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1 Introduction

In this paper we study the tail behavior of a generalized autoregressive conditionally heteroscedastic

(GARCH) process (see Section 3.1 for a definition). Such models are widely used for modeling

financial returns, i.e., relative changes of prices such as stock indices, share prices of stock, foreign

exchange rates, etc. We refer to the collection [16] of original articles on GARCH processes and

their applications in finance. It turns out that the finite-dimensional distributions of such processes

exhibit quite an interesting feature: they are in most instances multivariate regularly varying.

Regular variation is a consequence of the fact that the squares of a stationary GARCH process

can be embedded in a multivariate linear stochastic recurrence equation. For this type of recursion

equation, an advanced theory exists that provides conditions for the existence of a unique stationary

solution to the system and describes the tail behavior of the distribution of the stationary solution.

One of the aims of this paper is to prove that GARCH processes have regularly varying tails.

This implies in particular that sufficiently high-order moments of these processes do not exist. This

is a well known fact; see for example Bollerslev [6]. Our results, however, are more refined since

we can make precise statements about the asymptotic form of the tails, not only of the univariate

marginal distribution, but also about the tails of the finite-dimensional distributions.

The regular variation of the finite-dimensional distributions of GARCH processes is consistent

with the “heavy-tailedness” exhibited by real-life log-return data. Indeed, there is plenty of statis-

tical evidence that financial log-returns of foreign exchange rates, composite stock indices or share

prices of stock can have infinite 5th, 4th or even 3rd moments; see for example Chapters 6 and 7

of Embrechts et al. [15] where statistical methods for measuring the thickness of tails are also pro-

vided. This in turn requires study of the behavior of standard statistical tools such as the sample

autocorrelations under the assumption that the data come from a GARCH model with non-existing

2nd or 4th moments. Perhaps not surprising, the heavier the tails of the process, the slower the rate

of convergence of the sample autocorrelations, or even worse, the sample autocorrelations converge

weakly without normalization to a non-degenerate limit that involves ratios of infinite variance

stable random variables. This implies standard theory for the sample autocorrelations does not

apply for GARCH processes when certain moments are infinite. In view of the common practice

to consider not only the sample autocorrelations of log-returns but also their squares, absolute

values and other powers, a comprehensive limit theory of autocorrelations of functions of GARCH

processes is needed.

In this paper we focus on the tail behavior of the finite-dimensional distributions of GARCH

processes and its consequences for the large sample behavior of the sample autocovariances and

autocorrelations. Our efforts are a continuation of the work started in Davis and Mikosch [13] for

the ARCH(1) case and in Mikosch and Stărică [29] for the GARCH(1,1) case. As in the latter paper,



the squares of a GARCH process will be embedded in a linear stochastic recurrence equation. For

this reason we give in Section 2 some theory for linear stochastic recurrence equations including

conditions on the noise distribution and model coefficients for the existence of a stationary solution

that has regularly varying tail probabilities. Part of these results are known, but we include them

here because they are needed in various proofs throughout the paper. Section 2 gives a survey of

results about stochastic recurrence equations which are scattered over the literature and which may

be useful also for other kinds of models such as multivariate GARCH processes. The conditions

and results given there also show that the probabilistic properties of solutions to general stochastic

recurrence equations, and of GARCH models in particular, require some advanced technology which

does not always yield results in a sufficiently explicit form for practical implementation. In Section 3

we apply the stochastic recurrence equation results to the GARCH process. In particular, we show

how the squares of a GARCH process can be embedded in a stochastic recurrence equation and

therefore the finite-dimensional distributions of such processes are regularly varying. We also study

the consequences for the asymptotic behavior of the sample autocovariances and autocorrelations.

2 Basic theory for stochastic recurrence equations

Consider a d-dimensional time series (Xt) given by a stochastic recurrence equation (SRE)

Xt = AtXt−1 +Bt , t ∈ Z ,(2.1)

for some iid sequence ((At,Bt)) of random d×d matrices At and d-dimensional vectors Bt. By | · |
we denote the Euclidean norm in R

d, and by ‖ · ‖ the corresponding operator norm, i.e., for any
d× d-matrix A,

‖A‖ = sup
|x|=1

|Ax| .

By A > 0 we mean that all entries of A are positive.

2.1 Existence of a stationary solution

There exist various results about the existence of a strictly stationary solution to (2.1); see for

example Kesten [23], Vervaat [36], Bougerol and Picard [7]. Below we recall a sufficient condition

which remains valid for ergodic sequences ((An,Bn)) (see Brandt [10]) and which is close to neces-

sity (see Babillot et al. [1]). These conditions involve the notion of the Lyapunov exponent for a

sequence of random d× d matrices (An) given by

γ = inf
{
1
n
E ln ‖A1 · · ·An‖ , n ∈ N

}
.(2.2)
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If E ln+ ‖A1‖ < ∞, an application of the subadditive ergodic theorem (see Kingman [24] or results

in Furstenberg and Kesten [18]) yields that

γ = lim
n→∞

1
n
ln ‖A1 · · ·An‖ a.s.(2.3)

In most cases of interest, γ cannot be calculated explicitly when d > 1. However, relation (2.3)

offers a potential method for determining the value of γ, via Monte-Carlo simulations of the random

matrices An. Work by Goldsheid [20] even allows one to give asymptotic confidence bands through

a central limit theorem.

Theorem 2.1 Assume E ln+ ‖A1‖ < ∞, E ln+ |B1| < ∞ and γ < 0. Then the series (Xt) defined

by

Xn = Bn +
∞∑
k=1

An · · ·An−k+1 Bn−k(2.4)

converges a.s., and is the unique strictly stationary causal solution of (2.1).

Notice that γ < 0 holds if E ln ‖A1‖ < 0. The condition on γ in Theorem 2.1 is particularly simple

in the case d = 1 since then
1
n
E ln |A1 · · ·An| = E ln |A1| = γ .

Corollary 2.2 Assume d = 1, −∞ ≤ E ln |A1| < 0 and E ln+ |B1| < ∞. Then the unique

stationary solution of (2.1) is given by (2.4).

2.2 The multivariate regular variation property

2.2.1 Definition

The d-dimensional random vector X is said to be regularly varying with index α ≥ 0 if there exists
a sequence of constants (an) and a random vector Θ with values in S

d−1 a.s., where S
d−1 denotes

the unit sphere in R
d with respect to the norm | · |, such that for all t > 0,

nP (|X| > t an , X/|X| ∈ · ) v→ t−α P (Θ ∈ · ) , as n → ∞ .

This is equivalent to the condition that for all t > 0,

P (|X| > tx , X/|X| ∈ · )
P (|X| > x)

v→ t−α P (Θ ∈ · ) , as x → ∞ ,(2.5)

cf. de Haan and Resnick [21], Resnick [32]. The symbol v→ stands for vague convergence on S
d−1;

vague convergence of measures is treated in detail in Kallenberg [22]. The distribution of Θ is

referred to as the spectral measure of X. For further information on multivariate regular variation

we refer to Resnick [32] and [33], Chapter 5.
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A particular consequence of the vague convergence in (2.5) is that linear combinations of the

components of a regularly varying vector X are regularly varying with the same index α. Specifi-

cally,

For all x ∈ R
d \ {0} , lim

u→∞
P ((x,X) > u)

L(u)u−α = w(x) exists ,(2.6)

where L(u) is a slowly varying function, and w is a finite-valued function, w(x) = 0 being possible

for certain choices of x �= 0. It follows directly from (2.6) that the limit function w is homogeneous

and has the form

w(tx) = t−αw(x) ,(2.7)

for all t > 0, x ∈ R
d \ {0} for some α ≥ 0. That is, for all x ∈ R

d \ {0}, the random variable (x,X)

is regularly varying with index α.

In Basrak et al. [2] it was shown that the two definitions (2.5) and (2.6) are essentially equivalent,

The motivation for studying this equivalence was the fact that Kesten’s theorem given below for

solutions to stochastic recurrence equations states regular variation in the sense of (2.6), not in the

more general sense of (2.5).

Theorem 2.3 Let X be a random vector in R
d. Then (2.5) and (2.6) are equivalent provided one

of the following two conditions holds:

• α is a positive non-integer.

• X has non-negative components and α is an odd integer.

The distinction between integer and non-integer, non-negative-valued and R
d-valued vectors X is

essential. Kesten [23], Remark 4, mentions in the case α = 1 that the assumption of non-negativity

of X is close to necessity. We conjecture that the equivalence between (2.5) and (2.6) is indeed

valid for even α’s and non-negative-valued X’s, but a proof has not yet been constructed.

2.2.2 Kesten’s theorem

Under general conditions, the stationary solution to the SRE (2.1) satisfies a multivariate regular

variation condition. This follows from work by Kesten [23] in the general case d ≥ 1; for an

alternative proof in the case d = 1 see Goldie [19]. We state a modification of Kesten’s fundamental

result (a combination of Theorems 3 and 4 in [23]).

Theorem 2.4 Let ((An,Bn)) be an iid sequence of d × d matrices An with non-negative entries

and d-dimensional non-negative-valued random vectors Bn �= 0 a.s. Assume that the following

conditions hold:

• For some ε > 0, E‖A1‖ε < 1.
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• A1 has no zero rows a.s.

• The set

{ln ‖an · · ·a1‖ : n ≥ 1, an · · ·a1 > 0 and an, . . . ,a1 ∈ the support of PA1}

generates a dense group in R.

• There exists a κ0 > 0 such that

E

 min
i=1,...,d

d∑
j=1

Aij

κ0

≥ dκ0/2(2.8)

and

E
(‖A1‖κ0 ln+ ‖A1‖

)
< ∞ .(2.9)

Then the following statements hold:

1. There exists a unique solution κ1 ∈ (0, κ0] to the equation

0 = lim
n→∞

1
n
lnE‖An · · ·A1‖κ1 .(2.10)

2. There exists a unique strictly stationary causal solution (Xn) to the stochastic recurrence

equation (2.1).

3. If E|B1|κ1 < ∞, then X1 satisfies the following regular variation condition:

For all x ∈ R
d \ {0} , lim

u→∞uκ1 P ((x,X1) > u) = w(x) exists(2.11)

and is positive for all non-negative-valued vectors x �= 0.

Remark 2.5 In the case d = 1, the conditions of Kesten’s theorem become particularly simple.

Indeed, if A1 is a non-negative-valued random variable with a non-lattice distribution on [0,∞),
E lnA1 < 0, 1 ≤ EAκ0

1 and EAκ0
1 ln+ A1 < ∞, then the assumptions of the first part of the theorem

are satisfied and (2.10) reduces to EAκ1
1 = 1 which has a unique positive solution. If, in addition,

EBκ1
1 < ∞, then X1 is regularly varying with index κ1.

Clearly, (2.11) is a special case of (2.6), where the slowly varying function L is a positive

constant. An appeal to Theorem 2.3 immediately gives the following result.

Corollary 2.6 Under the assumptions of Theorem 2.4, the marginal distribution of the unique

strictly stationary causal solution (Xn) of the stochastic recurrence equation (2.1) is regularly vary-

ing in the following sense. If the value κ1 in (2.10) is not an even integer, then there exist a positive

constant c and a random vector Θ with values in the unit sphere S
d−1 such that

uκ1P (|X1| > tu , X1/|X1| ∈ · ) v→ c t−κ1 P (Θ ∈ · ) , as u → ∞ .
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From the latter result we conclude the following.

Corollary 2.7 Under the conditions of Corollary 2.6 the finite-dimensional distributions of the

stationary solution (Xt) of (2.1) are regularly varying with index κ1.

Proof. First note that we can write

(X1, . . . ,Xm) = (A1,A2A1, . . . ,Am · · ·A1)X0 +Rm ,

where the components of Rm have lighter tails than the components of X0. The regular variation

of the vector (X1, . . . ,Xm) is assured by Proposition 5.1. ✷

2.3 The strong mixing condition

The Markov chain (Xn) satisfies a mixing condition under quite general conditions as for example

provided in Meyn and Tweedie [28]. Recall that a Markov chain (Yn) with state space E ⊂ R
d is

said to be µ-irreducible for some measure µ on (E, E) (E is the Borel σ-field on E), if∑
n>0

pn(y, C) > 0 for all y ∈ E, whenever µ(C) > 0.(2.12)

Here pn(y, C) denotes the n-step transition probability of moving from y to the set C in n-steps. If

the function

E(g(Yn) | Yn−1 = y) , y ∈ E ,(2.13)

is continuous for every bounded and continuous g on E, then the Markov chain is said to be a

Feller chain. The Markov chain (Yn) is said to be geometrically ergodic if there exists a ρ ∈ (0, 1)
such that

ρ−n ‖pn(y, ·)− π(·)‖TV → 0 ,

where π denotes the invariant measure of the Markov chain and ‖ · ‖TV is the total variation

distance. A particular consequence of geometric ergodicity is that the Markov chain is strongly

mixing with geometric rate, i.e., if the Markov Chain is started with its stationary distribution π,

then there exist constants C̃ > 0 and a ∈ (0, 1) such that

supf,g | cov(f(Y0), g(Yk))| =: αk ≤ C̃ ak ,(2.14)

where the sup is taken over all measurable functions f and g with |f | ≤ 1 and |g| ≤ 1. This follows,
for example, from Theorem 16.1.5 in Meyn and Tweedie [28]. The function αk is called the mixing

rate function of (Yt) and for Markov processes, it is equal to

αk = sup
f,g

|cov(f(. . . ,Y−1,Y0), g(Yk,Yk+1, . . .))|
= sup

A∈σ(Ys , s≤0) , B∈σ(Ys , s≥k)
|P (A ∩B)− P (A)P (B)| ,

where the last equality follows from Doukhan [14], p.3.
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Theorem 2.8 For the SRE in (2.1), suppose there exists an ε > 0 such that E‖A1‖ε < 1 and

E|B1|ε < ∞. If the Markov chain (Xn) is µ-irreducible, then it is geometrically ergodic and, hence,

strongly mixing with geometric rate.

Remark 2.9 The condition E‖A1‖ε < 1 for ε > 0 in some neighborhood of zero is satisfied if

E ln ‖A1‖ < 0 and E‖A1‖δ < ∞ for some δ > 0. Indeed, the function h(v) = E‖A1‖v then has
derivative h′(0) = E ln ‖A1‖ < 0, hence h(v) decreases in a small neighborhood of zero, and since

h(0) = 1 it follows that h(ε) < 1 for small ε > 0. On the other hand, E‖A1‖ε < 1 for some ε > 0

implies that E ln ‖A1‖ < 0 by an application of Jensen’s inequality.

Proof. First note that by Theorem 2.1 and an application of Jensen’s inequality, a unique stationary

solution to the SRE exists. To show geometric ergodicity, we check the three conditions of Theorem

1 in Feigin and Tweedie [17]. The Lebesgue dominated convergence theorem ensures that (2.13) is

continuous in y and hence the Markov chain is Feller. By assumption, the chain is µ-irreducible,

so it remains to verify the drift condition, i.e., there exists a compact set K and a non-negative

continuous function g such that µ(K) > 0, g(x) ≥ 1 on K, and for some δ > 0, E(g(Xn) | Xn−1 =

x) ≤ (1− δ)g(x) for all x ∈ Kc. For the SRE, choose

g(x) = |x|ε + 1 , x ∈ R
d ,

where the ε is given in the assumptions. Notice that we may assume without loss of generality that

ε ∈ (0, 1]. Then

E(g(Xn) | Xn−1 = x) ≤ E|A1x|ε + E|B1|ε + 1 ,

≤ E‖A1‖ε|x|ε + E|B1|ε + 1

=: E‖A1‖εg(x) + (E|B1|ε − E‖A1‖ε + 1) .

Choose K = [−M,M ]d and M > 0 so large that µ(K) > 0 and

E(g(Xn) | Xn−1 = x) ≤ (1− δ)g(x) , |x| > M ,

for some constant 1− δ > E‖A1‖ε. This proves the drift condition and completes the argument. ✷

2.4 Point process theory

In this section we study the weak convergence of point processes generated by the stationary solution

(Xt) to the SRE (2.1). The following result is the basis for dealing with the sample autocovariances,

sample autocorrelations and extremes of this sequence. We need to consider a slightly more general

sequence: for m ≥ 0 define
Xt(m) = vec(Xt, . . . ,Xt+m) .
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The following results are based on work by Davis and Mikosch [13]. Since the theory developed

there is quite technical we will omit details and refer to the paper.

Theorem 2.10 Assume the conditions of Theorem 2.4 hold and that the solution to the SRE is

µ-irreducible. Let (an) be a sequence of constants satisfying

n P (|X1(m)| > an)→ 1 .(2.15)

Then

Nn =
n∑
t=1

εXt(m)/an

d→ N =
∞∑
i=1

∞∑
j=1

εPiQij ,

where εx is the point measure concentrated at x and d→ denotes convergence in distribution of

point measures on R
d\{0}. Here (Pi) are the points of a Poisson process on (0,∞) with intensity

ν(dy) = γ̃κ1y
−κ1−1 and γ̃ > 0 is the extremal index of the sequence (|Xt(m)|). The process (Pi)

is independent of the iid point processes
∑∞

j=1 εQij , i ≥ 1, whose points satisfy supj |Qij | = 1 and

whose distribution is described in [13].

Remark 2.11 Since Kesten’s theorem implies that P (|X1(m)| > x)| ∼ cx−κ1 as x → ∞ for some

constant c > 0, we have an ∼ (cn)1/κ1 .

Remark 2.12 In the above point process result the points (Pi,Qij) correspond to the radial and

spherical parts of the limiting points Xt(m)/an, respectively. In this sense, the Qij describe the

cluster behavior in the limit point process.

Proof. The proof follows from the results in Section 2 of Davis and Mikosch [13], in particular

their Theorem 2.8, for general strictly stationary sequences of random vectors. Three assumptions

have to be verified. The first condition is that the finite-dimensional distributions of (Xt(m)) are

regularly varying with index κ1. This follows from Corollary 2.7.

The second assumption is a mild mixing condition on (Xt(m)) (the assumption A(an)) which
is implied by strong mixing. However, Proposition 2.8 implies that (Xt), and hence (Xt(m)), are

strongly mixing with a geometrically decreasing rate function.

The third condition to be verified is the following (notice that by construction of Xt(m) it

suffices to consider the case m = 0):

lim
k→∞

lim sup
n→∞

P

 ∨
k≤|t|≤rn

|Xt| > any
∣∣∣ |X0| > any

 = 0 , y > 0 ,(2.16)

where rn,mn → ∞, are two integer sequences such that nαmn/rn → 0, rnmn/n → 0. Since the

mixing rate function αn (see (2.14)) decreases at a geometric rate, i.e., αn ≤ const an for some
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a ∈ (0, 1), one can choose rn = [nε] and mn = [nδ] for any 0 < δ < ε < 1; see the discussion of

mixing conditions in Leadbetter and Rootzén [27], Lemma 2.4.4.

Iterating (2.1), we obtain for t > 0,

Xt =
t∏

j=1

Aj X0 +
t∑

j=1

t∏
m=j+1

Am Bj =: It,1X0 + It,2 .

and hence

P (|Xt| > any
∣∣∣ |X0| > an y)(2.17)

≤ P (|X0| ‖It,1‖ > an y/2
∣∣∣ |X0| > an y) + P (|It,2| > an y/2) .

Choose ε > 0. Then, using Markov’s inequality and Karamata’s theorem (see Bingham et al.[5]),

the limes superior of the first term on the right of (2.17) is bounded above by

lim sup
n→∞

E‖It,1‖ε(2/y)ε
E[|X0|εI(an y,∞)(|X0|)]

aεn P (|X0| > an y)
≤ C (E‖A1‖ε)t .

Here C is a constant independent of t. Now choose ε ∈ (0, 1) such that E‖A1‖ε < 1. This is always

possible in view of Remark 2.9. As for the second term in (2.17), we have

|It,2| d=

∣∣∣∣∣∣
t∑

j=1

j−1∏
m=1

Am Bj

∣∣∣∣∣∣ ≤
t∑

j=1

j−1∏
m=1

‖Am‖ |Bj | ↑
∞∑
j=1

j−1∏
m=1

‖Am‖ |Bj | = Y a.s.

for some random variable Y . Thus we obtain by Markov’s inequality and the same ε ≤ 1,

P (|It,2| > an y/2) ≤ P (Y > any/2) ≤ a−εn (2/y)
εE|B1|ε

∞∑
j=1

(E‖A1‖ε)j ≤ const a−εn .

According to the above remark, we can take rn ∼ nδ for any small δ > 0. Choosing δ so small that

rna
−ε
n → 0 and combining the bounds for the terms in (2.17), we obtain,

lim
k→∞

lim sup
n→∞

P

 ∨
k≤|t|≤rn

|Xt| > any
∣∣∣ |X0| > any


≤ lim

k→∞
lim sup
n→∞

∑
k≤|t|≤rn

P (|Xt| > any
∣∣∣ |X0| > an y)

≤ lim
k→∞

(const)
∞∑
t=k

(E‖A1‖ε)t

= 0 .

This completes the verification of (2.16). ✷
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2.5 Limit theory for the sample autocovariances and autocorrelations

Using the point process theory of the previous section, it is possible to derive the asymptotic

behaviour of the sample cross-covariances and cross-correlations of the stationary solution (Xt)

to the SRE (2.1) satisfying the conditions of Theorem 2.4. For ease of exposition we concentrate

on the sample autocovariances of the first component process (Yt) say of (Xt). Define the sample

autocovariance function

γn,Y (h) = n−1
n−h∑
t=1

YtYt+h , h ≥ 0 ,(2.18)

and the corresponding sample autocorrelation function

ρn,Y (h) = γn,Y (h)/γn,Y (0) , h ≥ 1 .(2.19)

We also write

γY (h) = EY0Yh and ρ(h) = γY (h)/γY (0) , h ≥ 0 ,
for the autocovariances and autocorrelations, respectively, of the sequence (Yt) if these quantities

exist. Mean-corrected versions of both the sample and model ACVF can also be considered—the

same arguments as above show that the limit theory does not change.

The following result is an immediate consequence of Theorem 2.10 and the theory developed

in Davis and Mikosch [13], in particular their Theorem 3.5. In what follows, the notion of infinite

variance stable random vector is used. We refer to Samorodnitsky and Taqqu [34] for its definition

and an encyclopaedic treatment of stable processes.

Theorem 2.13 Assume that (Xt) is a solution to (2.1) satisfying the conditions of Theorem 2.4.

(1) If κ1 ∈ (0, 2), then (
n1−2/κ1γn,Y (h)

)
h=0,...,m

d→ (Vh)h=0,...,m ,

(ρn,Y (h))h=1,...,m
d→ (Vh/V0)h=1,...,m ,

where the vector (V0, . . . , Vm) is jointly κ1/2-stable in R
m+1.

(2) If κ1 ∈ (2, 4) and for h = 0, . . . ,m,

lim
ε→0

lim sup
n→∞

var

(
n−2/κ1

n−h∑
t=1

YtYt+hI{|YtYt+h|≤a2
nε}

)
= 0 ,(2.20)

then (
n1−2/κ1(γn,Y (h)− γY (h))

)
h=0,...,m

d→ (Vh)h=0,...,m ,(2.21) (
n1−2/κ1(ρn,X(h)− ρX(h)

)
h=1,...,m

d→ γ−1
X (0) (Vh − ρX(h)V0)h=1,...,m ,(2.22)

where (V0, . . . , Vm) is jointly κ1/2-stable in R
m+1.
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(3) If κ1 > 4 then (2.21) and (2.22) hold with normalization n1/2, where (V1, . . . , Vm) is mul-

tivariate normal with mean zero and covariance matrix [
∑∞

k=−∞ cov(Y0Yi, YkYk+j)]i,j=1,...,m

and V0 = E(Y 2
0 ).

Remark 2.14 The limit random vectors in parts (1) and (2) of the theorem can be expressed in

terms of the Pi’s and Qij ’s defined in Theorem 2.10. For more details, see Davis and Mikosch [13],

Theorem 3.5, where the proof of (1) and (2) is provided. Part (3) follows from a standard central

limit theorem for strongly mixing sequences; see for example Doukhan [14].

Remark 2.15 The conclusions of Theorem 2.13 are also valid for other functions of Xt including

linear combinations of powers of the components. Indeed, the constructed process inherits strong

mixing as well as joint regular variation from the (Xt) process and point process convergence follows

from the continuous mapping theorem.

3 Application to GARCH processes

3.1 Definition of GARCH process

One of the major applications of SRE’s is to the class of GARCH processes. A generalized autore-

gressive conditionally heteroscedastic process (Xt) of order (p, q) with p, q ≥ 0 (GARCH(p, q)) is

given by the equations

Xt = σt Zt ,

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j ,

where (Zt) is an iid sequence of random variables, and the αi’s and βj ’s are non-negative constants

with the convention that αp > 0 if p ≥ 1 and βq > 0 if q ≥ 1. This class of processes was introduced
by Bollerslev [6] and Taylor [35] and has since found a multitude of applications for modeling

financial time series. For q = 0 the process is called an ARCH(p) process.

3.2 Embedding in a stochastic recurrence equation

The squared processes (X2
t ) and (σ

2
t ) satisfy the following SRE:

Xt = AtXt−1 +Bt ,(3.1)

where

Xt =
(
σ2
t+1, . . . , σ

2
t−q+2, X

2
t , . . . , X

2
t−p+2

)′
,

11



At =



α1Z
2
t + β1 β2 · · · βq−1 βq α2 α3 · · · αp

1 0 · · · 0 0 0 0 · · · 0

0 1 · · · 0 0 0 0 · · · 0

...
...

. . .
...

...
...

...
. . .

...

0 0 · · · 1 0 0 0 · · · 0

Z2
t 0 · · · 0 0 0 0 · · · 0

0 0 · · · 0 0 1 0 · · · 0

...
...

. . .
...

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 1 0



,(3.2)

Bt = (α0, 0, . . . , 0)′ .

3.3 Basic properties of a GARCH process

In the following proposition we collect some of the basic properties of the process (Xt). Some of

them are well known, in particular parts (A) and (C), see Remarks 3.2 and 3.3.

Theorem 3.1 Consider the SRE (3.1). Assume that α0 > 0 and the Lyapunov exponent γ of this

stochastic recurrence equation is negative.

(A) (Existence of stationary solution)

Assume that the following condition holds:

E ln+ |Z1| < ∞.

Then there exists a unique strictly stationary causal solution of the SRE (3.1).

(B) (Regular variation of the finite-dimensional distributions)

Assume the following conditions:

1. Z1 has a positive density on R such that E|Z1|h < ∞ for all h < h0 and E|Z1|h0 = ∞ for

some h0 ∈ (0,∞].

2. Not all of the parameters αi and βi vanish.

Then there exists a κ1 > 0 and a finite-valued function w(x) such that

For all x ∈ R
d \ {0} , lim

u→∞uκ1P ((x,X1) > u) = w(x) exists ,

i.e., (x,X1) is regularly varying with index κ1. Moreover, if x ∈ [0,∞)d \ {0} with d = p+ q, then

w(x) > 0. Furthermore, if κ1 is not even, then X1 is regularly varying with index κ1, i.e., there

12



exists a S
d−1-valued random vector Θ such that

P (|X1| > tx , X1/|X1| ∈ · )
P (|X1| > x)

v→ t−κ1 P (Θ ∈ · ) , as x → ∞ ,

(C) If Z1 has a density positive in an interval containing zero, then (Xt) is strongly mixing with

geometric rate.

Remark 3.2 Necessary and sufficient conditions for the Lyapunov exponent γ < 0 in terms of the

parameters αi and βi and the distribution of Z1 are known only in a few cases. This includes the

ARCH(1) (see Goldie [19]; cf. Embrechts et al. [15], Section 8.4) and the GARCH(1,1) cases (see

Nelson [30]). The latter case can be reduced to a one-dimensional SRE for (σ2
t ); see for example

Mikosch and Stărică [29]. The general case can be found in Bougerol and Picard [8], where to the

best of our knowledge the most general sufficient conditions are given. Some of their results are

formulated below subject to the assumptions α0 > 0, EZ1 = 0 and EZ2
1 = 1.

• γ < 0 is necessary and sufficient for the existence of a unique strictly stationary causal solution

to (3.1).

• ∑q
i=1 βi < 1 is necessary for γ < 0.

• ∑p
i=1 αi +

∑q
j=1 βj < 1 implies γ < 0.

• If Z1 has infinite support and no atom at zero, αi > 0 and βj > 0 for all i and j then∑p
i=1 αi +

∑q
j=1 βj = 1 implies γ < 0.

Since it is in general not possible to calculate γ explicitly, a potential method to verify whether

or not γ < 0 is via Monte-Carlo simulation using relation (2.3).

Remark 3.3 Part (C) of the theorem is due to Boussama [9], Chapter 3.

Remark 3.4 As for checking whether γ < 0, it is in general difficult to determine the index κ1

of regular variation by direct calculation. Again, the ARCH(1) and GARCH(1,1) processes are

the two exceptions where κ1 can be calculated by the method described in Remark 2.5; κ1 is the

unique solution to E(α1Z
2
1 )

κ1 = 1 in the first case and to E(α1Z
2
1 + β1)κ1 = 1 in the second case

where we again assume that EZ2
1 = 1 and EZ1 = 0. In either case, κ1 can be solved by Monte-

Carlo simulation if the distribution of Z1 is known. A table of values κ1 as a function of α1 for

the ARCH(1) case with standard normal Z1 can be found in Embrechts et al. [15], Section 8.4.

The theory for the GARCH(1,1) case is dealt with in Mikosch and Stărică [29]. Note that in the

IGARCH(1,1) case, i.e., α1 + β1 = 1, κ1 = 1 is the unique solution to the above equation. Hence

P (X2
t > x) ∼ c1x

−1 and P (σ2
t > x) ∼ c2x

−1 as x → ∞ for some positive constants c1 and c2.

13



Proof. Part (A). This is an immediate consequence of Theorem 2.1.

Part (B). It is easy to see that (B) implies (A) and hence a unique strictly stationary solution to

(3.1) exists. To establish (B) we consider a subsequence X̃t = Xtm of (Xt) for some integer m.

Along this subsequence the underlying SRE can be written as

Xtm = Atm · · ·At(m−1)+1Xt(m−1) +Bt +
m−1∑
k=1

Atm · · ·Atm−k+1Btm−k = ÃtXt(m−1) + B̃t ,

where ((Ãt, B̃t)) is an iid sequence. Hence (X̃t) satisfies the SRE

X̃t = ÃtX̃t−1 + B̃t , t ∈ Z .(3.3)

We will apply Kesten’s Theorem 2.4 to this SRE form sufficiently large. By stationarity the regular

variation property then follows for the distribution of Xt. From the moment condition on Z1, (2.2),

(2.3), and Remark 2.9, there exists an ε > 0 small such that E‖Ã1‖ε < 1 and E|B̃1|ε < ∞ by

choosing m sufficiently large. Observe that the entries of Ã1 are multilinear forms of the Z2
t ’s.

Moreover, E|Z1|h becomes arbitrarily large for h < h0 chosen sufficiently large. Hence (2.8) is

satisfied for Ã1 when κ0 is sufficiently large, and so is (2.9) since h < h0. We next show that the

set of real numbers ln ‖ã1 · · · ãn‖, where the ãi’s are from the support of Ã1, generates a dense

group in R. To see this we first observe that Ã1 has positive entries for m chosen sufficiently large.

This follows from the fact that, for large m, those entries are multilinear forms of the Z2
t ’s which

have a density on (0,∞). Since multilinear forms are continuous functions of the Z2
t ’s, the support

of Ã1 is a connected set, and so is the support of ‖Ã1‖, as a continuous function of the matrix Ã1.

Hence the support of ln ‖Ã1‖ contains an interval for m sufficiently large, which yields the desired

property of the numbers ln ‖ã1 · · · ãn‖.
An application of Kesten’s theorem finally yields the regular variation of (x,X1) with index

κ1 > 0, and provided κ1 is not an even integer, Corollary 2.6 gives the regular variation of X1.

Part (C). The strong mixing property with geometric rate was proved by Boussama [9].

This concludes the proof of the theorem. ✷

The properties of the sequence (X2
t , σ

2
t ) (such as stationarity and regular variation) immediately

translate into the corresponding properties for GARCH processes. This is the content of the

following result.

Corollary 3.5 Consider the SRE (3.1). Assume that α0 > 0, the Lyapunov exponent γ < 0 and

the conditions of parts (B) and (C) of Theorem 3.1 hold. Then the following statements hold.

(A) A stationary version of the process (Ut) = ((Xt, σt)) exists.

(B) There exists κ > 0 such that the limits

lim
u→∞uκP (X1 > u) and lim

u→∞uκP (σ1 > u)
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exist and are positive. Moreover, if κ/2 is not an even integer, then the finite-dimensional distri-

butions of the process (Ut) are regularly varying with index κ.

(C) If (Zt) is iid symmetric, then the sequence (Ut) is strongly mixing with geometric rate.

Proof. (A) From Theorem 3.1 a strictly stationary version of the process (Xt) exists, hence of

Vt = (|Xt|, σt) and Ut = (Xt, σt).

(B) From part (B) of Theorem 3.1 we know that (x,X1) is regularly varying with index κ1 > 0.

Hence σ1 is regularly varying with index κ = 2κ1, and so is X1 = σ1Z1 by an application of (5.2)

in the Appendix.

If κ1 is not an even integer then we also know that X1 is regularly varying with index κ1,

and so are the finite-dimensional distributions of (Xt), by Corollary 2.7. It is an easy exercise to

conclude that the finite-dimensional distributions of (Vt) are regularly varying with index κ = 2κ1.

It suffices to show that for all k ≥ 1, the random vector Yk = (σ1, X1, . . . , σk, Xk)′ is regularly

varying with index κ. This is proved by induction on k. For k = 1, (σ1, X1)′ = σ1(Z1, 1)′ and since

σ1 is regularly varying, so is the vector by Corollary 5.2. Now suppose Yk is regularly varying with

k ≥ max(p, q). Using the representation σ2
k+1 = α0+α1X

2
k+· · ·+αpX

2
k+1−p+β1σ

2
k+· · ·+βqσ

2
k+1−q,

it follows that (Y′
k, σk+1)′ is regularly varying with exponent κ. Writing

Yk+1 =
(

I2k+1 0
0 Zk+1

) (
Yk

σk+1

)
,

we conclude once again from Corollary 5.2 that Yk+1 is regularly varying with exponent κ which

completes the induction argument.

(C) Theorem 3.1 (C) tells us that (Xt) is strongly mixing with geometric rate. The mixing of (Xt)

implies that the process Vt = (|Xt|, σt) is also strongly mixing with rate function (αk), say. Fix
two Borel sets in B(R∞). Using the independence of the (Ut) = ((Xt, σt)) process conditional on

(Vt), we have

|P ((. . . ,U−1,U0) ∈ A, (Uk,Uk+1, . . .) ∈ B)− P ((. . . ,U−1,U0) ∈ A)P ((Uk,Uk+1, . . .) ∈ B)|

= |E[f(. . . ,V−1,V0)g(Vk,Vk+1, . . .)]− E[f(. . . ,V−1,V0)]E[g(Vk,Vk+1, . . .)]| ,
(3.4)

where

f(. . . ,V−1,V0) = P ((. . . ,U−1,U0) ∈ A | Vs, s ≤ 0) ,

g(Vk,Vk+1, . . .) = P ((Uk,Uk+1, . . .) ∈ A | Vs, s ≥ k) .

Now applying a standard result on functions of mixing sequences (see for example Doukhan [14]),

one can show that (3.4) is bounded by 4αk. ✷
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3.4 The sample autocovariances and sample autocorrelations of GARCH pro-
cesses

In what follows the theory of Section 2.5 is applied to derive the distributional limits of the sample

autocovariances and autocorrelations of GARCH(p, q) processes. The case of an ARCH(1) pro-

cess, its absolute values and squares has been treated in Davis and Mikosch [13]. The case of a

GARCH(1, 1) was dealt with in Mikosch and Stărică [29]. Below we derive the limit theory for the

sample autocovariance function (ACVF) and sample autocorrelation function (ACF) of a general

GARCH(p, q) process.

Theorem 3.6 Under the conditions of Corollary 3.5 the sample ACF and the sample ACVF of the

GARCH(p, q) process (Xt) with iid symmetric noise (Zt) have the limit distributions as described

in Theorem 2.13.

Proof. We apply Theorem 3.5 of Davis and Mikosch [13]. By Corrolary 3.5, the process (Xt)

is strictly stationary with regularly varying finite-dimensional distributions and is strongly mixing

with geometric rate. Moreover, using the same argument given for the proof of Theorem 2.10, con-

dition (2.16) is easily checked and hence convergence of the associated sequence of point processes

in Theorem 3.5 follows.

The case κ ∈ (0, 2). This is a direct application of Theorem 3.5 of [13].

The case κ ∈ (2, 4). For h ≥ 1, condition (3.4) of Theorem 3.5 of [13] is easy to verify since, by

symmetry of the Zt’s, the random variables XtXt+hI{|XtXt+h|≤a2
nε} are uncorrelated. For the case

h = 0, this condition is more difficult to verify directly and so we adopt a different approach. We

have

a−2
n

n∑
t=1

(X2
t − EX2

1 )

= a−2
n

n∑
t=1

σ2
t (Z

2
t − 1) + a−2

n

n∑
t=1

(σ2
t − Eσ2

1)

= a−2
n

n∑
t=1

σ2
t (Z

2
t − 1)I{σt≤εan} + a−2

n

n∑
t=1

σ2
t (Z

2
t − 1)I{σt>εan} + na−2

n (γn,σ(0)− Eσ2
1)

= I + II + III .

Using Karamata’s theorem on regular variation, it follows that

lim
ε→0

lim sup
n→∞

var (I) = lim
ε→0

lim sup
n→∞

na−2
n var(Z

2
1 )Eσ2

t I{σt≤εan} = 0 .(3.5)

As for the third term, we have

III = a−2
n

n∑
t=1

 p∑
j=1

αj(X2
t−j − Eσ2

1) +
q∑

j=1

βj(σ2
t−j − Eσ2

1)


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= na−2
n

[
(α1 + · · ·+ αp)(γn,X(0)− EX2

1 ) + (β1 + · · ·+ βq) (γn,σ(0)− Eσ2
1)

]
+ oP (1)

= (α1 + · · ·+ αp)na−2
n (γn,X(0)− EX2

1 ) + (β1 + · · ·+ βq) III + oP (1) .

Hence

III =
α1 + · · ·+ αp

1− (β1 + · · ·+ βq)
na−2

n (γn,X(0)− EX2
1 ) + oP (1) ,

where we use that fact that 1 − (β1 + · · · + βq) > 0 is a necessary condition for stationarity; see

Remark 3.2. So we may conclude that

na−2
n (γn,X(0)− EX2

1 ) =
1− (β1 + · · ·+ βq)

1− (α1 + · · ·+ αp)− (β1 + · · ·+ βq)
(I + II) + oP (1) .

Here we use the fact that 1− (α1 + · · ·+ αp)− (β1 + · · ·+ βq) > 0 is a necessary condition for the

existence of the second moment of Xt; see Bollerslev [6]. Using the latter relation and (3.5), the

point process convergence methods of Davis and Mikosch [13], Section 4, and a continuous mapping

argument, it can be shown that na−2
n (γn,X(0) − EX2

1 ) converges in distribution to a κ/2-stable

random variable. Moreover, since the convergence for the sample ACVF at lags h ≥ 1 is based on

the same point process result, one has joint convergence to a κ/2-stable limit for any finite vector

of sample autocovariances. This fact together with the continuous mapping theorem implies that

the conclusion of part 2 of Theorem 2.13 holds for both the sample ACF and ACVF of (Xt).

The case κ ∈ (4,∞). This follows from a standard central limit theorem for strongly mixing as can

be found in [14]. ✷

In the analysis of financial returns it is common practice to study the autocorrelations of the

absolute values and their powers in order to detect the non-linearity in the dependence structure.

The sample ACVF and sample ACF of the absolute values and any powers of the process can be

treated in a similar way by applying the same kind of argument; see for example Davis and Mikosch

[13] for the ARCH(1) case and Mikosch and Stărică [29] for the GARCH(1, 1) case.

4 Some final remarks

The results of Sections 2 and 3 show the power of the theory for solutions to stochastic recurrence

equations when applied to a GARCH(p, q) process. Results on the existence of a stationary version

of a GARCH process and properties of the distributional tails follow from this general theory

for SREs. The verification of the required conditions, however, is in general quite involved for

GARCH processes. Explicit formulae, in terms of the parameters and noise distribution of the

GARCH model, for determination of the Lyapunov exponent γ and the index of regular variation

κ1 are obscure. Monte-Carlo techniques can be used to determine γ and statistical methods for tail

estimation may be implemented to estimate κ1.

17



The results on the regular variation of the finite-dimensional distributions of GARCH processes

are quite surprising, especially in the case when the noise sequence (Zt) has light tails. For example,

if the Zt’s have a normal distribution, then the resulting GARCH process has power law tails. Many

real-life log-returns such as long daily log-return series of foreign exchange rates can often be well

modeled by a GARCH(1,1) or IGARCH(1,1) model in which the sum of the estimated ARCH

and GARCH parameters is close to or equal to 1. In such cases the index of regular variation is

close to or equal to 2 and hence inference procedures based on the sample autocorrelations in the

time domain and the periodogram in the frequency domain have to be treated with enormous care.

Analysis for log-returns with infinite 5th, 4th, 3rd, etc. moments require a large sample theory which

is determined by the very large values in the sample and leads to 95% confidence bands much wider

than the classical ±1.96/√n bands for the sample ACF and to unusual limit distributions. Our

results for the sample ACF document that wide confidence bands and slow rates of convergence

are typical for data which are modeled by GARCH processes with infinite 4th moment. These

results have to be understood as qualitative ones. The limiting distributions for the sample ACF

are defined via point processes and functions of multivariate stable random vectors; to date, little

is known about the properties of these distributions and one must resort to simulation for exploring

the sampling behavior of these statistics.

5 Appendix

5.1 Regularly varying vectors under random affine mappings

In what follows we consider a regularly varying random vector X with index α ≥ 0 and spectral

measure PΘ. For convenience we will work here with the following characterization of a regularly

varying vector X which is equivalent to (2.5): There exist a measure µ on R
d\{0} and a sequence

(an) of non-negative numbers such that

n P (a−1
n X ∈ ·) v→ µ(·)(5.1)

Our first result extends a well-known one-dimensional lemma of Breiman [11] to d > 1. It says

that, for any independent non-negative random variables ξ and η such that η is regularly varying

with index α and Eξγ < ∞ for some γ > α,

P (ξ η > x) ∼ EξαP (η > x) .(5.2)

The multivariate version of Breiman’s lemma reads as follows.

Proposition 5.1 Assume the random vector X is regularly varying in the sense of (5.1) and A is

a random q × d matrix, independent of X. If 0 < E‖A‖γ < ∞ for some γ > α, then

n P
(
a−1
n AX ∈ ·) v→ µ̃(·) := E[µ ◦A−1(·)] ,
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where v→ denotes vague convergence on R
d\{0}.

Proof. For a fixed bounded µ̃-continuity set B define

An(B) =
{
a−1
n AX ∈ B

}
.

Then for every 0 < ε < M < ∞,

P (An(B))

= P (An(B) ∩ {‖A‖ ≤ ε}) + P (An(B) ∩ {ε < ‖A‖ ≤ M}) + P (An(B) ∩ {‖A‖ > M})

=: p1 + p2 + p3 .

Note that by (5.2) for some t > 0 (one can choose t to be the distance of the set B from 0),

lim sup
n→∞

p3

P (|X| > an)
≤ lim

n→∞
P

(|X| ‖A‖I(M,∞)(‖A‖) > ant
)

P (|X| > an)
= t−αE[‖A‖αI(M,∞)(‖A‖)] .

Since E‖A‖α < ∞ we conclude by Lebesgue dominated convergence that

lim
M→∞

lim sup
n→∞

p3

P (|X| > an)
= 0 .(5.3)

Now consider p2:

lim
n→∞

p2

P (|X| > an)
(5.4)

= lim
n→∞

∫
ε<‖A‖≤M

P (An(B)| A)
P (|X| > an)

P (dA) = E
[
I(ε,M ](‖A‖)µ(A−1B)

]
.

In the limit relation we made use of a Pratt’s lemma; cf. Pratt [31]. The right-hand side of (5.4)

converges to the desired Eµ(A−1B) if we first let M → ∞ and then ε → 0. The so obtained limit

is finite since E‖A‖α < ∞ and

E
[
I(ε,M ](‖A‖)µ(A−1B)

]
= E

[
I(ε,M ](‖A‖)µ{x : Ax ∈ B}]

≤ E [‖A‖α] µ{x : |x| > t} < ∞ .

Finally, we consider p1. Then

lim sup
n→∞

p1

P (|X| > an)
≤ lim

n→∞
P (ε|X| > an t)
P (|X| > an)

= (t−1ε)α .

We conclude that

lim
ε→0

lim sup
n→∞

p1

P (|X| > an)
= 0 .(5.5)

Combining the limit results for p1, p2, p3, we obtain the desired conclusion. ✷
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Corollary 5.2 Let X be regularly varying with index α, independent of the vector (Y1, . . . , Yd)

which has independent components. Assume that E|Yi|α+ε < ∞ for some ε > 0, i = 1, . . . , d. Then

(Y1X1, . . . , YdXd) is regularly varying with index α.
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