s terms of z are independent of the last n terms by causality.

From (4), it is easy to show that

Ax = Bz (5)

with jAj = jBj = 1. Now the joint distribution of z under � is given by

h(z) = h1(X1�s; : : : ;X0; z1�s(�); : : : ; z0(�))

 
n�sY
t=1

f� (�pzt(�)) j�pj
!
h2(zn�s+1(�); : : : ; zn(�));

so the joint distribution of x under � is given by

h(x) = h1

 
n�sY
t=1

f� (�pzt(�)) j�pj
!
h2; (6)

where h1 and h2 do not depend on n. This suggests approximating the log-likelihood of (�; �)

given the data as

L(�; �) =

n�sX
t=1

ln f� (�pzt(�)) + (n� s) ln j�pj

= �(n� s) ln� +

n�sX
t=1

ln f(��1�pzt(�)) + (n� s) ln j�pj; (7)

where the fzt(�)g can be computed recursively from (3).

2.3 Least Absolute Deviations

If the noise distribution is Laplacian, or two-sided exponential, with mean 0, variance �2, and

density

f� (z) =
1

�
f

�
z

�

�
=

1p
2�

exp

 
�
p
2jzj
�

!
;

then the log-likelihood is given by

constant � (n� s) ln��
n�sX
t=1

p
2jzt(�)j
�

; (8)
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where � = �j�pj�1. Setting the partial derivative of (8) with respect to � equal to zero, we obtain

�(�) =

p
2

n� s

n�sX
t=1

jzt(�)j; (9)

where the fzt(�)g are computed from (3). Substituting �(�) for � in (8), we obtain the concentrated

Laplacian likelihood

`(�) = constant� (n� s) ln

n�sX
t=1

jzt(�)j:

Maximizing `(�) is equivalent to minimizing the absolute deviations criterion,

mn(�) =
n�sX
t=1

jzt(�)j: (10)

The minimizer �̂ of (10) will be referred to as the least absolute deviations (LAD) estimator of �.

3 Asymptotic Results

3.1 Parameter Estimation

We now state our main result, which parallels Davis and Dunsmuir (1997), Corollary 1.

Theorem 1 Assume the all-pass model (1) holds with A1{A4. Then there exists a sequence of

local minimizers �̂LAD of (10) such that

n
1=2(�̂LAD � �0)

L! �j�0rj�
�1
s

2f� (0)
N � N

�
0;

Var (jZ1j)
2�4f2�(0)

�
2��1s

�
; (11)

where �s = [
(j�k)]sj;k=1 and 
(�) is the autocovariance function of the causal AR(r) fZt=�0(B)g.

Proof: The proof of this theorem relies on two lemmas which are stated and proved in the

appendix. For u 2 IRs, let

Sn(u) = mn(�0 + n
�1=2u)�

n�sX
t=1

jzt(�0)j: (12)

Then minimizing (10) with respect to � is equivalent to minimizing (12) with respect to u =

n
1=2(� � �0). Lemma 1 of the appendix is used to establish a functional convergence theorem in

Lemma 2; speci�cally, Sn
L! S on C(IRs) where

S(u) =
f� (0)

j�0rj
u0�su+ u0N
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and

N � N

�
0;

2Var (jZ1j)
�20r�

2
�s

�
:

Since the minimizer of the limit process S(u) is �j�0rj=(2f� (0))��1s N, the result (11) follows by

the continuous mapping theorem. 2

Remark: 1. The sequence of local minimizers in the theorem depends on the unknown �0, which

may not be the unique global minimizer of Ej~z1(�)j, where ~z1(�) = ��(B)X1+s=�(B
�1). If �0

is the unique global minimizer of Ej~z1(�)j, then Proposition 1 in the appendix establishes strong

consistency of the LAD estimators.

Now suppose that �0 is not the unique global minimizer, and �0 and �1 are both local mini-

mizers of Ej~z1(�)j. Then there may exist a sequence of local minimizers of the LAD criterion which

converges to �0 and another sequence of local minimizers which converges to �1. Unless Ej~z1(�)j
has a unique global minimizer at � = �0, it is unclear whether the global minimizer of (10) satis�es

the condition of the theorem.

In the Gaussian case, for example, any choice of �0 (with �0r 6= 0) together with �
2
0 :=

�
2
0rVar (Xt) satis�es model (1) with innovations fZtg iid N(0; �20) and fXtg iid N(0; �20��20r ). Choose

any �1 6= �0 with �1p 6= 0 and set �21 = �
2
1pVar (Xt). Then

Ej~z1(�1)j = E

����� Z1�1

�0�1p

����� = E

�����Z1Var
1=2(Xt)

�0

����� = Ejz1(�0)j

so that Ej~z1(�)j is not uniquely minimized at �0.

On the other hand, if Zt has heavier tails than Gaussian, in the sense that

E

�����
1X

j=�1

cjZt�j

����� > EjZ1j (13)

for any fcjg with at least two non-zero elements,
P
j jcj j <1, and

P
j c

2
j = 1, then

Ej~z1(�)j = E

����� �0(B
�1)�(B)

�0r�(B�1)�0(B)
Zt

����� > Ej~z1(�0)j;

so that �0 is the unique global minimizer. Jian and Pawitan (1998) give su�cient conditions for

(13) and show that it is satis�ed by the Laplace, Student's t, contaminated normal, and other

standard heavy-tailed distributions. In these cases, �0 is the unique global minimizer of Ej~z1(�)j.
2. Note that the asymptotic covariance matrix from (11) is a scalar multiple of the asymptotic

covariance matrix for the vector of Gaussian likelihood estimators of the corresponding sth-order

autoregressive process.
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3. In practice, computation of �̂LAD requires numerical minimization, in which local minima

are of concern. In Section 4.1, we describe our methods for generating initial values and guarding

against local minima.

Examples: For the Laplace density, EjZ1j = �=
p
2 and f� (0) = 1=(

p
2�), so that the constant

factor appearing in the limiting covariance matrix in (11) is

Var (jZ1j)
2�4f2�(0)

=
1

2
:

For Student's t-distribution with � > 2 degrees of freedom, � = (�=(� � 2))1=2,

EjZ1j = 2
(� � 2)1=2

� � 1

�((� + 1)=2)

�(�=2)
p
�
�;

and

f� (0) =
�((� + 1)=2)

��(�=2)
p
(� � 2)�

;

so that the constant factor in (11) is

Var (jZ1j)
2�4f2�(0)

=
�2(�=2)(� � 2)�

2�2((� + 1)=2)
� 2(� � 2)2

(� � 1)2
:

For � = 3, the value of this expression is 0:7337.

3.2 Order Selection

In practice the order r of the all-pass model is usually unknown. The following corollary to Theo-

rem 1 is useful in order selection.

Corollary 1 Assume the conditions of Theorem 1. If the true all-pass model order is r and the

�tted model order is p > r then

n
1=2
�̂p;LAD

L! N

�
0;
Var (jZ1j)
2�4f2�(0)

�
;

where �̂p;LAD is the pth element of �̂LAD.

Proof: By Problem 8.15 of Brockwell and Davis (1991), the pth diagonal element of ��1p is ��2

for p > r, so the result follows from (11). 2

Recall that we have assumed there is a known model order s which is su�ciently large in the

sense that s � r. A practical approach to order determination in large samples then proceeds as

follows:
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1. Fit an sth-order all-pass model and obtain residuals fzt(�̂)g.

(a) Estimate Var (jZ1j)��20r consistently by v̂1, the empirical variance of fjzt(�̂)jg.

(b) Estimate Var (Z1)�
�2
0r = �

2
�
�2
0r consistently by v̂2, the empirical variance of fzt(�̂)g.

(c) Estimate j�0rjf�(0) consistently by d̂, a kernel estimator of the density at zero based on

fzt(�̂)g.

(d) Compute

�̂
2 :=

v̂1

2v̂22 d̂
2

P! Var (jZ1j)
2�4f2�(0)

(14)

(see, for example, Kreiss (1987)).

2. Fit all-pass models of order p = 1; 2; : : : ; s via LAD and obtain the pth coe�cient, �̂pp for

each.

3. Choose the model order r as the smallest order beyond which the estimated coe�cients are

statistically insigni�cant; that is,

r = minf0 � p � s : j�̂jjj < 1:96�̂n�1=2 for j > p.g

Amore formal order selection procedure is based on a version of AIC, the information criterion of

Akaike (1973), which is designed to be an approximately unbiased estimator of the Kullback-Leibler

index of the �tted model relative to the true model. We take the same heuristic approach here,

using the Laplace likelihood computed on the basis of n� s observations to make fair comparisons

across di�erent model orders. The proposed model order p is no greater than s. Let X�

1 ; : : : ; X
�

n

be a realization from the model (�00; �0)
0, independent of X1; : : : ;Xn. Then, from (7),

�2LX�(�̂; �̂) = �2LX(�̂; �̂)� 2

p
2
Pn�s
t=1 jzt(�̂)j
�̂

+ 2

p
2
Pn�s
t=1 jz�t (�̂)j
�̂

= �2LX(�̂; �̂)� 2(n� s) + 2
p
2

Pn�s
t=1 jz�t (�̂)j �

Pn�s
t=1 jz�t (�0)j

�̂

+2
p
2

Pn�s
t=1 jz�t (�0)j

�̂
: (15)

Using Lemma 2, (11), and the ergodic theorem, we have that

Pn�s
t=1 jz�t (�̂)j �

Pn�s
t=1 jz�t (�0)j

�̂

L! u0N�

p
2EjZ1jj�0rj�1

+
f� (0)

j�0rj
u0�sup

2EjZ1jj�0rj�1
;
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where u0 = �j�0rj=(2f� (0))��1s N and N, N� are iid N(0; 2VarjZ1j��20r ��2�s). It follows that

E

"Pn�s
t=1 jz�t (�̂)j �

Pn�s
t=1 jz�t (�0)j

�̂

#
' f� (0)p

2EjZ1j
trace

�
�sE

�
uu0

��

=
VarjZ1j

2
p
2EjZ1j�2f� (0)

p:

Further,

E

"Pn�s
t=1 jz�t (�0)j

�̂

#
= E

"
n�sX
t=1

jz�t (�0)j
#
E

�
1

�̂

�

' (n� s)EjZ1j
j�0rj

j�0rjp
2EjZ1j

=
n� sp

2
:

Therefore the quantity

AIC(p) := �2LX(�̂; �̂) +
VarjZ1j

EjZ1j�2f� (0)
p (16)

is approximately unbiased for (15). The model order p 2 f0; 1; : : : ; sg which minimizes AIC(p) is

selected. Note that in the Laplace case, the penalty term in (16) is

VarjZ1j
EjZ1j�2f� (0)

p =
�
2
=2

(�=
p
2)�2(1=

p
2�)

p = p;

unlike the 2p penalty associated with a Gaussian likelihood. The penalty term can be estimated

consistently with

v̂1

ê1v̂2d̂
;

where ê1 is the sample mean of the jzt(�̂)j from the sth order �t, and the remaining terms are

de�ned above.

Example: Figure 1(a) shows a simulated realization of length 500 from a causal all-pass process of

order 2 with parameter values �1 = 0:3; �2 = 0:4 and noise that is distributed as t with 3 degrees of

freedom. The ACFs of the process, its squares, and its absolute values are displayed in Figure 1(b){

(d). As is evident from these graphs, the data are uncorrelated, the squares and absolute values are

correlated and the data display some stochastic volatility. For this particular realization, we applied

the estimation and identi�cation methods described above. The estimates of �1 and �2 were 0.297

and 0.374 with an estimated standard error of 0.0381. The latter is computed as �̂

q
(1� �̂22)=500

where �̂ is given by (14). The estimates of �̂pp are given in Table 1. With s = 10, the value of �̂ in

(14) is 0.908 so that the cut-o� value in step 3 of the �rst order selection procedure described in
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Order 1 2 3 4 5 6 7 8 9 10

�̂pp 0.289 0.374 0.009 0.011 0.010 0.047 0.034 �0:054 0.083 0.021

AIC(p) 2450.6 2345.8 2347.2 2348.2 2349.7 2347.6 2348.5 2345.1 2343.0 2344.6

Table 1: Estimates �̂pp and AIC(p) for p = 1; : : : ; 10.

this section is (1:96)(0:908)=
p
500 = 0:0796. As seen from Table 1, this method correctly identi�es

the order for this particular realization.

The AIC values are also displayed in Table 1. Here we took the maximum order s = 10 and

the estimate of the coe�cient of p in (16) was 1.8955. These AIC values show three competitive

models at the correct order p = 2 and at orders p = 6 and 9.

t

X(t
)

0 100 200 300 400 500

-40
-20

0
20

(a) Data From Allpass Model

Lag

AC
F

0 10 20 30 40

0.0
0.2

0.4
0.6

0.8
1.0

(b) ACF of Allpass Data

Lag

AC
F

0 10 20 30 40

0.0
0.2

0.4
0.6

0.8
1.0

(c) ACF of Squares

Lag

AC
F

0 10 20 30 40

0.0
0.2

0.4
0.6

0.8
1.0

(d) ACF of Absolute Values

Figure 1: (a) Realization of an all-pass model of order 2; (b) ACF of the data; (c) ACF of the

squares; (d) ACF of the absolute values.



LAD for All-Pass Models 13

4 Empirical Results

4.1 Simulation Results

In this section we describe a simulation study undertaken to evaluate the asymptotic theory. We

considered all-pass model orders one and two and sample sizes n = 500 and 5000. For each case,

we simulated 1000 replications of the all-pass model, using as noise Student's t with 3 degrees of

freedom. We used the Hooke and Jeeves (1961) algorithm to minimize the LAD criterion for each

replicate.

To guard against the possibility of being trapped in local minima, we used a large number

(250) of starting values for each replicate. These were distributed uniformly in the space of partial

autocorrelations, then mapped to the space of autoregressive coe�cients using the Durbin-Levinson

algorithm (Brockwell and Davis, 1991, Proposition 5.2.1). That is, for a model of order p, the kth

starting value (�
(k)
p1 ; : : : ; �

(k)
pp )

0 was computed recursively as follows:

1. Draw �
(k)
11 ; �

(k)
22 ; : : : ; �

(k)
pp iid uniform(�1; 1).

2. For j = 2; : : : ; p, compute2
664

�
(k)
j1
...

�
(k)
j;j�1

3
775 =

2
664

�
(k)
j�1;1
...

�
(k)
j�1;j�1

3
775� �

(k)
jj

2
664
�
(k)
j�1;j�1
...

�
(k)
j�1;1

3
775 :

The initial 250 candidate starting values were pared to the 10 that gave the smallest function

evaluations. Optimized values were then found by implementing the Hooke and Jeeves algorithm

with each of these 10 candidates as starting values. Among the 10 optimized values, the one that

gave the smallest function evaluation was selected as the estimate. Residuals for each realization

were obtained, and con�dence intervals for �0 were constructed using equations (11) and (14). In

computing (14), we used a normal kernel density estimator with a normal scale bandwidth selector

v̂
1=2
2 (3n=4)�1=5.

Results appear in Tables 2 and 3. In all cases, the LAD estimates are approximately unbiased

and the con�dence interval coverages are close to the nomimal 95% level. The asymptotic standard

errors understate the true variability of the LAD estimates for the smaller sample size but are

accurate at the larger sample size. Normal probability plots and histograms suggest that this extra

variation in the LAD estimates comes from a relatively small number of large outliers, while most

of the estimates follow the asymptotic normal law quite closely.
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Asymptotic Empirical

mean std.dev. % coverage

n mean std.dev. (c.i.) (c.i.) (c.i.)

500 �1 = 0:1 0.0381 0.1013 0.1323 91.1

(0.0931,0.1095) (0.1264,0.1380) (89.3,92.9)

5000 �1 = 0:1 0.0121 0.0999 0.0130 94.5

(0.0991,0.1007) (0.0124,0.0135) (93.1,95.9)

500 �1 = 0:5 0.0332 0.4979 0.0397 94.2

(0.4954,0.5004) (0.0379,0.0414) (92.8,95.6)

5000 �1 = 0:5 0.0105 0.4998 0.0109 95.4

(0.4991,0.5005) (0.0105,0.0112) (94.1,96.7)

500 �1 = 0:9 0.0167 0.8834 0.1027 91.2

(0.8770,0.8898) (0.0981,0.1071) (89.4,93.0)

5000 �1 = 0:9 0.0053 0.8993 0.0056 95.7

(0.8990,0.8996) (0.0054,0.0059) (94.4,97.0)

Table 2: Empirical means, standard deviations, and percent coverages of nominal 95% con�dence

intervals for LAD estimates of all-pass model of order one. To quantify simulation uncertainty,

empirical con�dence intervals (c.i.'s) are computed from standard asymptotic theory for 1000 iid

replicates at each sample size, n. Asymptotic means and standard deviations are from (11). Noise

distribution is t with 3 degrees of freedom.

Table 2 shows results for all-pass of order one with �1 = 0:1, 0.5, and 0.9. Asymptotic results

are symmetric about zero and empirical results for �1 = �0:1, �0:5, and �0:9 (not shown) are

roughly symmetric. The simulation results show that estimation is more di�cult when fXtg has

weaker dependence, and convergence to the limiting distribution is slower. Unlike the usual unit

root case for autoregressive processes, dependence is weaker for all-pass as �1 ! �1, since these
boundary cases correspond to iid noise as the AR and MA factors (1��1B) and (1���11 B) cancel.

Dependence is also weaker as �1 ! 0. To see this, rescale Xt � (0; �2��21 ) to have bounded variance

as �1 ! 0:

�1Xt = �1Zt + �1(�1 � �
�1
1 )

1X
j=0

�
j
1Zt�1�j :

Now the variance of the (t � 1) term is (1 � �
2
1)

2
�
2 = O(1), while the variance of the sum of the

remaining terms is �21(2 � �
2
1)�

2 = O(�21). Hence fXtg behaves like the iid sequence f���11 Zt�1g
for small �1.

We also compared the performance of the LAD estimators to the performance of a cumulant-
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Asymptotic Empirical

mean std.dev. % coverage

n mean std.dev. (c.i.) (c.i.) (c.i.)

500 �1 = 0:3 0.0351 0.2990 0.0456 92.5

(0.2962,0.3018) (0.0435,0.0475) (90.9,94.1)

�2 = 0:4 0.0351 0.3965 0.0447 92.1

(0.3937,0.3993) (0.0427,0.0467) (90.4,93.8)

5000 �1 = 0:3 0.0111 0.3003 0.0118 95.5

(0.2996,0.3010) (0.0113,0.0123) (94.2,96.8)

�2 = 0:4 0.0111 0.3990 0.0117 94.7

(0.3983,0.3997) (0.0112,0.0122) (93.3,96.1)

Table 3: Empirical means, standard deviations, and percent coverages of nominal 95% con�dence

intervals for LAD estimates of all-pass model of order two. To quantify simulation uncertainty,

empirical con�dence intervals (c.i.'s) are computed from standard asymptotic theory for 1000 iid

replicates at each sample size, n. Asymptotic means and standard deviations are from (11). Noise

distribution is t with 3 degrees of freedom.

True Values Empirical

MSE relative

n mean mean std.dev. to LAD

500 �1 = 0:1 0.2999 0.4949 16.3

5000 �1 = 0:1 0.1180 0.1496 134.3

500 �1 = 0:5 0.5254 0.1342 11.8

5000 �1 = 0:5 0.5011 0.0333 9.3

500 �1 = 0:9 0.9203 0.1114 1.2

5000 �1 = 0:9 0.9197 0.0420 67.6

Table 4: Empirical means, standard deviations, and e�ciencies relative to LAD for maximum

absolute residual kurtosis estimation method. MSE relative to LAD is empirical mean squared

error of cumulant estimator divided by empirical MSE of LAD estimator. Results are based on the

same 1000 simulated realizations as in Table 2.
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based estimator, which maximizes the absolute residual kurtosis

��� 1

n� s

n�sX
t=1

 
zt(�)

v̂
1=2
2

!4

� 3
��� (17)

with respect to � (see Rosenblatt 2000, Section 8.7, and the references therein). Results are tabled

in Table 4. The cumulant-based estimator su�ers from some bias at the smaller sample size,

primarily due to a pile-up e�ect on �1. The LAD estimators have much smaller mean squared

error (MSE) in most cases. The best case for the cumulant-based estimator is �1 = 0:9, n = 500, for

which the empirical MSE of the cumulant-based estimator is still 20% higher than that of the LAD

estimator. For this case, 347 of the 1000 estimates were equal to +1, reducing the variability of the

estimator, but missing the dependence structure in the data. The performance of the cumulant-

based estimators was much worse for second-order all-pass models. We do not report those results

here.

4.2 Linear Time Series with \Nonlinear" Behavior

We now turn to some examples with real data. Figure 2(a){(d) shows 500 daily log returns of the

New Zealand/U.S. exchange rate together with autocorrelations for the returns, their squares, and

their absolute values. These data show many of the stylized facts that would lead to consideration

of GARCH or stochastic volatility models: lack of serial correlation, heavy-tailed marginal distri-

bution, and volatility clustering. We �t an all-pass model of order 6 to show that a linear model

can produce this same behavior. The order was determined using the model selection procedure

based on the �̂pp as described in Section 3.2. (The AIC had local minima at p = 6 and 10.) The

autoregressive polynomial of the �tted model is

1 + 0:367B + 0:75B2 + 0:391B3 � :088B4 + 0:193B5 + 0:096B6
:

Autocorrelations for the residuals and the squares of the residuals from the all-pass �t are shown in

Figure 3(a) and (b). These diagnostics show that a non-Gaussian linear model can capture many

of the features often regarded as characteristic of nonlinearity. Though this example shows that in

some cases all-pass models can mimic the behavior of more familiar nonlinear models for �nancial

data, the constrained forms of all-pass models limit their usefulness in general for this kind of

application. A more natural application of all-pass modeling is illustrated in the next subsection.
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Figure 2: (a). Daily log returns of the New Zealand/U.S. exchange rate; (b). ACF for the returns;

(c). ACF for squares of returns; (d). ACF for absolute values of returns.
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Figure 3: Diagnostics for �tted all-pass model of order six for New Zealand/U.S. exchange rate

returns: (a) ACF of residuals; (b) ACF for squares of residuals.
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4.3 Noncausal Autoregressive Modeling

As mentioned in the introduction, an important application of all-pass models is in noncausal

autoregressive model �tting. Suppose that fXtg satis�es the di�erence equations

�c(B)�nc(B)Xt = Zt;

where the q roots of �c(z) are outside the unit circle, the r roots of �nc(z) are inside the unit

circle, and fZtg is iid. Let �
(c)
nc (z) denote the causal r-th order polynomial whose roots are the

reciprocals of the roots of �nc(z). If fXtg is mistakenly modeled with the second-order equivalent

causal representation,

�c(B)�
(c)
nc (B)Xt = Ut;

then fUtg satis�es the di�erence equations

Ut =
�c(B)�

(c)
nc (B)

�c(B)�nc(B)
Zt

=
�
(c)
nc (B)

��nc;rBr�
(c)
nc (B�1)

Zt; (18)

where �nc;r is the coe�cient of �Br in �nc(B). Thus, by (1), fUtg is a purely noncausal all-pass

time series. Equivalently, the reversed-time process fU�tg is a causal all-pass time series.

This suggests a two-step procedure for �tting noncausal autoregressive time series models. Using

a standard method such as Gaussian maximum likelihood, �t a causal sth order autoregressive

model to fXtg and obtain residuals fÛtg. Select a model order r and �t a purely noncausal rth

order all-pass model to fÛtg. The �tted model can be evaluated by residual diagnostics, looking

for iid (not merely white) noise. Once a suitable all-pass model is �tted to obtain the purely

noncausal AR(r), the appropriate causal AR(q) polynomial can be identi�ed by canceling the

roots in the causal AR(s) polynomial which correspond to the inverses of the roots in the purely

noncausal AR(r) polynomial. The resulting estimates could be used as preliminary estimates in a

more re�ned estimation procedure as in Breidt, Davis, Lii, and Rosenblatt (1991). This two-step

procedure avoids the need to study all possible 2s con�gurations of roots inside and outside the

unit circle.

Example: Microsoft Trading Volume. The data in Figure 4 are volumes of Microsoft (MSFT)

stock traded over 754 transaction days from 06/03/96 to 05/27/99. Because the data are skewed
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Figure 4: Volumes of Microsoft (MSFT) stock traded over 754 transaction days from 06/03/96 to

05/27/99

and show some evidence of heteroskedasticity, we transformed with natural logarithms. The auto-

correlations and partial autocorrelations of the resulting series suggest that an autoregressive model

of order one or three might be appropriate. To focus on the estimation problem and not on the

order selection problem, we �t an AR(1) via Gaussian maximum likelihood, yielding the estimate

�̂
(c)
nc = 0:5834 with standard error 0:0296. The resulting residuals fÛtg show little evidence of corre-

lation, but both fÛ2
t g and fjÛtjg have signi�cant lag one autocorrelations, with asymptotic p-values

less than 0:001 (McLeod and Li, 1983); see Figures 5 (a) and (b). Thus a causal AR(1) model with

iid noise is inappropriate for the MSFT data, and we investigate the noncausal alternative.

Fitting a purely noncausal all-pass of order one to fÛtg, we obtain the estimate ~�nc = 1:7522,

with standard error 0:0989. From (18),

Ût = �̂c(B)�̂
(c)
nc (B)Xt '

~�
(c)
nc (B)

�~�nc;rBr ~�
(c)
nc (B�1)

~Zt;
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Figure 5: Diagnostics for causal and noncausal autoregressive models �tted to log Microsoft volume:

(a) ACF of squares of residuals fÛtg from causal AR(1) �t ; (b) ACF of absolute values of fÛtg; (c)
ACF of squares of residuals f ~Ztg from noncausal all-pass �t; (d) ACF of absolute values of f ~Ztg.

so that the all-pass residuals are obtained from

~Zt =
(1� 1:7522B)(1 � 0:5834B)

1� (1:7522)�1B
Xt

=
(1� 1:7522B)(1 � 0:5834B)

1� 0:5707B
Xt: (19)

In Figures 5 (c) and (d), these residuals show no evidence of correlation in their squares or absolute

values, suggesting that a noncausal AR(1) is a more appropriate model than a causal AR(1) for

these data.

Note that another possible modeling strategy would be to �t a causal AR(1) and then model

the non-iid residuals as GARCH. This would require at least two more parameters (intercept and

slope in ARCH(1)) than the noncausal AR(1) �tted here.

We also �tted log volumes over the same trading period for two small companies (Atmel Corpo-
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ration (ATML) and Microchip (MCHP)) in the same sector as Microsoft, but found that causal AR

models adequately described their dynamics. A possible explanation for this phenomenon is that

forthcoming actions of Microsoft are widely anticipated by the market, so that the e�ect of shocks

precedes their arrival and a non-causal model is appropriate. The actions of smaller companies do

not receive as much attention, so caual models are appropriate.

Because the model order is low in the Microsoft example, we could have �tted all possible

causal/noncausal models, and compared diagnostics, rather than employing the two-step procedure.

If we had �tted a noncausal AR(1) model directly, rather than via the two-step procedure, we

would have obtained the estimated model (1� 1:7141B)Xt = Zt, which is quite close to the model

which would be obtained through cancellation of the common factors in (19). Diagnostics for the

residuals from the noncausal AR(1) �t are virtually identical to those for the f ~Ztg above. Note

that for higher-order models it may not be possible to �t and assess all 2s possible models.

5 Discussion

This paper has reviewed all-pass models, which generate uncorrelated but dependent time series in

the non-Gaussian case. An approximation to the likelihood of the model in the case of Laplace noise

yielded a modi�ed absolute deviations criterion, which can be used even if the underlying noise is

not Laplace. Asymptotic normality for least absolute deviation estimators of the model parameters

was established under general conditions, and order selection methods were developed. Behavior

of the LAD estimators in �nite samples was studied via simulation, showing agreement with the

asymptotic theory and marked superiority over the maximum absolute residual kurtosis technique.

The methodology was applied to exchange rate returns to show that linear all-pass models can

mimic \non-linear" behavior often associated with GARCH or stochastic volatility models. The

methodology was also applied to Microsoft volume data as part of a two-step procedure for �tting

noncausal autoregressions. In this example, a noncausal AR(1) model provides a better �t than

does a causal AR(1). Because of the low order of the �tted model, order selection was not an issue

in this example.

In future work, we intend to investigate the behavior of the LAD estimates for all-pass models

when order selection is required, and further compare our methodology to methods based on higher-

order moments. We are also currently looking at maximum likelihood estimation for the same
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problem.

Appendix

In this appendix we derive two preliminary results used in establishing our main theorem, and

we prove a strong consistency result for the LAD estimator. The �rst preliminary result extends

Theorem 1 of Davis and Dunsmuir (1997) from one-sided to two-sided linear processes.

Lemma 1 Suppose fYtg is the linear process

Yt =

1X
j=�1

cjzt�j

where c0 = 0,
P
1

j=�1 jcj j <1, fztg is iid with mean 0, �nite variance, and common distribution

function G which has median 0 and is continuously di�erentiable in a neighborhood of 0. Then

Sn :=

n�sX
t=1

�
jzt � n

�1=2
Ytj � jztj

�
L! Var (Yt) g(0) +N;

where

N � N

 
0; 
�(0) + 2

1X
h=1



�(h)

!



�(h) = E [Yt sgn (zt)Yt+h sgn (zt+h)] ;

and g(z) is the density corresponding to G.

Proof: Using the identity for z 6= 0,

jz � yj � jzj = �y sgn (z) + 2(y � z)
n
1
f0<z<yg � 1

fy<z<0g

o
;

we have

Sn = �n�1=2
n�sX
t=1

Yt sgn (zt)

+2

n�sX
t=1

�
n
�1=2

Yt � zt

�n
1
f0<zt<n�1=2Ytg

� 1
fn�1=2Yt<zt<0g

o
=: An +Bn:

A standard truncation argument, truncating Yt to create the 2M -dependent sequence fYM
t sgn (zt)g =

fPM
j=�M cjzt�j sgn (zt)g, allows application of a central limit theorem (Brockwell and Davis, 1991,

Theorem 6.4.2) for each M , from which it follows that An
L! N .
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Now turning to Bn, let

Wnt := (n�1=2Yt � zt)1f0<zt<n�1=2Ytg:

Let FY denote the distribution of Y1. Then

lim sup
n!1

nE
h
W

2
nt

i

= lim sup
n!1

h
n

Z �n1=2

0

Z n�1=2y

0
(n�1=2y � z)2G(dz)FY (dy)

+n

Z
1

�n1=2

Z n�1=2y

0
(n�1=2y � z)2G(dz)FY (dy)

i

� lim sup
n!1

h
n

Z �n1=2

0

Z n�1=2y

0
(n�1=2y � z)2(g(0) + �) dz FY (dy)

+n

Z
1

�n1=2

Z n�1=2y

0
n
�1
y
2
G(dz)FY (dy)

i

� lim sup
n!1

(const)n

Z �n1=2

0
n
�3=2

y
3
FY (dy)

� lim sup
n!1

(const)�E
h
Y
2
1 1fY1>0g

i
; (20)

and since � > 0 is arbitrary, the bound must be zero.

Write

Yt = Y
�

t + Y
+
t =

1X
j=1

cjzt�j +
1X
j=1

c�jzt+j :

Then, on the set fYt > 0g,

E [Wnt j zt�1; zt�2; : : :]

= E
h
(n�1=2Yt � zt)1f0<zt<n�1=2Ytg j zt�1; zt�2; : : :

i

=

Z
1

�Y �

t

Z n�1=2(Y �

t +y)

0

n
n
�1=2(Y �

t + y)� z

o
G(dz)FY +(dy)

=

Z
1

�Y �

t

n
�1=2(Y �

t + y)
n
G(n�1=2(Y �

t + y))�G(0)
o
FY +(dy)

�
Z
1

�Y �

t

Z n�1=2(Y �

t +y)

0
zG(dz)FY +(dy)

�
Z
1

�Y �

t

n
�1(Y �

t + y)2g(0)FY +(dy)

�
Z
1

�Y �

t

g(0)
n
�1(Y �

t + y)2

2
FY +(dy)

=
g(0)

2n

Z
1

�Y �

t

(Y �

t + y)2FY +(dy);
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where the approximation holds on the set jn�1=2Ytj < �, for � > 0 small. Since

Pr
n
n
�1=2max(jY1j; : : : ; jYnj) > �

o
� Pr

n
[nt=1fjYtj > �n

1=2g
o

� nPr
n
jY1j > �n

1=2
o

� �
�2E

h
Y
2
1 1fY 2

1
>�2ng

i
! 0

as n!1, it follows from the ergodic theorem that

n�sX
t=1

E [Wnt j zt�1; zt�2; : : :] P!
g(0)

2
E

"Z
1

�Y �

t

(Y �

t + y)2FY +(dy)

#
: (21)

By (20),

Var

 
n�sX
t=1

(Wnt � E [Wnt j zt�1; zt�2; : : :])
!

=

n�sX
t=1

Var (Wnt � E [Wnt j zt�1; zt�2; : : :])

�
n�sX
t=1

E
h
W

2
nt

i
! 0;

so that from (21) we have

n�sX
t=1

Wnt
P! g(0)

2
E

"Z
1

�Y �

t

(Y �

t + y)2FY +(dy)

#
:

Using the same argument for the second indicator in Bn, we obtain

Bn
P! g(0)

2
E

�Z
1

�1

(Y �

t + y)2FY +(dy)

�

=
g(0)

2
Var (Yt) ;

which concludes the proof. 2

To apply Lemma 1 in the context of LAD for all-pass models, we need to identify an appropriate

fYtg and compute the autocovariance function 

�(h) of the stationary process fYt sgn (zt)g. We

now undertake these intermediate computations, which are then used in Lemma 2 to establish a

functional convergence theorem for the centered absolute deviations criterion.

De�ne '(z) = �1z + � � �+ �sz
s = 1� �(z) and '0(z) = 1� �0(z). In what follows, we linearize

'(B�1)zt(�) around �0 within the criterion function mn; that is, '(B
�1)zt(�) is approximated by

'0(B
�1)zt(�0) +

sX
j=1

@

@�j

n
'(B�1)zt(�)

o ���
�=�

0

(�j � �0j):
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By (3), the criterion function (10) can be written as

mn =

n�sX
t=1

j'(B�1)zt(�)� �(B)Xt+sj

=

n�sX
t=1

j'(B�1)Bs
zt+s(�)� �0(B)Xt+s + (�0(B)� �(B))Xt+sj

'
n�sX
t=1

���'0(B�1)Bs
zt+s(�0)�B

s
zt+s(�0) + zt(�0)

+

sX
j=1

@

@�j

n
'(B�1)zt(�)

o ���
�=�

0

(�j � �0j)

��0(B)Xt+s + n
1=2(�� �0)

0
n
�1=2(Xt+s�1; : : : ;Xt)

0

���
=

n�sX
t=1

�����zt(�0) + n
�1=2u0

"
@

@�j

n
'(B�1)zt(�)

o ���
�=�

0

+Xt+s�j

#s
j=1

����� ; (22)

where u = n
1=2(�� �0).

Now

�(B)Xt+s = �zt(�) + '(B�1)zt(�);

so

@

@�j

n
'(B�1)zt(�)

o
= �Xt+s�j +

@

@�j
zt(�): (23)

Also,

@

@�j

n
'(B�1)zt(�)

o
= '(B�1)

@

@�j
zt(�) + zt+j(�): (24)

Equating (23) and (24) and solving for @zt(�)=@�j , we obtain

@

@�j
zt(�) =

1

�(B�1)
fXt+s�j + zt+j(�)g : (25)

Substituting (25) in (23), we have

@

@�j

n
'(B�1)zt(�)

o ���
�=�

0

=

�
�Xt+s�j +

1

�(B�1)
(Xt+s�j + zt+j(�))

�
�=�

0

=

(
�Xt+s�j +

�0(B
�1)Bs

Zt+s�j

��0r�(B�1)�0(B)
+
zt+j(�)

�(B�1)

)
�=�

0

= �Xt+s�j �
zt�j

�0(B)
+
zt+j(�0)

�0(B�1)
: (26)
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Finally, note that (26) implies that the coe�cient of n�1=2 in (22) is

u0

"
@

@�j

n
'(B�1)zt(�)

o ���
�=�

0

+Xt+s�j

#s
j=1

= u0
�
� zt�j

�0(B)
+
zt+j(�0)

�0(B�1)

�s
j=1

' u0
�
� zt�j

�0(B)
+

zt+j

�0(B�1)

�s
j=1

=: �Y �

t � Y
+
t = �Yt; (27)

where Y �

t 2 �(zt�1; zt�2; : : :) because �0(B) is a causal operator, and Y
+
t 2 �(zt+1; zt+2; : : :)

because �0(B
�1) is a purely noncausal operator. It follows that Yt is independent of zt := Zt�

�1
0r .

Note that

Var (Yt) = �
�2
0r u

0

�
Cov

�
� Zt�j

�0(B)
+

Zt+j

�0(B�1)
;� Zt�k

�0(B)
+

Zt+k

�0(B�1)

��s
j;k=1

u

= �
�2
0r u

0[2
(j � k)]sj;k=1u

= 2��20r u
0�su; (28)

where 
(�) is the autocovariance function of the causal AR(r) fZt=�0(B)g and �s = [
(j�k)]sj;k=1.
We now compute the autocovariance function 
�(h) of the stationary process fYt sgn (zt)g:



�(h) = E [Yt sgn (zt) Yt+h sgn (zt+h)]

= u0E

""�
� zt�j

�0(B)
+

zt+j

�0(B�1)

�
sgn (zt)

�
�zt+h�k
�0(B)

+
zt+h+k

�0(B�1)

�
sgn (zt+h)

#s
j;k=1

#
u

= u0E

"" 
�

1X
`=0

 `zt�j�` +

1X
`=0

 `zt+j+`

!
sgn (zt)

 
�

1X
m=0

 mzt+h�k�m +
1X
m=0

 mzt+h+k+m

!
sgn (zt+h)

#s
j;k=1

#
u

= u0 [�jk(h)]
s
j;k=1

u; (29)

where

�jk(h) =

8<
:

2
(j�k)

�2
0r

; h = 0

� jhj�j jhj�k

�2
0r

E2jZ1j; h 6= 0,

and the f `g are given by
P

1

`=0  `z
` = 1=�0(z).
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Thus,



�(0) + 2

1X
h=1



�(h) = u0

8<
:2��20r [
(j � k)]sj;k=1 � 2��20r E

2jZ1j
"
1X
h=1

 h�j h�k

#s
j;k=1

9=
;u

= u0

(
2

�20r

�s �
2E2jZ1j
�20r�

2
�s

)
u

=
2Var (jZ1j)
�20r�

2
u0�su: (30)

Lemma 2 For u 2 IR
s
, let

Sn(u) = mn(�0 + n
�1=2u)�

n�sX
t=1

jzt(�0)j

and de�ne

S
�

n(u) =

n�sX
t=1

(�����zt(�0) + n
�1=2u0

"
@

@�j

n
'(B�1)zt(�)

o ���
�=�

0

+Xt+s�j

#s
j=1

������ jzt(�0)j
)
:

Then

1. S
�

n
L! S on C(IRs) where

S(u) =
f� (0)

j�0rj
u0�su+ u0N

and

N � N

�
0;

2Var (jZ1j)
�20r�

2
�s

�
:

2. Sn
L! S.

Proof: (1) De�ne

S
y

n(u) =

n�sX
t=1

(���zt � n
�1=2

Yt

���� jztj
)
;

where Yt is given in equation (27). By Lemma 1 and (28),

S
y

n(u) = �n�1=2
n�sX
t=1

Yt sgn (zt) +
f� (0)

j�0rj
u0�su+ op(1):

Thus, using (30), we have that the �nite dimensional distributions of Syn converge to those of S.

But since Syn has convex sample paths, this implies that the convergence is in fact on C(IRs). (As

shown in Theorem 10.8 of Rockafellar (1970), pointwise convergence of convex functions implies
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uniform convergence on compact sets, from which tightness of the Syn can be established.) It follows

that Syn
L! S on C(IRs).

In order to transfer the convergence of Syn onto S�n, we �rst note that

zn�t�s =

1X
j=0

 jUn�t+j and zn�t�s(�0) =

tX
j=0

 jUn�t+j

for t = 0; 1; : : : ; n� s+ 1, where Ut = ��0(B)Xt and  (B) = 1=�0(B). Thus,

jzn�t�s � zn�t�s(�0)j = j
1X

j=t+1

 jUn�t+j j

and hence

lim sup
n!1

E

n�s+1X
t=M

jzn�t�s � zn�t�s(�0)j � C

1X
t=M

1X
j=t+1

j j j

! 0;

as M ! 1. It now follows simply from these relations and the triangle inequality that S�n(u) �
S
y

n(u)
P! 0 uniformly on compact sets which, combined with the convergence of Syn(u), yields (1).

(2) This argument is nearly identical to the one given on p. 487 of Davis and Dunsmuir (1997)

and is omitted. 2

We conclude this appendix with a result on strong consistency of the LAD estimators under a

suitable identi�ability condition.

Proposition 1 Assume the all-pass model (1) holds with A1{A4. Let ~z1(�) = ��(B)X1+s=�(B
�1).

Given � > 0, let � be the compact parameter space consisting of

f� : �(z) 6= 0 for all jzj � 1� �g :

If Ej~z1(�)j has a unique minimum at � = �0 2�, then

�̂LAD = argmin�2�mn(�)! �0

almost surely.

Proof: By the ergodic theorem, Tn(�) = n
�1
mn(�) ! Ej~z(�)j a.s. It su�ces to show that

Tn(�) ! Ej~z(�)j a.s. uniformly on � 2 �. We begin by showing that fTn(�)g is uniformly

equicontinuous on � a.s.
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Using the identity for z 6= 0,

jyj � jzj = (y � z) sgn (z) + 2y
n
1
fz<0<yg � 1

fy<0<zg

o
;

we have for �;� 2 �

Tn(�)� Tn(�) = n
�1

n�sX
t=1

(jzt(�)j � jzt(�)j)

= n
�1

n�sX
t=1

(zt(�)� zt(�)) sgn (zt(�))

+2

n�sX
t=1

zt(�)
n
1
fzt(�)<0<zt(�)g

� 1
fzt(�)<0<zt(�)g

o
= I + II: (31)

By the mean value theorem,

jIj � n
�1

n�sX
t=1

���@zt(��)
@�

���j�� �j;

where �� is between � and �. Using (25) and the de�nition of zt(�), it follows that there exist

coe�cients  j � 0 decaying at a geometric rate such that

sup
�2�

���@zt(�)
@�

��� � 1X
j=0

 jjXt�s+j j

and

sup
�2�

jzt(�)j �
1X
j=0

 j jXt�s+j j:

Hence

jIj � j�� �jn�1
n�sX
t=1

1X
j=0

 j jXt�s+j j

= j�� �jO(1) a.s. (32)

Turning to the second term in (31), we have for a �xed � > 0

jIIj � 2n�1
n�sX
t=1

jzt(�)j1fjzt(�)j��g

+2n�1
n�sX
t=1

jzt(�)j1fjzt(�)j>�g1fjzt(�)�zt(�)j>�g

� 2� + 2n�1
n�sX
t=1

jzt(�)jjzt(�)� zt(�)j=�
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� 2� + 2n�1��1
n�sX
t=1

j�� �j
0
@ 1X
j=0

 j jXt�s+j j
1
A
2

= 2� + �
�1j�� �jO(1) a.s. (33)

Since the O(1) terms in (32) and (33) do not depend on �, �, or �, it follows that fTng is

equicontinuous on � a.s. It is also easily shown that the sequence fTng is uniformly bounded

a.s. Applying the Arzel�a-Ascoli theorem, we conclude that Tn(�) ! Ej~z1(�)j a.s. uniformly. The

uniqueness of the minimizer of Ej~z1(�)j ensures that �̂LAD ! �0 a.s. 2
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