
STRUCTURAL BREAKS ESTIMATION FOR NON-STATIONARY TIME SERIES SIGNALS

Richard A. Davis∗, Thomas C. M. Lee† & Gabriel A. Rodriguez-Yam

Department of Statistics, Colorado State University

ABSTRACT

In this work we consider the problem of modeling a class of non-
stationary time series signals using piecewise autoregressive (AR)
processes. The number and locations of the piecewise autoregres-
sive segments, as well as the orders of the respective AR processes,
are assumed to be unknown. The minimum description length
principle is applied to find the “best” combination of the number
of the segments, the lengths of the segments, and the orders of
the piecewise AR processes. A genetic algorithm is implemented
to solve this difficult optimization problem. We term the result-
ing procedure Auto-PARM. Numerical results from both simula-
tion experiments and real data analysis show that Auto-PARM en-
joys excellent empirical properties. Consistency of Auto-PARM
for break point estimation can also be shown.

KEY WORDS: Non-stationarity, change points, minimum descrip-
tion length principle, genetic algorithm

1. INTRODUCTION

In this work we consider the problem of modeling a non-stationary
time series by segmenting the series into blocks of different autore-
gressive (AR) processes. The number of break points denoted by
m, as well as their locations and the orders of the respective AR
models are assumed to be unknown. We propose an automatic pro-
cedure for obtaining such a partition. We term the proposed pro-
cedure Auto-PARM, short for automatic piecewise autoregressive
modeling.

1.1. Piecewise Autoregressive Modeling

In order to describe the setup, for j = 1, . . . , m, denote the loca-
tion of the break point between the j-th and (j + 1)-th AR pro-
cesses as τj , and set τ0 = 1 and τm+1 = n + 1. Then the j-th
piece of the series is modeled as an AR process

Yt = Xt,j , τj−1 ≤ t < τj , (1)

where {Xt,j} is the AR(pj) process

Xt,j = γj + φj1Xt−1,j + . . . + φj,pj Xt−pj ,j + σjεt,

ψj := (γj , φj1, . . . , φj,pj , σ2
j) is the parameter vector correspond-

ing to this AR(pj) process, and the noise sequence {εt} is iid with
mean 0 and variance 1. Given an observed series {yi}n

i=1, the ob-
jective is to obtain a “best” fitting model from this class of piece-
wise AR processes. This is equivalent to finding the “best” com-
bination of the number of pieces m + 1, the break point locations

∗Supported in part by NSF grant DMS-0308109
†Supported in part by NSF grant DMS-0203901

τ1, . . . , τm, and the AR orders p1, . . . , pm+1. We propose an au-
tomatic procedure for obtaining such a partition. Note that once
these parameters are specified, maximum likelihood estimates of
the AR parameters ψj’s are easily computed.

The piecewise AR process considered in (1) is a special case
of the piecewise stationary process (see also Adak 1998)

Ỹt,n =
m+1∑
j=1

Xt,jI[τj−1/n,τj/n)(t/n),

where {Xt,j}, j = 1, . . . , m + 1 is a sequence of stationary pro-
cess. Ombao, Raz, Von Sachs, and Malow (2001), under certain
conditions, argue that locally stationary processes (in the sense of
Dahlhaus 1997) can be well approximated by piecewise stationary
processes. Roughly speaking, a process is locally stationary if its
time-varying spectrum at time t and frequency ω is |A(t/n, ω)|2,
where A(u, ω), u ∈ [0, 1], ω ∈ [−1/2, 1/2] is a continuous func-
tion in u. Since AR processes are dense in the class of weakly
stationary (purely non-deterministic) processes, the piecewise AR
process is dense in the class of locally stationary processes. This
provides some motivation for considering models of the form in
(1).

The above problem of finding a “best” combination of m, τj’s
and pj’s can be treated as a statistical model selection problem,
in which candidate models may have different numbers of param-
eters. In Section 2 below we solve this problem by applying the
minimum description length (MDL) principle of Rissanen (1989)
to define a best fitting model. The basic idea behind the MDL
principle is that the best fitting model is the one that enables the
maximum compression of the data.

As described below, the best fitted model derived by the MDL
principle is defined implicitly as the optimizer of some criterion.
Practical optimization of this criterion is not a trivial task, as the
search space (consisting of m, τj ’s and pj’s) is enormous. For
this problem, we propose using genetic algorithms (e.g., see Hol-
land 1975). Genetic algorithms are becoming popular in statistical
applications and seem particularly well suited for this MDL opti-
mization problem as can be seen in our numerical studies. Sec-
tion 3 presents the genetic algorithm that was developed for this
MDL optimization problem.

1.2. Previous Work

Various versions of the above break point detection problem have
been considered in the literature. For example, Bai and Perron
(1998, 2003) examine the multiple change-point modeling for the
case of multiple linear regression, Inclan and Tiao (1994) and Chen
and Gupta (1997) consider the problem of detecting multiple vari-
ance change-points in a sequence of independent Gaussian ran-
dom variables, and Kim and Nelson (1999) provide a summary

of various applications of the hidden Markov approach to econo-
metrics. Kitagawa and Akaike (1978) implemented an “on-line”
procedure based on AIC to determine segments. To implement
their method, suppose that an autoregressive model AR(p0) has
been fitted to the dataset {y1, y2, . . . , yn0} and that a new block
{yn0+1, . . . , yn0+n1} of n1 observations becomes available, which
can be modeled as an AR(p1) autoregressive model. Then, the time
n0 is considered a breaking point when the AIC value of the two
independent pieces is smaller than the AIC of the autoregressive
that results when the dataset {y1, . . . , yn0+n1} is modeled as a
single autoregressive model of order p2. Each pj , j = 0, 1, 2 is se-
lected among the values 0, 1, . . . , K (K is a predefined value) that
minimizes the AIC criterion. The iteration is continued until no
more data are available. Like K, n1 is a predefined value. Ombao
et al. (2001) implement a segmentation procedure using the SLEX
transformation, a family of orthogonal transformations. For a par-
ticular segmentation, a “cost” function is computed as the sum of
the costs at all the blocks that define the segmentation. The best
segmentation is then defined as the one with minimum cost. Again,
because it is not computationally feasible to consider all possible
segmentations, they assume that the length of the segments follow
a dyadic structure; i.e., an integer power of 2. Bayesian approaches
have also been studied; e.g., see Lavielle (1998) and Punskaya et
al. (2002). Both procedures choose the final optimal segmentation
as the one that maximizes the posterior distribution of the observed
series. Numerical results suggest that both procedures enjoy excel-
lent empirical properties. However, theoretical results supporting
these procedures are lacking.

2. MODEL SELECTION USING MINIMUM
DESCRIPTION LENGTH

2.1. The MDL Criterion

This section presents our results of applying the MDL principle to
select a “best” fitting model from the piecewise AR model class
defined by (1). Denote this whole class of piecewise AR models
as M and any model from this class as F ∈ M. In the current
context the MDL principle defines the “best” fitting model from M
as the one that produces the shortest code length that completely
describes the observed data y = (y1, y2, . . . , yn).

To proceed let nj := τj − τj−1 be the length of the jth seg-
ment. Also denote the covariance matrix of yj as V−1

j , and let

V̂j be an estimate for Vj . Then in Davis, Lee and Rodriguez-
Yam (2005) it is shown that the best fitting MDL model F̂ is well
approximated as the minimizer of

MDL(F) = log m + (m + 1) log n +

m+1∑
j=1

pj + 2

2
log nj

+

m+1∑
j=1

{log pj +
nj

2
log(2π) − 1

2
log |V̂j | + 1

2
yT

j V̂jyj}. (2)

We propose selecting the best fitting model for y as the model
F ∈ M that minimizes MDL(F).

2.2. Consistency

Assume that there exist true values m0 and λ0
j , j = 1, . . . , m0,

such that 0 < λ0
1 < λ0

2 < · · · < λ0
m0 < 1. The observations

y1, . . . , yn are assumed to be a realization from the piecewise AR

process defined in (1) with τi = [λ0
i n], i = 1, 2, . . . , m0, where

[x] is the greatest integer that is less than or equal to x. For j =

1, 2, . . . , m0, let λ̂j = τ̂j/n, where τ̂j is the jth estimated break
point of the best fitting model suggested by MDL(F). In Davis et
al. (2005) the following consistency result is established.

Theorem. For the model specified in (1), if m0, the number of
break points is known, then λ̂j → λ0

j , a.s., j = 1, 2, . . . , m0.

3. OPTIMIZATION USING GENETIC ALGORITHMS

As the search space is enormous, optimization of MDL(F) is a
nontrivial task. In this section we propose using a genetic algo-
rithm (GA) to effectively tackle this problem.

3.1. General Description

The basic idea of the canonical form of GAs can be described
as follows. An initial set, or population, of possible solutions
to an optimization problem is obtained and represented in vector
form. These vectors are often called chromosomes and are free
to “evolve” in the following way. Parent chromosomes are ran-
domly chosen from the initial population and chromosomes hav-
ing lower (higher) values of the objective criterion to be minimized
(maximized) would have a higher chance of being chosen. Then
offspring are produced by applying a crossover or a mutation oper-
ation to the chosen parents. Once a sufficient number of such sec-
ond generation offspring are produced, third generation offspring
are further produced from these second generation offspring in a
similar fashion. This process continues for a number of genera-
tions. If one believes in Darwin’s Theory of Natural Selection,
the expectation is that objective criterion values of the offspring
will gradually improve over generations and approach the optimal
value.

In a crossover operation, one child chromosome is produced
from “mixing” two parent chromosomes. The aim is to allow the
possibility that the child receives different best parts from its par-
ents. A typical “mixing” strategy is that every child gene location
has an equal chance of receiving either the corresponding father
gene or the corresponding mother gene. This crossover operation
is the distinct feature that makes genetic algorithms different from
other optimization methods. For possible variants of the crossover
operation, consult Davis (1991).

In a mutation operation one child chromosome is produced
from one parent chromosome. The child is essentially the same as
its parent except for a small number of genes where randomness is
introduced to alter the types of genes. Such a mutation operation
prevents the algorithm from being trapped in local optima.

In order to preserve the best chromosome of a current genera-
tion, an additional step, called the elitist step, may be performed.
Here the worst chromosome of the next generation is replaced with
the best chromosome of the current generation. Inclusion of this
elitist step guarantees the monotonicity of the algorithm.

There are many variations of the above canonical GA. For ex-
ample, parallel implementations can be applied to speed up the
convergence rate as well as to reduce the chance of converging to
sub-optimal solutions (Forrest 1991; Alba and Troya 1999). In
this paper we implement the Island Model. Instead of running
only one search in one giant population, the island model simulta-
neously runs NI (Number-of-Islands) canonical GAs in NI dif-
ferent sub-populations. The key feature is, periodically, a number

of individuals are migrated amongst the islands according to some
migration policy. The migration can be implemented in numerous
ways (Martin, Lienig and Cohoon 2000; Alba and Troya 2002).
In this paper, we adopt the following migration policy: after every
Mi generations, the worst MN chromosomes from the j-th island
are replaced by the best MN chromosomes from the (j − 1)-th
island, j = 1, . . . , NI . For j = 1 the best MN chromosomes
are migrated from the NI-th island. In our simulations we used
NI = 40, Mi = 5, MN = 2 and a sub-population size of 40.

3.2. Implementation Details

This subsection provides details of our implementation of the GAs
that is tailored to our piecewise AR model fitting.

Chromosome Representation: The performance of a genetic
algorithm certainly depends on how a possible solution is repre-
sented as a chromosome, and for the current problem a chromo-
some should carry complete information for any F ∈ M. That
is, the break points τj ’s as well as the AR orders pj’s. Once these
quantities are specified, maximum likelihood estimates of other
model parameters can be uniquely determined. Here we propose
using the following chromosome representation: a chromosome
δ = (δ1, . . . , δn) is of length n with gene values δt defined as

δt =

{ −1, if no break point at t,
pj , if t = τj−1 and the AR order for the j-th piece is pj .

Furthermore, the following “minimum span” constraint is imposed
on δ: say if the AR order of a certain piece in F is p, then this piece
is made to have at least mp observations. This predefined integer
mp is chosen to guarantee that there are enough observations for
obtaining quality estimates for the parameters of the AR(p) pro-
cess. Also, in the practical implementation of the algorithm, one
needs to impose an upper bound P0 on the order pj ’s of the AR
processes. There seems to be no universal choice for P0, as for
complicated series one needs a large P0 to capture for example
seasonality, while for small series P0 cannot be larger than the
number of observations n. For all our numerical works we set
P0 = 20, and the corresponding minimum span mp’s are listed in
Table 1.

Table 1. Values of mp used in the simulations.
p 0-1 2 3 4 5 6 7-10 11-20

mp 10 12 14 16 18 20 25 50

Our empirical experience suggests that the above representa-
tion scheme, together with the minimum span constraint, is ex-
tremely effective for the purpose of using GAs to minimize MDL(F).
It is most likely due to the fact that the location information of the
break points and the order of the AR processes are explicitly rep-
resented.

Initial Population Generation: Our implementation of the GA
starts with an initial population of chromosomes generated at ran-
dom. For this procedure, the user value πB , the probability that
the “j-th location” of the chromosome being generated be a break
point is needed. A large value of πB makes the initial chromo-
somes to have a large number of break points, thus a small value
is preferred. We use πB = min(mp)/n = 10/n (in Section 4 a
sensitivity analysis for this parameter is given). Once a location is
declared to be a break, an AR order is selected from the uniform
distribution with values 0, 1,. . ., P0. The following strategy was
used to generate each initial chromosome. First, select a value for

p1 from {0, . . . , P0} with equal probabilities and set δ1 = p1; i.e.,
the first AR piece is of order p1. Then the next mp1 − 1 genes δi’s
(i.e., δ2 to δmp1

) are set to −1, so that the above minimum span
constraint is imposed for this first piece. Now for the next gene
δmp1+1 in line. It will either be initialized as a break point (i.e.,
assigned a non-negative integer p2) with probability πB , or it will
be assigned −1 with probability 1 − πB . If it is to be initialized
as a break point, then we set δmp1+1 = p2, where p2 is randomly
drawn from {0, . . . , P0}. This implies that the second AR process
is of order p2, and the next mp2−1 δi’s will be assigned −1 so that
the minimum span constraint is guaranteed. On the other hand, if
δmp1+1 is to be assigned with −1, the initialization process will
move to the next gene in line and decide if this gene should be
a break point gene or a “−1” gene. This process continues in a
similar fashion, and a random chromosome is generated when the
process hits the last gene δn.

Crossover and Mutation: Once a set of initial random chro-
mosomes is generated, new chromosomes are generated by either
a crossover or a mutation operation. In our implementation we
set the probability for conducting a crossover operation as πC =
1 − min(mp)/n = (n − 10)/n.

For the crossover operation, two parent chromosomes are cho-
sen from the current population of chromosomes. These two par-
ents are chosen with probabilities inversely proportional to their
ranks sorted by their MDL values. In other words, chromosomes
that have smaller MDL values will have higher chances to be se-
lected. From these two parents, the gene values δi’s of the child
chromosome will be inherited in the following manner. Firstly for
t = 1, δt will take on the corresponding δt value from either the
first or the second parent with equal probabilities. If this value
is −1, then the same gene–inheriting process will be repeated for
the next gene in line (i.e., δt+1). If this value is not −1, then it is a
non-negative integer pj denoting the AR order of the current piece.
In this case the minimum span constraint will be imposed (i.e., the
next mpj −1 δt’s will be set to −1), and the same gene–inheriting
process will be applied to the next available δt.

For mutation one child is reproduced from one parent. Again,
this process starts with t = 1, and every δt (subject to the mini-
mum span constraint) can take on one of the following three possi-
ble values: (i) with probability πP it will take the corresponding δt

value from the parent, (ii) with probability πN it will take the value
−1, and (iii) with probability 1 − πP − πN , it will take the a new
randomly generated AR order pj . In this paper we set πP = 0.3
and πN = 0.3.

Declaration of Convergence: Recall that we adopt the Island
Model in which migration is allowed for every Mi = 5 genera-
tions. At the end of each migration the overall best chromosome
(i.e., the chromosome with smallest MDL) is noted. If this best
chromosome does not change for 10 consecutive migrations, or
the total number of migrations exceeds 20, this best chromosome
is taken as the solution to this optimization problem.

4. SIMULATIONS

Three sets of simulation experiments were conducted to evalu-
ate the practical performances of Auto-PARM. The experimen-
tal setups of the first two simulations are taken from Ombao et
al. (2001), which were used to test their Auto-SLEX procedure. In
the first simulation, the pieces of the true process follow a dyadic
structure; i.e., the length of each segment is a integer power of 2. In
the second simulation the true process does not contain any struc-

1 200 400 600 800 1000

-10
-5

0
5

10

Fig. 1. A realization from the piecewise stationary process in (3).

tural breaks, but its time-varying spectrum changes very slowly
over time. In the last simulation the process contains three pieces,
one of which is an ARMA(1,1) process and another is a MA(1)
process.

4.1. Piecewise Stationary Process with Dyadic Structure

In this simulation example, the target non-stationary series is gen-
erated with the following model

Yt =

{
0.9Yt−1 + εt, if 1 ≤ t ≤ 512,
1.69Yt−1 − 0.81Yt−2 + εt, if 513 ≤ t ≤ 768,
1.32Yt−1 − 0.81Yt−2 + εt, if 769 ≤ t ≤ 1024,

(3)

where εt ∼ iid N(0, 1). The main feature of this model is that the
lengths of the pieces are a power of 2. This is in fact ideally suited
for the Auto-SLEX procedure of Ombao et al. (2001). A typical
realization of this process is shown in Figure 1. We applied Auto-
PARM to this realization and obtained two break points located at
τ̂1 = 512 and τ̂2 = 769, indicated by the dotted vertical lines
in the figure. The Auto-PARM correctly identified the AR orders
(p̂1=1, p̂2=2 and p̂3=3) for this realization. Our implementation
of Auto-PARM, which is written in Compaq Visual Fortran, took
2.34 seconds on a 1.6 Ghz intel pentium M processor to obtain the
above estimates.

Next, 200 realizations of the process in (3) were simulated and
Auto-PARM was applied to segment each of these realizations.
Table 2 lists the percentages of the fitted number of segments.
For comparative purposes, the corresponding values of the Auto-
SLEX method, taken from Table 2 of Ombao et al. (2001), are also
listed. Notice that for all 200 realizations Auto-PARM gave the
correct number of segments, while Auto-SLEX gave the correct
segmentation for only 60% of the realizations. Table 2 also reports,
for each m̂, the mean and standard deviation of λ̂j := (τ̂j − 1)/n,
j = 2, . . . , m̂, where τ̂j is the Auto-PARM estimate of τj . For
convenience we will refer to λ̂j as a relative break point. From
Table 2 one can see that the practical performance of Auto-PARM
for the above piecewise stationary process is extremely good, es-
pecially for locating the break points.

4.2. Slowly Varying AR(2) Process

The true model considered in this second simulation experiment
does not possess a structural break. Rather, the process has a
slowly changing spectrum given by the following time-dependent
AR(2) model

Yt = atYt−1 − 0.81Yt−2 + εt, t = 1, 2, . . . , 1024, (4)

Number Auto-PARM
of Auto-SLEX break points

segments (%) break points (%) mean std
2 0 1/2 0
3 60.0 2/4, 3/4 100.0 0.500 0.002

0.742 0.007
4 34.0 1/4, 2/4, 3/4 0
5 5.0 2/8, 4/8, 5/8, 6/8, 7/8 0

≥ 6 1.0 0

Table 2. Summary of the estimated break points from both the
Auto-SLEX and Auto-PARM procedures for process (3). Numbers
from Auto-SLEX are taken from Table 2 of Ombao et al. (2001).
For Auto-PARM the means and standard errors of the relative
break points are also reported.

where at = 0.8[1 − 0.5 cos(πt/1024)] and εt ∼ iid N(0, 1). A
typical realization of this process is shown in Figure 2, while the
spectrum of this process is shown on the left panel of Figure 3
(darker shades represent higher power).

1 200 400 600 800 1000

-6
-4

-2
0

2
4

Fig. 2. Realization from the process in (4).

For the realization in Figure 2, the Auto-PARM procedure seg-
mented it into three pieces with break points located at τ̂1 = 318
and τ̂2 = 614 (vertical dotted lines in this figure). Also, each of
the three pieces was modeled as an AR(2) process. The run time
for this fitting was 1.79 seconds. Based on the model found by
Auto-PARM results, the time-varying spectrum of this realization
was computed and is shown on the middle panel of Figure 3.

Time

Fr
eq

ue
nc

y

0.0 0.4 0.8

0.0
0.1

0.2
0.3

0.4
0.5

Time
0.0 0.4 0.8

0.0
0.1

0.2
0.3

0.4
0.5

Time
0.0 0.4 0.8

0.0
0.1

0.2
0.3

0.4
0.5

Fig. 3. Left: True time-varying log-spectrum of process in (4).
Center: Auto-PARM log-spectrum estimate for the realization from
Figure 2. Right: Average of the Auto-PARM log-spectrum esti-
mates obtained from 100 realizations.

Next we generated 100 realizations of the above process, and

Number Number Auto-PARM
of Auto-SLEX of break points

segments (%) ASE segments (%) mean std ASE
≤ 4 14.0 0.238 1 0 -

(0.030) -
5 27.0 0.228 2 44.0 0.493 0.057 0.131

(0.025) (0.015)
6 35.0 0.232 3 56.0 0.372 0.078 0.080

(0.029) 0.652 0.078 (0.016)
7 18.0 0.243 ≥ 4 0

(0.033)
8 15.0 0.269

(0.040)
≥ 9 1.0 0.308

-
All 100.0 0.239 All 100.0 0.102

(0.033) (0.030)

Table 3. The ASEs values from the Auto-PARM and the Auto-
SLEX estimates computed from realizations of (4). Numbers inside
parentheses are standard errors of the ASE values.

the corresponding Auto-PARM estimates were obtained. Since
there are no true structural breaks in such realizations, we follow
Ombao et al. (2001) and use the average squared error (ASE) as a
numerical error measure of performance. The ASE is defined by

ASE = {n(
MJ

2
+ 1)}−1

n∑
t=1

MJ /2∑
k=0

{log f̂(
t

n
, ωk)− log f(

t

n
, ωk)}2,

where f̂(·, ·) is an estimate of the true time-dependent spectrum
f(·, ·) of the process, J is a pre-specified scale satisfying J <
L = log2(n) and MJ := n/2J (see equation (19) in Ombao et al.
2001). In this simulation we took J = 4.

The number of segments, locations of the break points and the
ASEs of the Auto-PARM estimates are summarized in Table 3.
Also listed in Table 3 are the ASE values of the Auto-SLEX pro-
cedure copied from Table 3 of Ombao et al. (2001). From Ta-
ble 3 the following two main observations can be made. First,
for each of the simulated processes, Auto-PARM produces either
two or three segments that are of roughly the same length, while
the Auto-SLEX procedure tends to split the process into a larger
number of segments. Second, the ASE values of Auto-PARM are
smaller than those from Auto-SLEX. In order to show there is a
kind of “consistency” property of the Auto-PARM estimates, we
computed the average of all the time-varying spectra of the 100
Auto-PARM estimates, the averaged spectrum is displayed in the
right panel of Figure 3 and looks remarkably similar to the true
time varying spectrum. Lastly in Table 4 we summarize the Auto-
PARM estimates of the AR orders for the above process. Notice
that most of the segments were modeled as AR(2) processes.

Order 0 1 2 3 4 ≥ 5

2-segment realizations
p1 0 0 95.5 2.3 2.3 0
p2 0 0 90.9 6.8 2.3 0

3-segment realizations
p1 0 0 100.0 0 0 0
p2 0 0 92.9 5.4 1.8 0
p3 0 0 83.9 14.3 1.8 0

Table 4. Relative frequencies of the AR order selected by Auto-
PARM for the realizations from the process (4).

1 200 400 600 800 1000

-4
-2

0
2

4

Fig. 4. A realization from the piecewise stationary process in (5).

4.3. Piecewise ARMA process

Recall that the Auto-PARM procedure assumes the observed pro-
cess is composed of a series of stationary AR processes. This third
simulation, designed to assess the performance of Auto-PARM
when the AR assumption is violated, has data generating model
given by

Yt =

{ −0.9Yt−1 + εt + 0.7εt−1, if 1 ≤ t ≤ 512,
0.9Yt−1 + εt, if 513 ≤ t ≤ 768,
+εt − 0.7εt−1, if 769 ≤ t ≤ 1024,

(5)

where εt ∼ iid N(0, 1). Notice that the first piece is an ARMA(1,1)
process while the last piece is a MA(1) process. A typical realiza-
tion of this process is shown in Figure 4. The Auto-PARM proce-
dure was applied to this realization. Three pieces were obtained.
The break points are at τ̂1 = 513 and τ̂2 = 769 (dotted vertical
lines in this figure), while the order of the AR processes are 4, 1
and 2 respectively. The total run time for this fit was 1.53 seconds.
The time-varying spectrum based on the model found by Auto-
PARM is reasonable close to the true spectrum even though two of
the segments are not AR processes.

To assess the large sample behavior of Auto-PARM, 200 re-
alizations from (5) were generated, and the corresponding Auto-
PARM estimates were obtained. An encouraging result is that for
all 200 realizations, Auto-PARM always gave the correct number
of stationary segments. The estimates of the break point locations
are summarized in Table 5. In Table 6 we show the relative fre-
quency of the AR order pj selected to model the pieces of the re-
alizations. As expected, quite often large AR orders were selected
for the ARMA and MA segments.

Number relative break points
of segments % mean std

3 100.0 0.50 0.005
0.75 0.003

Table 5. Summary of Auto-PARM estimated break points obtained
from 200 realizations from the process in (5).

Order 0 1 2 3 4 5 6 7 ≥ 8
p1 0 4.0 22.5 40.0 23.5 8.5 1.0 0.5 0
p2 0 89.5 8.5 1.5 0.5 0 0 0 0
p3 0 0.5 22.0 45.0 19.5 7.5 4.5 1.0 0

Table 6. Relative frequencies of the AR order selected by Auto-
PARM for the realizations from the process (5).

5. APPLICATION: SPEECH SIGNAL SEGMENTATION

The Auto-PARM procedure was applied to analyze a human speech
signal which is the recording of the word “greasy”. This signal
contains 5762 observations and is shown at the top panel of Fig-
ure 5. This non-stationary time series was also analyzed by the
Auto-SLEX procedure of Ombao et al. (2001). The Auto-PARM

Time
0 1000 2000 3000 4000 5000-1

5
0
0

0
1
0
0
0

G R EA S Y

Time
0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

Fig. 5. Top panel: Speech signal. Bottom panel: GA estimate of
the time-varying log spectrum.

fit of this speech signal resulted in 15 segments. The total run time
was 18.02 seconds. The time-varying log spectrum obtained with
this fit is shown at the bottom panel of Figure 5. From this fig-
ure, one can see that the signal is roughly divided in segments that
correspond to “G”, “R”, “EA”, “S”, and “Y”. The information con-
veyed in this figure closely matches that from Ombao et al. (2001).
The spectrum from those pieces that correspond to “G” have high
power at the lowest frequencies. The pieces that correspond to “R”
show power at frequencies slightly above that for “G”. The pieces
that correspond to “EA” show the evolution of power from lower
to higher frequencies. The pieces that correspond to “S” have high
power at high frequencies. Notice that the Auto-PARM procedure
breaks this speech signal into a smaller number of pieces than the
Auto-SLEX procedure while still capturing the important features
in the spectrum.

6. CONCLUSIONS

In this work we provided a procedure, termed Auto-PARM, to an-
alyze a non-stationary time series signal by breaking it into pieces
that are modeled as autoregressive processes. The best segmen-
tation is obtained by minimizing the MDL (Risannen, 1989) of
the set of possible solutions via the genetic algorithm. The order
of the autoregressive process in which each piece is modeled and
the estimates of the parameters of this process is a byproduct of
this procedure. As seen in the simulation experiments, the rate in
which this procedure segments correctly a piece-wise stationary
process is high. Also, the quality of the estimated time-varying
spectra produced by the procedure is very reasonable.

References

Adak, S. (1998), “Time-dependent Spectral Analysis of Nonsta-
tionary Time Series,” Journal of the American Statistical Asso-
ciation, 93, 1488-1501.

Alba, E., and Troya, J. M. (1999), “A Survey of Parallel Dis-
tributed Genetic Algorithm,” Complexity, 4,31-52.

——- (2002), “Improving Flexibility and Efficiency by Adding
Parallelism to Genetic Algorithms,” Statistics and Computing,
12, 91-114.

Bai, J., and Perron, P. (1998), “Estimating and Testing Linear
Models with Multiple Structural Changes,” Econometrica, 66,
47-78.

——- (2003), “Computation and Analysis of Multiple Structural
Change Models,” Journal of Applied Econometrics, 18, 1-22.

Chen, J., and Gupta, A. K. (1997), “Testing and Locating Variance
Changepoints with Application to Stock Prices,” Journal of the
American Statistical Association, 92, 739-747.

Davis, L. D. (1991), Handbook of Genetic Algorithms, New York: Van
Nostrand Reinhold.

Davis, R. A., Lee, T. C. M., and Rodriguez-Yam, G. A. (2005),
“Structural Breaks Estimation for Non-stationary Time Series
Models”, unpublished manuscript.

Dahlhaus, R. (1997), “Fitting Time Series Models to Nonstation-
ary Processes,” The Annals of Statistics, 25, 1-37.

Forrest, S. (1991), Emergent Computation, Cambridge, MA: MIT
Press.

Holland, J. (1975), Adaptation in Natural and Artificial Systems,
Ann Arbor, MI: University of Michigan Press.

Inclan, C., and Tiao, G. C. (1994), “Use of Cumulative Sums of
Squares for Retrospective Detection of Changes of Variance,”
Journal of the American Statistical Association, 89, 913-923.

Kim, C-J., and Nelson, C. R. (1999), State-Space Models with
Regime Switching, Boston: MIT Press.

Kitagawa, G., and Akaike, H. (1978), “A Procedure for the Mod-
eling of Non-stationary Time Series,” Annals of the Institute of
Statistical Mathematics, 30, 351-363.

Lavielle, M. (1998), “Optimal Segmentation of Random Processes,”
IEEE Transactions on Signal Processing, 46, 1365-1373.

Martin, W. N., Lienig, J., and Cohoon, J. P. (2000), “Island (Mi-
gration) Models: Evolutionary Algorithm Based on Punctuated
Equilibria,” in Evolutionary Computation (Vol. 2), Advanced
Algorithms and Operators, ed. D.B. Fogel, 101-124. Philadel-
phia: Bristol.

Ombao, H. C., Raz, J. A. Von Sachs, R., and Malow, B. A. (2001),
“Automatic Statistical Analysis of Bivariate Nonstationary Time
Series,” Journal of the American Statistical Association, 96,
543-560.

Punskaya, E., Andrieu, C., Doucet, A., and Fitzgerald, W. J. (2002),
“Bayesian Curve Fitting Using MCMC With Applications to
Signal Segmentation,” IEEE Transactions on Signal Process-
ing, 50, 747-758.

Rissanen, J. (1989), Stochastic Complexity in Statistical Inquiry,
Singapore: World Scientific.

