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Abstract
This paper is concerned with a general class of observation driven models for time

series of counts whose conditional distributions given past observations and explanatory
variables follow a Poisson distribution. These models provide a flexible framework
for modeling a wide range of dependence structures. Conditions for stationarity and
ergodicity of these processes are established from which the large sample properties
of the maximum likelihood estimators can be derived. Simulations are provided to
give additional insight into the finite sample behavior of the estimates. Finally an
application to a regression model for daily counts of accident and emergency room
presentations for asthma at several Sydney hospitals is described.

1 Introduction

In recent years there has been considerable development of models for non-Gaussian time
series. In particular the special case of Poisson observations is of interest in a variety of
applications including the modeling of the effects of environmental pollution on human health
and the impact of policy controls on road deaths. Davis et al. (1999) provides a review of
models for Poisson time series. There, the classification due to Cox (1981) of models into
observation and parameter driven processes is described. In particular a new class of models,
which we will refer to as generalized linear autoregressive moving average (GLARMA) models
is introduced and its properties developed in part. The purpose of this paper is to develop
these models more comprehensively.

In general terms, parameter driven models require considerable computational effort in
order to obtain parameter estimates - see Durbin and Koopman (2000) and Jung and Liesen-
feld (2001) for recent contributions to this topic. In addition, because they are built on a
latent process, forecasting also requires considerable computational effort. Parameter driven
models are, however, straightforward in their interpretation of the effects of covariates on
the observed count process, an appealing point.

Observation driven models are sometimes referred to as transition models in the longi-
tudinal data analysis literature (e.g., see Diggle, Liang and Zeger, 1994). Zeger and Qaqish
(1988) review various observation driven models for count time series. In particular they im-
ply various desirable properties that such models should possess. First, the marginal mean
of Yt should be approximated as

E(Yt) = E(µt) ≈ exp(xTt β)
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so that the regression coefficients can be interpreted as the proportional change in the
marginal expectation of Yt on the logarithm scale given a unit change in the regressor
variables. This seems useful from the point of view of interpretation. Additionally, for
stationary processes, both positive and negative serial dependence should be possible. Some
of the models that are discussed in Zeger and Qaqish (1988) do not satisfy this last property
and will admit stationary solutions only for negative serial dependence, a case that is less
common in many applications than that of positive dependence.

To develop the class of models that are considered here, let

Ht = (Y(t−1),x(t))

be the past of the observed count process and the past and present of the regressor variables.
Assume that the conditional distribution of Yt|Ht is Poisson with mean µt. A simple and
appealing way to build serial dependence in the model is to require the log-mean process to
depend linearly on previous observations. That is,

log(µt) = x
T
t β +

p∑
i=1

γiYt−i. (1)

Note that the Yt−i enter without any form of mean correction or centering. Model (1) is
applied to data in Fahrmier and Tutz (1994). Zeger and Qaqish (1988) point out that (1)
cannot be stationary unless, at least in the case p = 1 , γ1 ≤ 0 thereby excluding the
possibility of positive dependence. This point is also acknowledged by Fahrmier and Tutz.
It might be thought that the difficulties with model (1) could be overcome by subtracting
the ‘fixed effects’ component of the mean from the Yt to arrive at

µt = exp(xTt β +

p∑
i=1

γi(Yt−i − exp(xTt β)), (2)

but in fact this will not lead to a stationary process as can be seen by using a similar argument
to that given by Zeger and Qaqish (1988). In an unpublished report Shephard (1995) extends
(2) by using the standardized deviations (Yt−i − exp(xTt β))/ exp(xTt β) and by including lag
structure that corresponds to rational functions similar to those for autoregressive moving
average linear models. In a later unpublished paper Rydberg and Shephard (1998) consider
models with exponential family distributions conditional on Ht which are analogous but for
which the standardization uses conditional standard deviations rather than variances. Davis
et al. (1999) consider a general class of models that allows for normalization to occur with
various powers of the conditional variance including those considered by Shephard (1995)
and Rydberg and Shephard (1998). In line with terminology introduced by Shephard (1995)
we will refer to this general class of models as GLARMA models.

Observation driven models are generally very easy to fit using conditional maximum
likelihood. Here conditioning refers to conditioning on some initial values and not on random
effects. Also forecasting of future observations is straightforward. However, because of the
way in which past observations feed into the mean term, the interpretation of the effect of
covariates can be confused to varying extents depending on the form of the model.
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In many practical problems, the primary objective is to develop models that relate co-
variates, such as environmental or policy intervention variables, to the observed time series
of counts, such as the daily number of asthma cases at a hospital. Often there are numerous
covariates that may need to be considered for inclusion in the model. In some instances,
many comparable time series of counts need to be modeled as part of a larger study. For
example, in studying the impact of alcohol or traffic regulation policy interventions on road
deaths or youth suicides, all regions or states in a country may need to be considered sepa-
rately since the timing and nature of these variables may have regional variations. In these
settings there is a distinct advantage to have methods available that are easy to implement
and rapid to compute for investigating the impact of covariates on time series of counts which
properly control for serial dependence. At the present time, and for realistically long and
numerous time series arising in the areas we have described, the computationally intensive
methods required for fitting parameter driven models are not yet routinely available. This
paper develops a class of observation driven models that are straightforward to implement
and are rapid to fit. In addition, these models adjust for serial dependence in the inference
for fixed effects and allow reasonable interpretations of the effects of these covariates on the
response variable.

Our observation driven model is introduced in Section 2, where general properties about
the process are also given. In Section 3, we consider maximum likelihood estimates for these
models with supporting simulation results. Section 4 contains an application of fitting these
models to data consisting of the number of asthma presentations at a hospital in the Sydney
metropolitan area. Technical results related to the the properties of the process and the
asymptotic normality of the maximum likelihood estimator are given in Section 5.

2 Observation Driven Models

2.1 The Basic Model

To introduce our model, assume that the observation Yt given the past history Ft−1 =
σ(Ys, s ≤ t− 1) is Poisson with mean µt which will be denoted by

Yt|Ft−1 ∼ P (µt).

It is further assumed that the state process log(µt) follows a linear model in the explanatory
variables with residuals that have a moving average structure. The noise driving the moving
average will be a martingale difference sequence generated from the data and hence the name
observation driven model. Formally, the state process is given by

Wt := log(µt) = x
T
t β +

q∑
i=1

θiet−i,

where
et = (Yt − µt)/µλt , λ ≥ 0.

Since the conditional mean E(Yt|Y(t−1)) depends on the whole past, the process {Yt} is
no longer Markov. However, the mean process log(µt) is qth order Markov. Unless xTt β is
constant, log(µt) is not a time-homogeneous process.
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Properties of the Basic Model (q = 1, xT
t β = β)

In this simple but illuminating case, the state process reduces to

Wt = β + γ(Yt−1 − eWt−1)e−λWt−1 .

Under this formulation, the process {Wt} as well as {µt = eWt} possesses many desirable
properties. For example, the process {Wt} is a Markov process with mean

E(Wt) = E[E(Wt|Wt−1)] = β,

and variance

Var(Wt) = Var(E(Wt|Wt−1)) + EVar(Wt|Wt−1) = γ
2E[exp((1− 2λ)Wt−1)].

It follows that for λ = 0.5, Var(Wt) = γ
2, while for λ = 1,

Var(Wt) = γ
2E

[
e−Wt−1

] ≥ γ2e−E[Wt−1] = γ2e−β.

The state space for the conditional distribution of Wt given Wt−1 has the following form:

Wt ≥ β − γe(1−λ)Wt−1 , if γ ≥ 0,

and
Wt ≤ β − γe(1−λ)Wt−1 , if γ ≤ 0.

While the range of Wt does not depend on the value of Wt−1 for λ = 1, the range does
depend on Wt−1 for values of λ < 1 which severely complicates the analysis.

Another important property is that the process {Wt} is uniformly ergodic for the case
λ = 1 (see Appendix 5.1). Hence, there exists a unique stationary distribution for the log-
mean process in this case. For 1/2 ≤ λ < 1, there exists a stationary distribution, yet the
uniqueness of such a distribution is currently unknown (see Appendix 5.1). For λ < 1/2,
existence of a stationary distribution has not been established as of yet.

The conditions on the state process translate into the following property on the mean
process:

E(µt|µt−1) = E[exp(β + γ(Yt−1 − µt−1)/µ
λ
t−1)].

Using the moment generating function for the Poisson distribution, we obtain

E(µt|µt−1) = exp(β) exp(−γµ1−λ
t−1 )E(exp(Yt−1γ/µ

λ
t−1))

= exp(β) exp(−γµ1−λ
t−1 ) exp(µt−1(e

γ/µλ
t−1 − 1))

= exp(β) exp(−γµ1−λ
t−1 + µt−1(e

γ/µλ
t−1 − 1))

= exp(β) exp(µt−1(
∞∑
k=2

(γ/µλt−1)
k

k!
))

= exp(β) exp(µt−1(e
γ/µλ

t−1 − 1− γµ−λt−1)). (3)

If λ = 0, equation (3) becomes

E(µt|µt−1) = exp(β) exp(µt−1(e
γ − 1− γ)),
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so that if γ ≥ 0 the conditional means will evolve in an unstable fashion. Thus, when
λ = 0, E(µt|µt−1) will grow without bound whenever µt becomes positive. In contrast, for
λ = 1, equation (3) becomes

E(µt|µt−1) = exp(β − γ) exp(µt−1(e
γ/µt−1 − 1)),

which is bounded as µt → ∞. For other values, 0 < λ < 1, the stability properties of the
process are less clear.

2.2 The GLARMA Model

Extensions to autoregressive-moving average filters applied to past values of et can also be
made to the basic model. Let {Ut} be the ARMA(p, q) process with noise given by the
martingale difference sequence {et}, i.e.,

Ut = φ1Ut−1 + · · ·+ φpUt−p + et + θ1et−1 + · · ·+ θqet−q ,
where the AR and MA polynomials, φ(z) = 1−φ1z−· · ·−φpzp and θ(z) = 1+θ1z+· · ·+θqzq,
respectively, have all their zeros outside the unit circle. Then the best predictor of Ut based
on the infinite past {Ut−1, Ut−2, . . .} is

Ût =
∞∑
i=1

τiet−i ,

where
∞∑
i=1

τiz
j = (1−

p∑
i=1

φiz
i)−1(1 +

q∑
i=1

θiz
i)− 1

= φ(z)−1θ(z)− 1.

The model for log(µt) is then

Wt = x
T
t β + Zt = x

T
t β +

∞∑
i=1

τiet−i ,

where Zt = Ût We refer to such models for the data {Yt} as generalized linear ARMA of
order (p, q) or GLARMA(p, q). In the model fitting stage, Zt is computed using the ARMA
recursions. Specifically, for t ≤ 0 set et = 0 and Zt = 0 and for t > 0, the following recursions
are applied:

Ẑt = φ1(Ẑt−1 + et−1) + · · ·+ φp(Ẑt−p + et−p) + θ1et−1 + · · ·+ θqet−q
Wt = xTt β + Ẑt

et = (Yt − eWt)e−λWt .

The structure of this model is similar to the one formulated in Shephard (1995, unpub-
lished). He presents an argument, based on a Taylor series linearization of the link function,
for using λ = 1 in the definition of et at least in the Poisson case. The inclusion of explanatory
variables in the model is also handled in a different fashion than that above.
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Properties of the Extended Model

Under the initial conditions above, es = 0 and Ys = 0 for s ≤ 0, F e
s−1 = {et : t ≤ s− 1} and

Fs−1 = {Yt : t ≤ s − 1} generate the same σ−fields and hence it follows that the et form a
martingale difference sequence, i.e.,

E(es|F e
s−1) = 0 for s ≥ 1.

Hence, the et have zero mean and variance

E(e2t ) = E[E(e2t |µt)] = E[µ1−2λ
t ], t ≥ 1,

which is equal to 1 for λ = 0.5. It also follows from the martingale difference property that
Cov(et, es) = 0 for t = s. From the above properties we have, for any λ,

E(Wt) = x
T
t β,

Var(Wt) =
∞∑
i=1

τ 2
i E[µ

1−2λ
t−i ],

and for s = t+ h, h > 0,

Cov(Wt,Wt+h) =
∞∑
i=1

τiτi+hE[µ
1−2λ
t−i ].

If λ = 0.5, then the covariances do not depend on time t even if {µt} is not strictly stationary.
While the process {Wt} has mean xTt β, the process {µt} has mean greater than ex

T
t β.

Nevertheless, we have

Wt = xTt β + Zt

≈ xTt β + U ′
t ,

in the sense that the distributions will be similar, where U ′
t is a Gaussian stationary sequence

with zero mean and variances and covariances matched to those for Zt. Roughly speaking,
{U ′

t} is a proxy for a latent process. Hence, using results obtained for latent processes, we
have, again for the case λ = 0.5,

E(eWt) ≈ ex
T
t β+Var(Zt)

= ex
T
t β+1

2

∑∞
i=1 τ

2
i .

Thus, in practice, the bias of E(µt) as an estimate of ex
T
t β can be approximately adjusted

for and, perhaps most importantly, the regression coefficients are then approximately inter-
pretable as the amount by which the mean of Yt on the log-scale would change for a unit
change in the regressors.

While the distribution of {et} is not normal, the linear combination Zt =
∑∞

i=1 τiet−i will
have a distribution which may be closely approximated by a sequence of correlated normal
random variables. The extent to which the joint distribution of the sequence {et} differs
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from a process of independent Gaussian random variables with zero mean and unit variance
will govern the extent to which the approximation

E(eWt) ≈ exT
t β+1

2

∑∞
i=1 τ

2
i

holds.
Another advantage of the above formulation is that an approximately unbiased plot of µt

can be generated by

µ̂t = exp(Ŵt − 1

2

∞∑
i=1

τ̂ 2
i ),

where estimates have been used throughout. Thus, it is easy to predict with this model. In
fact µ̂t could be used as the one step ahead forecast of Yt, given a value for xt or a reliable
forecast of it.

3 Estimation and Inference for the Model

3.1 Maximum Likelihood Estimation

The likelihood and its first and second derivatives can easily be computed recursively and
used in a Newton-Raphson update procedure. Standard errors for the parameter estimates
that properly account for serial dependence are also readily available. The details follow.

Let δ = (βT ,γT )T and define Lt(δ) = log f(yt|Ft−1), where f is the conditional Poisson
density of Yt given Ft−1. The log-likelihood can then be written as

∑n
t=1 Lt(δ) which, upon

ignoring terms which do not involve the parameters, becomes

L(δ) =
n∑
t=1

(
YtWt(δ)− eWt(δ)

)
,

where

log(µt) = Wt(δ) = x
T
t β +

∞∑
i=1

τi(γ)et−i(δ) (4)

and
et(δ) = (Yt − µt)/µλt .

For brevity, we will often suppress the dependence of et on δ. The first and second derivatives
of L are given by the following expressions

∂L

∂δ
=

n∑
t=1

(Yt − µt)∂Wt

∂δ
=

n∑
t=1

etµ
λ
t

∂Wt

∂δ

and

∂2L

∂δ∂δT
=

n∑
t=1

[
(Yt − µt) ∂

2Wt

∂δ∂δT
− µt∂Wt

∂δ

∂Wt

∂δT

]

=
n∑
t=1

[
etµ

λ
t

∂2Wt

∂δ∂δT
− µt∂Wt

∂δ

∂Wt

∂δT

]
.
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The remaining expressions needed to calculate these derivatives are given in Appendix 5.2.
Asymptotic results for these estimates are given in Appendix 5.3 for the basic model with
λ = 1, p = 1 and xtβ = β. In this case, the asymptotic distribution of the maximum
likelihood estimates is N(0, V −1), where

V = lim
n→∞

1

n

n∑
t=1

eWt(δ0)ẆtẆ
T
t , (5)

with Ẇt =
∂Wt(δ0)

∂δ
.

To initialize the Newton Raphson recursions we have found that using the GLM estimates
without the autoregressive moving average terms together with zero initial values for et, t ≤
0, gives reasonable starting values. Convergence in the majority of cases reported below
(in which the first derivatives were less than 10−6) occurred within 10 iterations from these
starting conditions. The covariance matrix of the estimators is estimated by

Ω̂ = −
(
∂2L(θ̂)

∂δ∂δT

)−1

(6)

3.2 Simulation Results.

To illustrate the asymptotic properties of the parameter estimates, we simulate from two
models and compare the results with the derived theory (see Appendix 5.2). These models
correspond to constant and linear trends, i.e.,

Wt = β0 + γ
(
Yt−1 − eWt−1

)
e−Wt−1 , (7)

and

Wt = β0 + β1t/n+ γ
(
Yt−1 − eWt−1

)
e−Wt−1 . (8)

Table 1 contains the results for the model given by (7) for two choices of β0 and γ (denoted
δ1 and δ2) with a sample size of n = 250 and N = 1000 replications. A burn-in period of
length 100 was used in the simulation of the realizations. Table 2 contains the results for the
model given by (8) for two combinations of (β0, β1, γ) = (δ1, δ2, δ3), where again the sample
size is 250 and the number of replications is 1000. In both tables µ̂δ̂j is the average of the
N estimates of δj, σ̂δ̂j is the sample standard deviation of the N estimates of δj, sδ̂j,i

is the

estimate of the standard error of δj,i as computed by (6), and µ̂sδ̂j
is the average of the sδ̂j,i

,

where δ = (βT , γ)T .

In all cases, the “true” parameter value δj is very close to the estimated value, µ̂δ̂j . A
comparison can also be made to evaluate the accuracy of the estimates of standard error.
We estimate Vj,j as defined in equation (5) by σ̂δ̂j and compare its value with the average of
the N estimates of standard error, µ̂sδ̂j

. Again, these values are very close, supporting the

theory for the maximum likelihood estimated derived in Appendix 5.2.
To further illustrate the theoretical properties of the parameter estimates, Figure 3.2

contains plots of the estimated densities along with the appropriate normal density for one
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parameters µ̂δ̂j σ̂δ̂j µ̂δ̂j ± 1.96σ̂δ̂j/
√
N σ̂δ̂j

√
1± 1.96

√
(2/n) µ̂sδ̂j

δ1 = 1.5 1.4978 0.0387 (1.4954, 1.5001) (0.0352, 0.0420) 0.0374
δ2 = 0.25 0.2470 0.0582 (0.2434, 0.2506) (0.0529, 0.0631) 0.0583
δ1 = 1.5 1.4990 0.0531 (1.4957, 1.5023) (0.0483, 0.0576) 0.0660
δ2 = 0.75 0.7435 0.0386 (0.7411, 0.7459) (0.0351, 0.0418) 0.0318
δ1 = 3.0 3.0001 0.0170 (2.9990, 3.0012) (0.0155, 0.0185) 0.0176
δ2 = 0.25 0.2483 0.0618 (0.2445, 0.2521) (0.0562, 0.0670) 0.0613
δ1 = 3.0 3.0000 0.0252 (2.9984, 3.0015) (0.0229, 0.0273) 0.0244
δ2 = 0.75 0.7349 0.0392 (0.7325, 0.7374) (0.0356, 0.0425) 0.0404

Table 1: Simulations, no trend; n=250, N=1000

parameters µ̂δ̂j σ̂δ̂j µ̂δ̂j ± 1.96σ̂δ̂j/
√
N σ̂δ̂j

√
1± 1.96

√
(2/n) µ̂sδ̂j

δ1 = 1 0.9951 0.1290 (0.9871, 1.0031) (0.1172, 0.1399) 0.1307
δ2 = 0.5 0.5044 0.1313 (0.4962, 0.5125) (0.1193, 0.1424) 0.1324
δ3 = 0.25 0.2448 0.0593 (0.2411, 0.2485) (0.0539, 0.0643) 0.0586
δ1 = 1 0.9887 0.1609 (0.9788, 0.9987) (0.1461, 0.1744) 0.1669
δ2 = −0.15 -0.1424 0.1746 (-0.1533, -0.1316) (0.1586, 0.1893) 0.1784
δ3 = 0.25 0.2476 0.0559 (0.2441, 0.2510) (0.0508, 0.0606) 0.0550

Table 2: Simulations, trend; n=250, N=1000

set of parameters from each of the two models. For the first model, the example β0 = 1.5, γ =
0.25 is depicted and for the linear trend model, the example β0 = 1, β1 = −0.15, γ = 0.25 is
shown. The illustrated normal densities have mean δj and variance σ̂δ̂j . As seen from these
plots, the estimated and asymptotic densities are in very good agreement for both examples.
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4 Applications.

4.1 Review of Previous Examples.

Davis et al. (1999) analyze the polio data introduced by Zeger (1988) using various GLARMA
models. A summary of other analyses, including those based on parameter driven models,
is also given by Davis et al. (1999). In addition, they analyze the UK sudden infant death
syndrome series considered by Campbell (1994). Using a GLARMA model and other test
statistics for serial dependence in count time series they conclude that the serial dependence
effects are not required, so that p = q = 0 in the GLARMA model. This conclusion has
recently been confirmed by Jung and Liesenfeld (2001) using an approximation to maximum
likelihood estimation in a parameter driven model.

Davis et al. (1999, 2000) also report on a preliminary analysis of a series of daily counts
of patients presenting at the accident and emergency department of Campbelltown Hospital
located in the southwest metropolitan area of Sydney, Australia. Here we extend that
analysis with a more comprehensive model for the seasonal effects and the pollution series.
This results in a reasonably large number of covariates. This is one of several hospitals where
similar analyses can be performed and serves as an illustrative example for which we believe
that the use of observation driven models is particularly well suited.

The analysis to be presented here modifies and extends the model considered for the
Campbelltown asthma series in Davis et al. (1999). This previous model included explana-
tory variables for a Sunday effect, a Monday effect, an increasing linear trend in time
and a seasonal pattern. The latter was modeled using Fourier series terms consisting of
cos(2πkt/365) and sin(2πkt/365) for k = 1, 2, 3, 4. To model the remaining serial dependence
a GLARMA model with nonzero coefficients at lags 1,3,7 and 10 for the AR component and
no moving average component was used. After fitting the model with these terms some
slight overdispersion not explained by the lagged AR component of this observation driven
model remained. This points to the need for additional covariates or possibly a more flexible
seasonal pattern as well as a more complex serial dependence structure.

4.2 Analysis of Sydney Asthma Time Series.

The GLARMA model fit in Davis et al. (1999) did not address a major practical question for
which the data was originally collected. Of interest was the role of air pollution levels on the
number of daily asthma cases. Because meteorological conditions can be expected to play
an important role in the pollution process, temperature can have a direct effect on asthma
occurrences, and, because the growth of fungal spores and dust mite level can be related
to humidity and temperature, it is reasonable to also consider inclusion of meteorological
variables in the model. See Samet et al. (1998) for a discussion of the potential for mete-
orological conditions to play a role here. At the time of the analysis in Davis et al (1999),
only partial data was available on relevant pollution series. Most importantly a series on
particulate levels had not been compiled. We now describe in detail the terms investigated
in the model and the sources of appropriate data.
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4.2.1 Pollution measurements.

The New South Wales EPA provided all available pollution measurements for the Sydney
metropolitan region commencing prior to January 1, 1990 (the date at which the asthma
data commenced) and up to 1999. Unfortunately, for the time period of our data the network
coverage was rather sparse for the southwest region of Sydney. After analyzing all available
records for completeness we selected the observations from the Lidcombe observing site for
ozone and NO2 measurements. Lidcombe is to the northeast of Campbelltown but was
considered to be sufficiently close so as to give representative readings for these pollutants.
The other hospitals we analyzed were at Liverpool and Lidcome and are located even closer to
the Lidcombe station. Unfortunately, nepholometer readings of particulate concentrations
were not available at Lidcombe during the relevant time period. The two most complete
records were at Rozelle and Kensington both of which are considerably closer to downtown
Sydney and closer to the coastline. Particulate readings from these two locations were
averaged to produce a single series. In addition, two types of pollution series were used:
daily average and daily maximum readings based on hourly measurements.

4.2.2 Meteorological Data.

Meteorological data was obtained from the Australian Bureau of Meteorology at Liverpool
and was considered to be relevant to the three hospitals considered. While there is spatial
variability in meteorological conditions across the Sydney basin the temporal variability (of
most relevance to this analysis) is substantially larger and so using a single representative
location for these data is reasonable. We were particularly interested in the effects of moisture
on asthma levels. In exploratory analysis rainfall did not appear to play a major role, whereas
humidity did with an approximate lag of 14 days. Details of the construction and statistical
significance of this variable are provided in Davis et al. (2000).

4.2.3 Seasonal Effects

Figure 1 of Davis et al. (2000) shows evidence of a triple peak seasonal pattern in the
time series of hospital admission counts. In Davis et al. (1999, 2000) the seasonal variation
was modeled using a harmonic regression with several harmonics for the annual frequency.
This model may not be appropriate because the intensity of seasonal peaks appears to
vary considerably from year to year. In the analysis to follow we propose an alternative
representation of the seasonal behavior that allows us to test the constancy from year to
year.

The timing of the peaks appears to line up with the terms in the K-12 school year. At
that time in Sydney there were four terms per year with the break between terms one and
two occurring at varying times due to the timing of the Easter vacation. In the revised
seasonal model we assume that there is a broad annual seasonal pattern that is the same in
all years and is modeled using annual harmonics cos(2πt/365) and sin(2πt/365). To model
the peaks, we used a beta function as follows:

p(x) =
1

B(a, b)
(x)a(1− x)b, x ∈ [0, 1]
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and p(x) = 0 if x /∈ [0, 1], with a = 2.5 and b = 5. These parameters were chosen based
on a preliminary data analysis comparing the shapes of the peaks in all years and at three
locations. Let Tij be the start time for the jth term in year i where time is chosen from
t = 1, . . . , 1461, the days in our sample numbered sequentially. Then the peak function for
the jth term in year i is

Pij(t) = p

(
t− Tij
100

)
.

In this formulation there are sixteen (one each for four terms in four years) such functions,
each of which enters into the regression model with an individual coefficient.

4.2.4 Other Model Terms

Additional explanatory variables used in the model included an overall linear trend over the
four year period and the aforementioned indicator variables for Sunday and Monday effects.
The inclusion of a linear trend allows for the testing of the hypothesis of increasing asthma
rates.

As explained in Davis et al. (2000) there is a clear need in these data (with a fixed
annual seasonal cycle) for serial dependence effects. Of interest to us is whether or not
inclusion of a more flexible seasonal model, based on the school term peak components, will
decrease the serial dependence effects. We investigated a number of options for specifying
the autoregressive and moving average effects in the GLARMA model. In the final model a
moving average component at lag 7 was all that was required.

4.2.5 Fitting the model

A number of models were fit to the data to investigate the effects of the regression variables
summarized above. Based on preliminary analysis it was clear that several variables could be
dropped. We retained the two annual harmonic terms, the Sunday and Monday effects, the
linear trend, the minimum temperature (same day), the lagged composite humidity variable
Ht, and the three same day pollution variables: maximum Ozone, N02 and Particulates.
Additionally, we included the sixteen individual term peak components. In this model the
term peak components for school terms 3 and 4 (the latter half of the calendar year) were
not individually significant at the 5% level and were dropped from the model. We then
performed a likelihood ratio test, based on GLARMA likelihoods, for the constancy of the
term peak effects for terms 1 and 2 across all four years. The likelihood ratio statistic was
29.9, which assuming an approximating chi-square distribution on 6 degrees of freedom under
the null hypothesis, gives a P-value of 0.00004. Accordingly we retained the more flexible
representation in which each year allowed variation in the size of the term peaks. Proceeeding
from this point the coefficients for Tmin and Trend were not individually significant and were
dropped from the model. We next investigated the impact of the pollution variables. The
coefficients of the same day values of maximum Ozone and Particulates were not significant
(at the 5% level) while that of NO2 was significant at the 5% level. We also investigated the
one day lag effects of the three maximum pollution measurements and none of these were
significant. The final model is summarized in Table 3.
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Variable Coefficient S.E. T-ratio
Intercept 0.583 0.062 9.46
Sunday 0.197 0.056 3.53
Monday 0.230 0.055 4.20
Annual Cosine -0.214 0.039 -5.54
Annual Sine 0.176 0.040 4.35
Term 1, 1990 0.200 0.056 3.54
Term 2, 1990 0.132 0.057 2.31
Term 1, 1991 0.087 0.066 1.32
Term 2, 1991 0.172 0.057 2.99
Term 1, 1992 0.254 0.055 4.66
Term 2, 1992 0.308 0.049 6.31
Term 1, 1993 0.439 0.050 8.77
Term 2, 1993 0.116 0.061 1.91
Humidity Ht/20 0.169 0.055 3.09
NO2 max -0.104 0.033 -3.16
MA, lag 7 0.042 0.018 2.32

Table 3: Analysis of Sydney Asthma Time Series

The fitted values from the model are shown in Figure 2 along with the actual counts. In this
final model, various test statistics reviewed in Davis et al. (1999, 2000) for the presence of a
latent process and the degree of autocorrelation indicated that there was no need to include
additional autoregressive or moving average terms.

4.2.6 Discussion

The expanded and revised model for the Campbelltown asthma series allows for seasonal
patterns to be aligned with the school term dates and to vary in intensity from year to year.
These differences are highly statistically significant. Virally induced asthma occurrences
might be synchronized in part with the school terms and would not necessarily occur with
the same intensity in the same terms across different years or across terms in the same year.

The use of a more flexible seasonal model leads to a simplification of the lag dependence
structure compared with that in previous analyses. However, moving average dependence
at lag 7 is positive and significant. Inferences about the key pollution and weather variables
are adjusted for this serial dependence in the above analysis.

The same analysis was repeated at two other locations: Liverpool and Lidcome hospitals.
Similar results were obtained for these two sites. However, at these places none of the
pollution variables were statistically significant.

5 Appendix

This section provides theoretical complements to Sections 2 and 3. In particular, we estab-
lish existence of stationary solutions to the GLARMA model and give a derivation for the

14



1990

Day of Year

C
ou

nt
s

0 100 200 300

0
2

4
6

1991

Day of Year

C
ou

nt
s

0 100 200 300

0
2

4
6

8

1992

Day of Year

C
ou

nt
s

0 100 200 300

0
2

4
6

8
10

12
14

1993

Day of Year

C
ou

nt
s

0 100 200 300

0
2

4
6

8
10

Figure 2: Asthma Counts at Campbelltown Hospital with conditional means.
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asymptotic normality of maximum likelihood estimators in some reduced cases.

5.1 Existence of Stationary Solutions.

In this section, we establish the existence of a stationary solution for the process {Wt} under
the basic model with 1/2 ≤ λ ≤ 1 and xtβ = β given by,

Wt = β + γ(Yt−1 − eWt−1)e−λWt−1 . (9)

The result is first stated for a general Markov chain and then shown to hold for the process
given by (9) with 1/2 ≤ λ ≤ 1.

Additionally, for the special case λ = 1, we will prove that the stationary distribution is
unique using techniques from Meyn and Tweedie (1993). The remainder of this section is
divided into these two goals.

Existence: 1/2 ≤ λ ≤ 1.
We begin by stating the existence results for a general Markov chain.

Proposition 5.1 If {Xn} is a weak Feller chain and if for any ε > 0 there exists a compact
set C ⊂ X such that

P (x, Cc) < ε, for all x ∈ X,
then {Xn} is bounded in probability; thus, there exists at least one stationary distribution for
the chain.

Proof: Assume that for any ε > 0 there exists a compact set C ⊂ X such that P (x, Cc) < ε
for all x ∈ X. If P k(x, ·) denotes the k-step transition probability of the chain starting from
state x then,

P k(x, Cc) =

∫
P (y, Cc)P k−1(x, dy)

< ε.

Thus, the chain is bounded in probability. In fact, the tightness of the k-step transition
probabilities holds uniformly in x. It follows that the chain is bounded in probability on av-
erage and hence, by Theorem 12.0.1(i) of Meyn and Tweedie (1993), there exists a stationary
distribution.✷

Proposition 5.2 Let

Yt ∼ Poisson(eWt),

where

Wt = γ(Yt−1 − eWt−1)e−λWt−1 ,

1/2 ≤ λ ≤ 1. Then the chain is bounded in probability, and therefore, admits an invariant
measure.
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Proof: First note that the chain is weak Feller. Define C := [−c, c]. Then,
P (x, Cc) = P (Wt ∈ Cc | Wt−1 = x)

= P
[
γ
(
Yt−1 − eWt−1

)
e−λWt−1 ∈ [−c, c]c ∣∣ Wt−1 = x

]
,

which, by Markov’s inequality,

≤
{

(γ/c)2e−2λxVar
[
Yt | Wt−1 = x

]
, x ≥ 0

(γ/c)e−λxE
[∣∣Yt−1 − ex

∣∣ ∣∣ Wt−1 = x
]
, x < 0

≤
{

(γ/c)2e(1−2λ)x, x ≥ 0
2(γ/c)e(1−λ)x, x < 0

≤
{

(γ/c)2, x ≥ 0
2(γ/c), x < 0.

Thus, given ε > 0 choose c large such that max
(
2(γ/c), (γ/c)2

)
< ε. The result follows from

Proposition 5.1.✷

Uniqueness: λ = 1.
Under this assumption on λ, we are able to establish uniqueness of the stationary distri-
bution. To accomplish this we shall show that the process {Wt} is aperiodic and satisfies
Doeblin’s condition. It then follows from Theorem 16.2.3 of Meyn and Tweedie (1993) that
{Wt} is uniformly ergodic. We first begin with a statement of Doeblin’s condition:

There exists a probability measure ν with the property that for some m ≥ 1, ε > 0, and
δ > 0

ν(B) > ε =⇒ Pm(x,B) ≥ δ, (10)

for every x ∈ X.

Proposition 5.3 The process {Wt} given in equation (9) satisfies Doeblin’s condition and
is strongly aperiodic. Hence, the process is uniformly ergodic.

Proof: In order to establish Doeblin’s Condition, we consider the two cases γ < 0 and γ > 0.
Case 1: γ < 0
¿From (9) with λ = 1, one can see thatWt = β−γ+γYt−1e

Wt−1 ≤ β−γ. Define the measure
ν to have unit point mass at {β − γ}. In order to verify (10), it suffices to only consider
Borel sets B with β − γ ∈ B. Then, for all x ≤ β − γ,

P (x,B) = P (Wt ∈ B | Wt−1 = x)

≥ P (Wt = β − γ | Wt−1 = x)

= P (Yt−1 = 0 | Wt−1 = x)

= e−e
x

≥ e−e
β−γ

,

which yields (10) with m = 1.
Case 2: γ > 0
For γ > 0, Wt has a lower bound of β − γ and hence, the state space for Wt is a subset of
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[β − γ,∞). As in Case 1, we will take the measure ν to have unit mass at {β − γ}. Let
C = [β − γ,max(ε, β + γ)], where ε > 0. Then, for all x ∈ C and Borel sets B containing
β − γ,

P (x,B) = P (Wt ∈ B | Wt−1 = x)

≥ P (Wt = β − γ | Wt−1 = x)

= P (Yt−1 = 0 | Wt−1 = x)

= e−e
x

≥ e−e
max(ε,β+γ)

:= δ1,

and

P 2(x,B) ≥ P (Wt+1 = β − γ,Wt = β − γ | Wt−1 = x)

≥ δ21.

On the other hand if x /∈ C, then x > max(ε, β + γ) and we have

P (x,C) = P (Wt ∈ C | Wt−1 = x)

≥ P (β − γ ≤ Wt ≤ β + γ | Wt−1 = x)

= P (|Wt − β| ≤ γ | Wt−1 = x)

≥ 1− γ−2V ar (Wt | Wt−1 = x) (by Chebyshev’s Inequality)

= 1− γ−2γ2e−x

≥ 1− e−max(ε,β+γ) := δ2.

Therefore,

P 2(x,B) = P (Wt ∈ B | Wt−2 = x)

≥ P (Wt ∈ B,Wt−1 ∈ C | Wt−2 = x)

=
∑
y∈C

P (Wt ∈ B,Wt−1 = y | Wt−2 = x)

=
∑
y∈C

P (Wt ∈ B | Wt−1 = y)P (Wt−1 = y | Wt−2 = x)

≥ δ1P (Wt−1 ∈ C | Wt−2 = x)

≥ δ1δ2.

Thus, Doeblin’s condition is also satisfied for the case γ ∈ (0, 1].
For both cases, i.e., 0 < |γ| ≤ 1, the chain {Wt} is also strongly aperiodic since

P (β − γ, β − γ) = P (Wt = β − γ | Wt−1 = β − γ)
= P (Yt−1 = 0 | Wt−1 = β − γ)
= e−e

β−γ

> 0.

As remarked earlier, we conclude that {Wt} must be uniformly ergodic. ✷
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The result given above for λ = 1 extends to the case

Wt = β +

p∑
i=1

γi(Yt−i − eWt−i)e−Wt−i

by considering the p−variate Markov chain (Wt,Wt−1, . . .Wt−p+1).

5.2 Maximum Likelihood Calculations

In this section, we derive the remaining expressions needed for the maximum likelihood
calculations of Section 3.1. Recall,

∂L

∂δ
=

n∑
t=1

(Yt − µt)∂Wt

∂δ
=

n∑
t=1

etµ
λ
t

∂Wt

∂δ
,

and
∂2L

∂δ∂δT
=

n∑
t=1

[
etµ

λ
t

∂2Wt

∂δ∂δT
− µt∂Wt

∂δ

∂Wt

∂δT

]
.

First we note that
∂et
∂δ

= −[e(1−λ)Wt + λet]
∂Wt

∂δ
.

Also
∂Wt

∂δ
= xTt

∂β

∂δ
+
∂Zt
∂δ
,

where

Zt =
∞∑
i=1

τiet−i

= (φ(B)−1θ(B)− 1)et,

so that

Zt =

p∑
i=1

φi(Zt−i + et−i) +
q∑
i=1

θiet−i.

It follows that

∂Zt
∂δ

=

p∑
i=1

∂φi
∂δ

(Zt−i + et−i) +
p∑
i=1

φi

(
∂Zt−i
∂δ

+
∂et−i
∂δ

)

+

q∑
i=1

∂θi
∂δ
et−i +

q∑
i=1

θi
∂et−i
∂δ

.

In particular:

∂Zt
∂βa

=

p∑
i=1

φi

(
∂Zt−i
∂βa

+
∂et−i
∂βa

)
+

q∑
i=1

θi
∂et−i
∂βa

,
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∂Zt
∂φa

= Zt−a + et−a +
p∑
i=1

φi

(
∂Zt−i
∂φa

+
∂et−i
∂φa

)
+

q∑
i=1

θi
∂et−i
∂φa

and
∂Zt
∂θa

=

p∑
i=1

φi

(
∂Zt−i
∂θa

+
∂et−i
∂θa

)
+ et−a +

q∑
i=1

θi
∂et−i
∂θa

.

The second derivatives are then

∂2et

∂δ∂δT
= −[e(1−λ)Wt + λet]

∂2Wt

∂δ∂δT

−
[
∂Wt

∂δ
(1− λ)e(1−λ)Wt + λ

∂et
∂δ

]
∂Wt

∂δT

and
∂2Wt

∂δ∂δT
=
∂2βT

∂δ∂δT
xt +

∂δ2Zt

∂δ∂δT
=
∂δ2Zt

∂δ∂δT
,

in which

∂2Zt

∂δ∂δT
=

p∑
i=1

[
∂φi
∂δ

(
∂Zt−i
∂δT

+
∂et−i
∂δT

)
+

(
∂Zt−i
∂δ

+
∂et−i
∂δ

)
∂φi

∂δT

]

+

p∑
i=1

φi

(
∂2Zt−i
∂δ∂δT

+
∂2et−i
∂δ∂δT

)
+

q∑
i=1

[
∂θi
∂δ

∂et−i
∂δT

+
∂et−i
∂δ

∂θi

∂δT

]

+

q∑
i=1

θi
∂2et−i
∂δ∂δT

.

5.3 Asymptotic Distribution of MLE

In this section we establish asymptotic properties of the MLEs given in Section 3.1 for the
specific case of the basic model with λ = 1, p = 1 and xTt β = β. Uniform ergodicity
(as established in Proposition 5.3) and stationarity of {Wt} are the key ingredients of the
argument.

First replace Wt(δ) by

W †
t (δ) = Wt(δ0) + (δ − δ0)

T Ẇt,

where Ẇt =
∂Wt(δ0)

∂δ
and define a linearized form of the likelihood as

L†(δ) =
n∑
t=1

(
YtW

†
t (δ)− eW

†
t (δ)

)
.

Unless otherwise indicated, Wt and Ẇt are evaluated at δ0. Now, re-parameterizing with
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the transformation u = n1/2(δ − δ0), we have

R†
n(u) := L†(δ0)− L†(δ0 + un

−1/2)

= −uTn−1/2

n∑
t=1

YtẆt +
n∑
t=1

eWt

(
eu

Tn−1/2Ẇt − 1
)

= −uTn−1/2

n∑
t=1

(
Yt − eWt

)
Ẇt +

n∑
t=1

eWt

(
eu

Tn−1/2Ẇt − 1− uTn−1/2Ẇt

)
. (11)

Note that R†
n(u) is a convex function of u. The first term in (11) can be written as

−uTHn where

Hn := n−1/2

n∑
t=1

ete
WtẆt

and et =
(
Yt − eWt

)
/eWt . Now this is a sum of a triangular array of vector martingale

differences
ηnt = n

−1/2etbt,

where
bt = Ẇte

Wt = Ẇtµt.

In order to apply a martingale central limit theorem, it suffices to show (see Corollary 3.1 of
Hall and Heyde [8]) that

n∑
t=1

E(ηntη
T
nt | Ft−1)

P−→ V (δ0), (12)

where Ft = σ(Ys, s ≤ t), and, for all ε > 0,

n∑
t=1

E
(
ηntη

T
ntI(|ηnt| > ε) | Ft−1

) P−→ 0. (13)

We then have
Hn

d→ N(0, V ),

where

V = lim
n→∞

1

n

n∑
t=1

∂Lt(δ0)

∂δ

∂Lt(δ0)

∂δT
= lim

n→∞
1

n

n∑
t=1

e2t e
2WtẆtẆ

T
t .

The second term in (11) is

uT

[
(2n)−1

n∑
t=1

eWtẆtẆ
T
t

]
u+Op

(
n−3/2

n∑
t=1

eWt(uT Ẇt)
3

)

in which the second term converges to zero. Hence

R†
n(u)

d→ R(u) := −uTN(0, V ) + uTV u/2,
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where

V = lim
n→∞

1

n

n∑
t=1

eWtẆtẆ
T
t .

It then follows that û†n =argminR†
n(u)

d→ û =argminR(u). From the form of R(u), we see
that û = V −1N(0, V ) ∼ N(0, V −1).

Next, we pass the convergence of R†
n(u) onto Rn(u) := L(δ0)−L(un−1/2+δ0). Specifically,

it suffices to show that L(un−1/2 +δ0)−L†(un−1/2 +δ0)
P→ 0 uniformly for |u| ≤ K.Writing

δ = un1/2 + δ0, we have

L(δ)− L†(δ)

=
n∑
t=1

YtWt(δ)−
n∑
t=1

eWt(δ) −
n∑
t=1

Yt

(
Wt + u

Tn−1/2Ẇt

)
+

n∑
t=1

eWt+uTn−1/2Ẇt

=
n∑
t=1

Yt

(
Wt(δ)−Wt − uTn−1/2Ẇt

)
−

n∑
t=1

(
eWt(δ) − eWt+uTn−1/2Ẇt

)

=
n∑
t=1

(
Yt − eWt

) (
Wt(δ)−Wt − uTn−1/2Ẇt

)

−
n∑
t=1

[
eWt(δ) − eWt+uTn−1/2Ẇt − eWt

(
Wt(δ)−Wt − uTn−1/2Ẇt

)]
. (14)

The first term in equation (14) is

An =
n∑
t=1

(
Yt − eWt

) (
Wt(δ)−Wt − uTn−1/2Ẇt

)

= uT (2n)−1

[
n∑
t=1

(
Yt − eWt

)
Ẅt +

n∑
t=1

(
Yt − eWt

) (
Ẅt(δ

∗)− Ẅt

)]
u.

Since (Yt − eWt)Ẅt is stationary and E[(Yt − eWt)Ẅt] = 0, An → 0 uniformly for |u| ≤ K

and for all K < ∞, where ‖δ∗ − δ0‖ ≤ ‖δ − δ0‖ assuming Ẅt(δ
∗) − Ẅt

P→ 0. The second
term is

Bn = −
n∑
t=1

[
eWt(δ) − eWt+uTn−1/2Ẇt − eWt

(
Wt(δ)−Wt − uTn−1/2Ẇt

)]
,
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which after expanding eWt(δ), eu
Tn−1/2Ẇt and Wt(δ) in a Taylor series is

= −
n∑
t=1

[
eWt + uTn−1/2eWtẆt + u

T (2n)−1eWt(δ
∗
1)

(
Ẇ 2

t (δ
∗
1) + Ẅt(δ

∗
1)

)
u

−eWt

(
1 + uTn−1/2Ẇt + e

c(2n)−1uT Ẇ 2
t u

)
−eWt

(
Wt + u

Tn−1/2Ẇt + u
T (2n)−1Ẅt(δ

∗
2)u−Wt − uTn−1/2Ẇt

)]

= −uT (2n)−1

{
n∑
t=1

(
eWt(δ

∗
1) − eWt

) (
Ẇ 2

t (δ
∗
1) + Ẅt(δ

∗
1)

)

+
n∑
t=1

eWt

[(
Ẇ 2

t (δ
∗
1)− ecẆ 2

t

)
+

(
Ẅt(δ

∗
1)− Ẅt(δ

∗
2)

)]}
u,

where 0 ≤ c ≤ uT

2n
Ẇt(δ0) and

∥∥δ∗
j − δ0

∥∥ ≤ ‖δ − δ0‖ for j = 1, 2. Assuming each average
in the above expression converges to a finite quantity in probability, we have that Bn → 0

uniformly on compact subsets for u. Therefore, L(δ)−L†(δ) P→ 0 uniformly for |u| ≤ K, for
all K <∞ and we obtain the desired result:

Rn(u)
d→ R(u) := −uTN(0, V ) + uTV u/2.

We now consider establishing conditions (12) and (13). ¿From (9) we see that

Ẇt =

[ ∂Wt

∂γ
∂Wt

∂β

]
=

[
Ẇt,1

Ẇt,2

]

=

[
Yt−1e

−Wt−1 − 1− γYt−1e
−Wt−1Ẇt−1,1

1− γyt−1e
−Wt−1Ẇt−1,2

]

=

[
Ut + AtẆt−1,1

1 + AtẆt−1,2

]
=

[
Ut +

∑∞
i=1At · · ·At−i+1Ut−i

1 +
∑∞

i=1At · · ·At−i+1

]
, (15)

where Ut = Yt−1e
−Wt−1 − 1 and At = −γYt−1e

−Wt−1 . Since Ẇt is a function of {Ws, s ≤ t},
it also is a strictly stationary ergodic process. Now,

n∑
t=1

E(ηntη
T
nt | Ft−1) =

1

n

n∑
t=1

eWtẆtẆ
T
t ,

which is a function of two stationary ergodic processes, {Wt} and {Ẇt}. By the ergodic
theorem we then have

1

n

n∑
t=1

eWtẆtẆ
T
t

a.s.−→ V = E(eW1Ẇ1Ẇ
T
1 )

if E|eWt(δ0)ẆtẆ
T
t | < ∞. Conditions under which this holds will now be derived for a

particular choice of parameter values of β and γ. It suffices to show E|eWtẆ 2
t,i| <∞, i = 1, 2.

First we will consider the case i = 1. Using ‖ · ‖2 to denote the L2 norm, we have from (15),

‖eWt/2Ẇt,1‖2 ≤ ‖eWt/2Ut‖2 +
∞∑
i=1

‖eWt/2At · · ·At−i+1Ut−i‖2.
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Using properties of the moment generating function for a Poisson distributed random variable
and the fact that the process Wt is bounded below by β − γ, we have

‖eWt/2Ut‖2
2 = E

[
eβ−γeγYt−1e

−Wt−1
(Yt−1e

−Wt−1 − 1)2
]

= eβ−γE
[
E

(
eγYt−1e

−Wt−1
(Y 2

t−1e
−2Wt−1 − 2Yt−1e

−Wt−1 + 1) | Wt−1

)]
= eβ−γE

[
e−Wt−1eγe

−Wt−1
ee

Wt−1 (eγe
−Wt−1−1) + e2γe

−Wt−1
ee

Wt−1 (eγe
−Wt−1−1)

−2eγe
−Wt−1

ee
Wt−1 (eγe

−Wt−1−1) + ee
Wt−1 (eγe

−Wt−1−1)

]

= eβ−γE
[
ee

Wt−1 (eγe
−Wt−1−1)

[
1 + eγe

−Wt−1
(
eγe

−Wt−1
+ e−Wt−1 − 2

)]]

≤ eβ−γee
β−γ(eγe−(β−γ)−1)

[
1 + eγe

−(β−γ)
(
eγe

−(β−γ)

+ e−(β−γ) − 2
)]

:= c21,

E
[
eWtA2

t | Ft−1

]
= E

[
γ2eβ−γY 2

t−1e
−2Wt−1eγYt−1e

−Wt−1 | Wt−1

]
= γ2eβ−γ

[
e−Wt−1eγe

−Wt−1
ee

Wt−1 (eγe
−Wt−1−1) + e2γe

−Wt−1
ee

Wt−1 (eγe
−Wt−1−1)

]

≤ γ2eβ−γee
β−γ(eγe−(β−γ)−1)eγe

−(β−γ)
(
eγe

−(β−γ)

+ e−(β−γ)
)
:= b21,

E
[
A2
t | Ft−1

]
= E

[
γ2Y 2

t−1e
−2Wt−1 | Wt−1

]
= γ2

(
1 + e−Wt−1

)
≤ γ2(1 + e−(β−γ))

and
E

[
U2
t | Ft−1

]
= E

[
Y 2
t−1e

−2Wt−1 − 2Yt−1e
−Wt−1 + 1 | Wt−1

]
= e−Wt−1

≤ e−(β−γ) := b22.

Applying these results, ‖eWt/2At · · ·At−i+1Ut−i‖2
2 may be calculated recursively:

‖eWt/2At · · ·At−i+1Ut−i‖2
2 = E

(
eWtA2

t · · ·A2
t−i+1U

2
t−i

)
= E

[
E

(
eWtA2

t · · ·A2
t−i+1U

2
t−i | Ft−1

)]
= E

[
A2
t−1 · · ·A2

t−i+1U
2
t−iE

(
eWtA2

t | Ft−1

)]
≤ b21E

[
E

(
A2
t−1 · · ·A2

t−i+1U
2
t−i | Ft−2

)]
= b21E

[
A2
t−2 · · ·A2

t−i+1U
2
t−iE

(
A2
t−1 | Ft−2

)]
≤ b21γ

2(1 + e−(β−γ))E
[
A2
t−2 · · ·A2

t−i+1U
2
t−i

]
...

≤ b21
(
γ2(1 + e−(β−γ))

)i−1
E [E (Ut−i | Ft−i−1)]

≤ b21b
2
2

(
γ2(1 + e−(β−γ))

)i−1
.
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Therefore,

‖eWt/2Ẇt,1‖2 ≤ c1 + c2
∞∑
i=1

γi−1(1 + eγ−β)(i−1)/2,

where c2 = b1b2.

Likewise,

‖eWt/2Ẇt,2‖2 ≤ ‖eWt/2‖2 +
∞∑
i=0

‖eWt/2At · · ·At−i‖2

≤ c3 + c4

∞∑
i=1

γi−1(1 + eγ−β)(i−1)/2,

where c3 =
[
eβ−γee

β−γ(eγe−(β−γ)−1)
]1/2

and c4 =
[
γ2eβ−γee

β−γ(eγe−(β−γ)−1)eγe
−(β−γ)

(
eγe

−(β−γ)
+ e−(β−γ)

)]1/2

.

Therefore, E|eWtẆtẆ
T
t | will be finite for γ(1 + eγ−β)1/2 < 1.

The convergence required in condition (13) is easily established using condition (12) and
the stationarity of {Wt}. Now,

n∑
t=1

E
(
ηntη

T
ntI(|ηnt > ε)||Ft−1

)

=
1

n

n∑
t=1

E
[
(Yt−1 − eWt−1)2ẆtẆ

T
t I(|(Yt−1 − eWt−1)Ẇt| > ε

√
n)|Ft−1

]

≤ 1

n

n∑
t=1

E
[
(Yt−1 − eWt−1)2ẆtẆ

T
t I(|(Yt−1 − eWt−1)Ẇt| > M)|Ft−1

]
n→∞−→ E

[
(Y1 − eW1)2Ẇ1Ẇ

T
1 I(|(Y1 − eW1)Ẇ1| > M)

]
−→ 0 asM → ∞.

Therefore, the asymptotic distribution of the maximum likelihood estimates is N(0, V −1)
where

V = lim
n→∞

1

n

n∑
t=1

eWt(δ0)ẆtẆ
T
t .
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