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Testing for a single hange point in the distribution for independent observations has beenbroadly studied in the literature. The multiple hange point ase, a muh more diÆult problem,has also been onsidered. A review and an extensive list of referenes an be found in Shaban(1980); Zaks (1983); Krishnaiah and Miao (1988); Bhattaharya (1994); and Cs�org}o and Horv�ath(1997).In time series, various versions of the hange point problem has also been studied. Piard(1985); Davis, Huang and Yao (1995) and Kitagawa, Takanami and Matsumoko (2001) studied thesingle hange point problem in whih the piees are assumed to be autoregressive (AR) proesses.Here a hange ours if one of the AR parameters, inluding the onstant term, or white noisevariane hanges. Tong's threshold models (see Tong, 1990) also inlude AR models with hangesin parameter values. However, these hanges are triggered by lagged values of time series ratherthan at spei�ed time points.Multiple hange points are onsidered in Kitagawa and Akaike (1978) and Davis, Lee andRodriguez-Yam (2005) where the observed non-stationary \linear" series is deomposed into ARproesses. A more general pieewise stationary proess, for whih the pieewise AR proess is apartiular ase, is onsidered in Ombao, Raz, Von Sahs and Malow (2001). MCulloh and Tsay(1993); Djuri� (1994), Lavielle (1998) and Punskaya et al. (2002) follow a Bayesian approah to thehange point problem of time series. Cs�org}o and Horv�ath (1997) devote a hapter to the hangepoint problem for dependent observations.In this paper we onsider the multiple hange point problem for a lass of non-stationaryproesses in whih the piees are modeled by a spei�ed parametri lass of stationary time series.More preisely, let �j, j = 1; : : : ; m, denote the breakpoints between the j-th and (j+1)-th segmentsrespetively, and set �0 = 1 and �m+1 = n + 1. It is assumed that the j-th piee of the time seriesfYtg is modeled by a stationary time series fXt;jg; i.e.,Yt = Xt;j ; �j�1 � t < �j ; (1)where the piees fXt;jg, j = 1; : : : ;m+ 1 are independent, fXt;jg; t = 0;�1;�2; : : :, has stationarydistribution p�j (�), and �j is a member of a parametri spae �j with �j 6= �j+1, j = 1; : : : ;m.The following examples illustrate this formulation.2



Example 1 (Segmented AR proess) Consider the ase when fXt;jg is the AR(pj) proessXt;j = �j0 + �j1Xt�1;j + : : :+ �j;pjXt�pj ;j + �j"t; (2)where the noise sequene f"tg is iid N(0, 1). If the autoregressive order pj is assumed unknown,then the parameter �j beomes (pj, �j , �2j ), where �j = (�j0; : : : ; �j;pj ) is the vetor of AR pa-rameters. This setup has been onsidered by Kitagawa and Akaike (1978) and Davis, et al. (2005).If pj is known, then �j = (�j , �2j ).Example 2 (GARCH(p,q) proess) In this example, the j-th piee of the proess fYtg is mod-eled as a generalized autoregressive onditionally heterosedasti (GARCH) proess introdued byBollerslev (1986); i.e., Yt = Xt;j ; �j�1 � t < �j ;where for eah j, fXt;jg is the GARCH(pj , qj) model:Xtj = �tj"t:In the above f"tg is iid N(0, 1) and �tj is a positive funtion of Xtj given by�2tj = �0;j + �j1X2t�1;j + : : : + �j;pjX2t�pj ;j + �j1�2t�1;j + : : :+ �j;qj�2t�qj ;j; �j�1 � t < �j; (3)subjet to the onstraints �0;j > 0, �i;j � 0, i = 1; : : : ;m+1, and �1;j+: : :+�qj ;j+�1;j+: : :+�qj ;j <1. Assuming that the orders pj and qj are unknown, then �j = (pj , qj, �0;j , �j , �j), where �j and�j are the vetors of �j's and �j 's in (3), respetively.Example 3 (State spae model) The j-th piee of the time series fYtg is modeled by a state-spaemodel (SSM). If f�tg is the state proess, then the onditional distributionp(ytj�t; �t�1; : : : ; �1; yt�1; : : : ; y1) = p(ytj�t); �j�1 � t < �j ; (4)is assumed to belong to a known parametri family of distributions and the state proess f�tg isgiven by �t = Xtj ; �j�1 � t < �j ;where for eah j, fXtjg is the AR(pj) proess in (2). Assuming the order pj is unknown, the vetorof parameters beomes �j = (Æj; �j; �2j ), where Æj is the vetor of say qj parameters assoiated3



with the spei�ation of p(ytj�t), �j�1 � t < �j , and �j is the vetor of �j 's assoiated with theAR model in (2).Two state-spae models onsidered in this paper are the stohasti volatility model (SVM) andthe Poisson driven model (PDM); whih belong to the exponential family of distributions. Durbinand Koopman (1997) and Kuk (1999) onsider the following form for this familyp(ytj�t) = e(zTt �+�t)yt�b(zTt �+�t)+(yt); (5)where zt is a vetor of ovariates observed at time t; � is a vetor of parameters; and b(�) and (�)are known real funtions.In this paper we fous on Examples 2 and 3; a more thorough treatment of Example 1 wasgiven in Davis, et al. (2005). The SVM and GARCH are popular models for analyzing log returnsof �nanial time series. The PDM is a frequently used model for time series of ounts. For example,Zeger (1988); Harvey and Fernandes (1989) and Davis, Dunsmuir and Wang (1998) have used thesemodels for modeling ounts of individuals infeted by a rare disease. Unlike Examples 1 and 2, thelikelihood of the SVM and PDM models do not have a losed form expression, whih makes theestimation of break points for these models omputationally hallenging.The problem of �nding a \best" ombination ofm, �j's and possibly the orders of the segmentedmodels an be treated as a model seletion problem of non-nested models. The best ombinationof these values are then found by optimizing a desired objetive funtion. Various seletion riteriahas been used in the literature for the hange point problem. For example, Kitagawa and Akaike(1978) and Kitagawa, et al. (2001) used the AIC riterion; Yao (1988) used the Bayesian informationriterion (BIC); and Lee (1995) and Liu, Wu and Zidek (1997) used modi�ed versions of BIC. Morereently Bai and Perron (1998, 2003) onsidered riteria based on squared-residuals, Lavielle (1998)and Gusta�son (2000) used maximum a posteriori (MAP) riterion; and Davis, et al. (2005) usedthe minimum desription length (MDL) priniple of Rissanen (1989).In this paper we adopt the MDL priniple. For even moderate values of n, optimization of thisriterion is not easy task. To solve this optimization problem we develop a geneti algorithm (GA)to �nd nearly optimal values.The rest of this paper is organized as follows. In Setion 2 we derive a general expression for4



the MDL and apply it to the pieewise state spae model. In Setion 3 we give an overview ofthe geneti algorithm and disuss its implementation to the segmentation problem. In Setion 4we study the performane of Auto-Seg via simulation and in Setion 5 the Auto-Seg proedure isapplied to the S&P 500 series.2 Model SeletionDenote by M the lass of pieewise proesses de�ned in (1). In this setion we �nd the odelength of data assoiated with members F 2 M. If CLF(z) denote the ode length of an objet zassoiated with model F , then by the two-part desription length method of Rissanen (1989) (seealso Lee, 2001) it is given by CLF (y) = CLF (F̂) + CLF(êjF̂);where y = (y1; y2; : : : ; yn) is the observed data, CLF (F̂) denotes the ode length of the �tted modelF̂ and CLF(êjF̂) is the ode length of the orresponding residuals (onditional on the �tted modelF̂). The MDL riterion selets the model that yields the minimum length of a ode used to enodethe observed data y.Reall that �j is the vetor of all model parameters in the j-th piee. It is onvenient topartition �j as �j = (�j ,  j), where �j and  j are the integer-valued and real-valued parametersin �j , respetively. For example, for the pieewise AR models in Example 1, �j denotes the ARorder of the j-th piee while  j denotes the orresponding AR oeÆients. We assume that one�j is spei�ed,  j an be estimated via maximum likelihood estimation. The resulting estimatewill be denoted as  ̂j. Finally let j and dj be the lengths of the vetors �j and  j , respetively.Sine F̂ is omposed of m, �j's, �j 's and  ̂j 's, we further deompose CLF (F̂) intoCLF(F̂) = CLF (m) +CLF (�1; : : : ; �m)+ CLF(�1) + : : :+ CLF(�m+1) + CLF( ̂1) + : : :+ CLF( ̂m+1):Let nj := �j � �j�1 denote the number of observations in the j-th segment of F̂ . Notie thatomplete knowledge of (�1; : : : ; �m) implies omplete knowledge of (n1; : : : ; nm+1), and vie versa,5



hene CLF (�1; : : : ; �m) = CLF (n1; : : : ; nm+1): In general, to enode an integer I whose value is notupper bounded, approximately log2 I bits are needed. Thus CLF(m) = log2m and CLF(�j) =Pjk=1 log2 �kj, where �kj is the k-th entry of �j . If there is no integer parameter in �j we de�neCLF (�j) := 0. On the other hand, if the upper bound, say IU , of I is known, approximatelylog2 IU bits are required. Sine all nj's are bounded by n, CLF (nj) = log2 n for all j. To alulateCLF ( ̂j), we use the following result of Rissanen: a maximum likelihood estimate of a real pa-rameter omputed from N observations an be e�etively enoded with 12 log2N bits. Sine eahof the dj parameters of  ̂j is omputed from nj observations,CLF( ̂j) = dj2 log2 nj:Thus, we obtainCLF(F̂) = log2m+ (m+ 1) log2 n+ m+1Xj=1 jXk=1 log2 �kj + m+1Xj=1 dj2 log2 nj:Now, let Lj( j ;yj) be the observed likelihood of the j-th piee. As demonstrated by Rissanen(1989), the ode length for the residuals ê is given by the negative of the log likelihood of the �ttedmodel F̂ . This results in the following MDL expression for CLF(y)MDL(m; �1; : : : ; �m; �1; : : : ; �m+1) = logm+ (m+ 1) log n+ m+1Xj=1 jXk=1 log �kj+m+1Xj=1 dj2 log nj � m+1Xj=1 L( ̂j ;yj); (6)where the last summand is obtained from the assumption that the piees are independent. Notiethat in (6) we have hanged the logarithm to base e rather than base 2. The best �tting model fory is then the minimizer of MDL(m; �1; : : : ; �m; �1; : : : ; �m+1) in (6).Example 4 (State spae model (SSM)) Reall from Example 3 that �j = (pj ; Æj ; �j ; �2j ). Let usassume that pj is the only integer parameter in �j. Then �j = (pj) and  j = (�j ; Æj; �2j ). Thus,j = 1, dj = pj + qj + 2, where qj is de�ned in Example 3, andm+1Xj=1 jXk=1 log �kj = m+1Xj=1 log pj; and m+1Xj=1 dj2 log nj = m+1Xj=1 pj + qj + 22 lognj:6



Now, let yj := (yt; : : : ; yt+nj�1) and �j := (�t; : : : ; �t+nj�1), �j�1 � t < �j be the vetor ofobservations and states of the j-th piee of F̂ . Also, let �j := (�; �2j ). The likelihood orrespondingto this piee based on the omplete data (yj ;�j) beomesL( j;yj ;�j) = p(yj j�j; Æj)p(�j j�j)=  njYt=1 p(yt;jj�t;j ; Æj)! jVj j1=2e�(�j��j)TVj(�j��j)=2=(2�)nj=2;where V�1j := ovf�jg, �j = j=(1��1;j � : : :��pj ;j)1 is the vetor of means of the state proess,and 1 is a vetor of ones. From (7) it follows that the likelihood of the observed data is given bythe produt of nj-fold integralsL( 1; � � � ; m+1;y) = m+1Yj=1 Z L( j;yj ;�j)d�j : (7)Exept in simple ases, the integrals in (7) annot be omputed expliitly. In this paper weuse the approximation La( j;yj) to the likelihood given in Davis and Rodriguez-Yam (2005).Briey, this approximation is based on a seond order Taylor series expansion of log p(yj j�j; Æj) ina neighborhood of the posterior mode of p(�j jyj ; j). To simplify notation, for the j-th piee we\drop" the subindex j that appears in yj , �j, et. Now, let `(�;yj�) := log p(yj�;�) and R(�;��)be the remainder of its seond order Taylor series expansion. Also, let p(�jy; ) be the posteriordistribution of � and let �� the mode of this distribution. Sine p(�jy; ) / p(yj�; Æ)p(�j�) =L( ;y;�) the vetor of modes �� an be found by maximizing the omplete likelihood. Davis andRodriguez-Yam (2005) found the following approximation to the posterior distribution p(�jy; )pa(�jy; ) = �(�;��; (K� +V)�1); (8)where �(:;�;�) is the multivariate normal density with mean � and ovariane matrix � andK� := � �2����T `(�;yj�)j�=�� :The likelihood then admits the fatorizationL( ;y) = La( ;y)Era( );where Era( ) := R eR(�;��)pa(�jy; )d� andLa( ;y) := jVj1=2jK� +Vj1=2 eh�� 12 (����)TV(����): (9)7



Here h� := `(�;yj�)j�=�� . Ignoring the term eR(�;��) in Era( ), an approximation to the likeli-hood is given by (9). For the SVM and PDM models, the estimates obtained by maximizing thisapproximation funtion were found to be lose to the Monte Carlo maximum likelihood estimatesgiven for example by Durbin and Koopman (1997) and Sandmann and Koopman (1998).Replaing L( ;y) with La( ;y), equation (6) then beomesMDL(m; �1; : : : ; �m; p1; : : : ; pm+1) = logm+ (m+ 1) log n+ m+1Xj=1 log pj+ m+1Xj=1 pj + qj + 22 lognj � m+1Xj=1 La( ̂j;yj); (10)where  ̂j is the optimizer of (9). The best �tting model for y is then the minimizer of MDL(m,�1,: : :, �m, p1; : : : ; pm+1) in (10).3 Optimization Using the Geneti Algorithm3.1 Geneti AlgorithmTo give an idea of how the geneti algorithm (GA) works for our segmentation problem, we desribehow to optimize the MDL in (10) for the state spae model from Example 4. The implementationdetails for other examples are similar.Even for moderate values of n, the optimization of MDL(m, �1; : : :, �m, p1; : : :, pm+1) withrespet to m, �1, : : :, �m, p1, : : :, pm+1 is not easy. A proedure that we will use to overome thisproblem is the GAs, a lass of evolutionary algorithms, �rst proposed by Holland (1975). Broadlyspeaking GAs are a randomized searh tehnique that mimi natural seletion to �nd the maximumor high values of an objetive funtion. Among others, Chatterjee, et al. (1996), Gaetan (2000)and Lee (2002) have applied GAs to statistial problems with good results.The basi omponent of the GA are strutures, typially named hromosomes, whih are usuallyrepresented as vetors . While the basis of the anonial GA an be found in Holland (1975) andEshelman (2000), we give a brief summary here. An initial population of M hromosomes areseleted (usually at random) and to eah individual a probability, whih an be proportional to itsobserved �tness, is assigned. Then an o�spring is reated by mating individuals seleted aording8



to the assigned probabilities. Two typial geneti operators (mating) are rossover and mutation.The new o�spring and the parents are merged to reate a new population (generation) of size M .The proess is iterated to reate new generations. The iterations are stopped one a onvergeneriterion is met.De Jong (1975) suggests to return the best individual found in suessive generations. This isreferred to as an elitist step whih guarantees monotoniity of the algorithm.There are many variations of the anonial GA. For example, parallel implementations an beapplied to speed up the onvergene rate as well as to redue the hane of onverging to sub-optimalsolutions (Forrest 1991; Alba and Troya 1999). In this paper we implement the Island Model.Instead of running only one searh in one giant population, the island model simultaneously runsNI (Number-of-Islands) anonial GAs in NI di�erent sub-populations. Periodially, a number ofindividuals are allowed to migrate amongst the islands aording to some migration poliy. Themigration an be implemented in numerous ways (Martin, Lienig and Cohoon 2000; Alba andTroya 2002). In this paper, we adopt the following migration poliy: after every Mi generations,the worst MN hromosomes from the j-th island are replaed by the best MN hromosomes fromthe (j � 1)-th island, j = 1; : : : ; NI. For j = 1 the best MN hromosomes are migrated from theNI-th island. In all of our simulations, the number of islands (NI) was set to either 10 or 20,Mi = 5, MN = 2 and a sub-population size of 10 or 20.3.2 Implementation DetailsThis setion provides details of our implementation of the GA tailored to the pieewise state spaemodel.Chromosome Representation: The hromosome representation is given by the vetor Æ =(Æ1; : : : ; Æn) of length n with gene valuesÆt = 8><>: �1; if there is no break at time t,pj; the AR order of the j-th piee.Furthermore, the following \minimum span" onstraint is imposed on Æ: if the AR order of a ertainpiee in F is p, then this piee is made to have at least mp observations. This prede�ned integer9



mp is hosen to guarantee that there are enough observations for obtaining quality estimates forthe parameters of the segment modeled as a state spae proess with AR order equal to p. Also,in the implementation of the algorithm an upper bound P0 on the order pj 's of the AR proessesis imposed.Initial Population Generation: Eah individual of the initial population is seleted randomly,aordingly to the following strategy: First, selet a value for p1 from f0; 1; : : : ; P0g with distribution�p, p = 0; 1; : : : ; P0 and set Æ1 = p1; i.e., the �rst AR piee is of order p1. Then the next mp1�1genes Æi's (i.e., Æ2 to Æmp1 ) are set to �1, so that the above minimum span onstraint is imposed forthis �rst piee. Now for the next gene Æmp1+1 in line, it will either be initialized as a break point,or it will be assigned �1 with probability 1 � �B. If Æmp1+1 is assigned the value p2, where p2 israndomly drawn from f0; 1; : : : ; P0g with distribution �p, p = 0; 1; : : : ; P0, then this implies that theseond AR proess is of order p2, and the next mp2�1 Æi's will be assigned �1 so that the minimumspan onstraint is enfored. On the other hand, if Æmp1+1 is assigned �1, the initialization proesswill move to the next gene in line and a deision should be made if this gene should be a \breakpoint" gene or a \�1" gene. This proess ontinues in a similar fashion, and a random hromosomeis generated when the proess hits the last gene Æn. We use �B = minfm1; : : : ;mP0g=n.Crossover and Mutation: One a set of initial random hromosomes is generated, new hro-mosomes are generated by either a rossover or a mutation operation. We set the probability foronduting a rossover operation as 1�min(mp)=n.For the rossover operation, two parent hromosomes are hosen from the urrent populationof hromosomes. These two parents are hosen with probabilities inversely proportional to theirranks sorted by their MDL values. In other words, hromosomes that have smaller MDL valueswill have a higher hane of being seleted. From these two parents, the gene values Æi's of thehild hromosome will be inherited in the following manner. Firstly for t = 1, Æt will take on theorresponding Æt value from either the �rst or the seond parent with equal probabilities. If thisvalue is �1, then the same gene{inheriting proess will be repeated for the next gene in line (i.e.,Æt+1). If this value is not �1, then it is a non-negative integer pj orresponding the AR order ofthe urrent piee. In this ase the minimum span onstraint will be imposed (i.e., the next mpj � 110



Æt's will be set to �1), and the same gene{inheriting proess will be applied to the next availableÆt. For mutation one hild is reprodued from one parent. Again, this proess starts with t = 1,and every Æt (subjet to the minimum span onstraint) an take on one of the following threepossible values: (i) with probability �P it will take the orresponding Æt value from the parent, (ii)with probability �N it will take the value �1, and (iii) with probability 1 � �P � �N , it will takethe a new randomly generated AR order pj. In this paper we set �P = 0:3 and �N = 0:3.Delaration of Convergene: Reall that we adopt the island model in whih migration isallowed for every Mi generations. At the end of eah migration the overall best hromosome isnoted. If this best hromosome does not hange for 10 onseutive migrations, or the total numberof migrations exeeds 20, this best hromosome is taken as the solution to this optimization problem.4 Simulations4.1 Finanial time seriesIn this setion the performane of Auto-Seg is evaluated via simulation when the GARCH modelsintrodued in Example 2 are used to study hanges in the dynamis of returns of �nanial assets.The setup of this simulation is similar to that of Andreou and Ghysels (2002), who onsider pieewiseproesses. For these models, the piees are onsidered to be GARCH(1,1) models. When m = 1,we have a two piee GARCH(1,1) model given byYt;k = �t;k"t; k = 1; 2where �2t;k = !k + �kY 2t�1;k + �k�2t�1;k; (11)and f"tg � iid N(0; 1). Eah two-pieewise proess has a break at �1 = 501 with a total sample sizeof n=1000. For eah data generation proess, only one of the �k's or the !k's are modi�ed fromthe GARCH model in the �rst segment while the other parameters remain unhanged (see olumnlabeled as Model parameters in Table 1). For ompleteness, the ase of no breaks (i.e., the seondpiee has the same parameters as the �rst piee) is inluded for eah data generation proess.11



For a given two-pieewise proess, let �j, denote the vetor of parameters of the j-th piee,j = 1; 2. In the notation of Setion 2, �j =  j, and sine the orders are �xed at pj = qj = 1, theMDL is given byMDL(m; �1; : : : ; �m) = logm+ (m+ 1) log n+ m+1Xj=1 lognj � m+1Xj=1 Lq( ̂j;yj); (12)where Lq( j ;yj) is the quasi-likelihood funtion. The estimation of the parameters  j are obtainedusing the quasi-maximum likelihood method (Lee and Hansen, 1994). Note the oeÆient of log njin (12) should be 3/2 instead of 1. This is due to the strong orrelation between wj and the otherparameters whih suggests the number of free parameters should be dj = 2 instead of 3.Table 1 lists the relative frequenies of the number of breaks estimated by Auto-Seg obtainedfrom 500 repliates. The AG values were taken from Table III of Andreou and Ghysels (2002)and are also based on 500 repliates. Their estimates are based on the Lavielle and Moulinesleast-squares proedure (Lavielle and Moulines, 2000) applied to the squared values Y 2t and usingthe Bayesian Information (BIC) as a penalty funtion riterion. In the last olumn in this tablethe unonditional varianes of Yt;j, j = 1; 2, are shown. As a general rule, the \detetion rate"is inuened by the size of the hange of these varianes. The larger the hange the higher thedetetion rate. For example, in Senario C the inrease in variane is 0.33, whih is slightly largerthan 0.25, the inrease of variane of Senario G. For Auto-Seg the detetion rates are 0.122 and0.192, respetively, while for AG, these values are 0.140 and 0.240, respetively.For illustrative purposes, Figure 1 shows typial realizations of Senarios C and D de�nedin Table 1. Realizations of Senario C/D are shown in the top/bottom panels of this �gure. InFigure 1, the dotted vertial lines at 506 and 502 are the breaks found by Auto-Seg for these tworealizations. In Figure 2 two \versions" of volatilities (�̂2t 's) are shown for these realizations. In thetop panel, the estimated volatilities were obtained when the realization of Senario C is modeledas a single segment. The volatilities shown in the seond panel were obtained using a two-pieeGARCH(1,1) proess with a break at 506 found by Auto-Seg. In both panels, the Auto-Seg break isshown as the vertial dotted line. The plots in the last two panels are the analogous volatilities forthe realization of Senario D (the break is at 502). From Figure 2 we notie that for the realizationof Senario D the \one-piee" volatilities are not muh di�erent than the \two-piee" volatilities. It12



Table 1: Summary of Auto-Seg estimated break points based on 500 repliations when there is a break at 501of the sample in the GARCH proess. In the last olumn, the unonditional varianes of both piees (whenapplies) are shown. The AG values were taken from Table III, Andreou and Ghysels (2002). The length ofthe realizations is n = 1000. # of break points UnonditionalPieewise GARCH(1,1) senario 0 1 � 2 varianeNo break pointsA: (0.4, 0.1, 0.5) Auto-Seg 0.958 0.042 0.000 1.00AG 0.960 0.030 0.010B: (0.1, 0.1, 0.8) Auto-Seg 0.956 0.045 0.00 1.00AG 0.880 0.070 0.050Break in the dynamis of volatilityC: (0.4, 0.1, 0.5) ! (0.4, 0.1, 0.6) Auto-Seg 0.804 0.192 0.004 1.00, 1.33AG 0.720 0.240 0.040D: (0.4, 0.1, 0.5) ! (0.4, 0.1, 0.8) Auto-Seg 0.000 0.964 0.036 1.00, 4.00AG 0.000 0.950 0.050E: (0.1, 0.1, 0.8) ! (0.1, 0.1, 0.7) Auto-Seg 0.370 0.626 0.004 1.00, 0.50AG 0.210 0.750 0.030F: (0.1, 0.1, 0.8) ! (0.1, 0.1, 0.4) Auto-Seg 0.004 0.978 0.018 1.00, 0.20AG 0.000 0.720 0.280Break in the onstant of volatilityG: (0.4, 0.1, 0.5) ! (0.5, 0.1, 0.5) Auto-Seg 0.878 0.122 0.000 1.00, 1.25AG 0.850 0.140 0.010H: (0.4, 0.1, 0.5) ! (0.8, 0.1, 0.5) Auto-Seg 0.072 0.912 0.016 1.00, 2.00AG 0.000 0.940 0.060I: (0.1, 0.1, 0.8) ! (0.3, 0.1, 0.8) Auto-Seg 0.068 0.910 0.022 1.00, 3.00AG 0.000 0.940 0.060J: (0.1, 0.1, 0.8) ! (0.5, 0.1, 0.8) Auto-Seg 0.008 0.952 0.040 1.00, 5.00AG 0.000 0.860 0.140is not the ase for the realization of Senario C. However, notie that the volatilities for t between1 and 505 losely agree.Next, we onsider a di�erent setup in whih there is no break in the data generating proess.The �rst row of Figure 3 ontains a realization of Senario A de�ned in Table 1 and Auto-Segfound no breaks. For this realization, the MDL was omputed for a two piee model with breaksat true loations t, t = 25; 30; : : : ; 975. These MDL values are shown as the solid line in the seondrow of Figure 3 with minimum MDL value of 1,410.0 at loation 265. The horizontal dashedline in this row is the MDL with no breaks (1,404.8). In the third row the estimated volatilitiesbased on a single piee are shown. In the last row we show the estimated volatilities based ontwo GARCH(1,1) models with break at loation 265 (minimizer of two-piee MDL values shown inthe seond row). Notie that the one-piee estimated volatilities (third row) have smaller varianethan that based on two piee GARCH �t (fourth row). In the latter, the pattern of the volatilitiesin the �rst piee is unexpeted and does not agree with the realization in the �rst row. We alsoompared Auto-Seg to the sequential proedure proposed by Berkes, et al. (2004). To estimatehanges in the GARCH model, Berkes, et al. (2004) onstrut a stopping time based on quasi-13
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Figure 1: Typial realizations from Senarios C (top panel) and D (bottom panel) de�ned in Table 1. Thevertial dotted lines are the break points found by Auto-Seg.maximum likelihood estimates. For their simulation study they use GARCH(1,1) models with thefollowing sets of parameter valuesModel 1: !1 = 0:05, �1 = 0:4, �1 = 0:3 (�2Yt=0.17),Model 2: !1 = 0:05, �1 = 0:5, �1 = 0:0 (�2Yt=0.10),Model 3: !1 = 1:00, �1 = 0:3, �1 = 0:2 (�2Yt=2.00),where �2Yt is the unonditional variane of Yt. They also assume hanges from Model 1 to Model 2and from Model 1 to Model 3 at di�erent time loations (see Table 2). Notie that unlike Andreouand Ghysels (2002), this simulation study of Berkes, et al. (2004) allows for hanges to more thanone parameter. For example, when Model 1 hanges to Model 3 at t=250, all three parametersare altered. In Table 2 we show some basi statistis for both the breaks from Auto-Seg and thesequential method. For Auto-Seg, the statistis are from the estimated break points based on 500repliates. In the row labeled as BERKES, elementary statistis for the distribution of the �rst14
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Figure 2: Top two panels: Estimated volatilities of the realization of Senario C shown in Figure 1 underthe assumption of no break (�rst panel) and using the break (seond panel) found by Auto-Seg. The last twopanels are the analogous plots for the realization of Senario D.exeedane of the 10% ritial level, taken from Table 4 of Berkes, et al. (2004) are shown. ForAuto-Seg estimates, the proportion of repliates that ontain one break point is shown in the lastolumn (Freq). Observe that for the �rst three on�gurations, the proportion of repliates withone break is large, while for the last on�guration, this proportion is small. This is in agreementwith Berkes, et al. (2004) results, where the proportion of trajetories that rossed the 10% ritiallevel at t � 400 is only 0.071 while for t � 500 this proportion is 0.252 (values taken from Table 3of Berkes, et al., 2004). This is also in agreement with the results from Table 1. For this latter15
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Figure 3: First row: A typial realization of Senario A de�ned in Table 6. Seond row: two-piee MDLomputed in a grid of points (solid line) and one-piee MDL (horizontal dashed line). Third panel: estimatedvolatilities based on a single piee. Fourth row: estimated volatilities based on two piees by introduing anarti�ial break at loation 265.on�guration, the unonditional variane is 0.17 for the �rst piee and 0.10 for the seond piee.Sine the hange of variane is small, a high detetion rate is not expeted.For eah senario onsidered in Table 3, with the realizations onsidered in this table (i.e.,realizations for whih Auto-Seg found exatly one break), the parameters of eah piee de�ned bythe Auto-Seg break point were omputed. For eah senario, the average and standard error ofthese estimates are shown in Table 3. Also inluded in this table is the average of the optimizedMDL values. These values are shown in the olumn 8. Also, in the last olumn the average of the16



Table 2: Auto-Seg: elementary statistis for the distribution of the estimated loation of break points (repli-ations with only one break). BERKES: elementary statistis for the distribution of the �rst exeedane forthe 10% ritial level (from Table 4 of Berkes, et al. (2004)).Mean SE Min Q1 Med Q3 Max FreqModel 1 ! Model 3 at t=50Auto-Seg 52.62 11.70 37 50 50 52 233 0.98BERKES 71.40 12.40 50 63 71 79 135Model 1 ! Model 3 at t=250Auto-Seg 251.18 4.50 228 250 250 252 271 0.99BERKES 272.30 18.10 89 262 271 282 338Model 1 ! Model 3 at t=500Auto-Seg 501.22 4.76 481 500 500 502 551 0.98BERKES 516.40 54.70 121 511 523 538 618Model 1 ! Model 2 at t=250Auto-Seg 237.28 85.68 38 204.5 237.5 263.0 918 0.52BERKES 612.90 66.50 89 498.0 589.0 710.0 1000MDL values obtained when only one piee is �tted to eah realization is shown. In all ases, thetwo-piees MDL average is onsiderable less than that of the one-piee MDL.Table 3: Parameters estimates for the Senarios B, C, D and E based on the repliates with two �tted piees.Piee 1 Piee 2 MDL! � � ! � � two-piee one-pieeModel 1 ! Model 3 at t=50True 0.05 0.40 0.30 1.00 0.30 0.20mean 0.07 0.37 0.23 1.02 0.30 0.19 1677.40 1702.50std 0.04 0.26 0.26 0.21 0.05 0.12Model 1 ! Model 3 at t=250True 0.05 0.40 0.30 1.00 0.30 0.20mean 0.05 0.39 0.28 1.02 0.30 0.19 1418.53 1574.03std 0.02 0.15 0.15 0.23 0.06 0.13Model 1 ! Model 3 at t=500True 0.05 0.40 0.30 1.00 0.30 0.20mean 0.05 0.39 0.29 1.01 0.29 0.20 1094.64 1143.83std 0.01 0.13 0.11 0.27 0.08 0.16Model 1 ! Model 2 at t=250True 0.05 0.40 0.30 0.05 0.50 0.00mean 0.06 0.37 0.31 0.05 0.49 0.02 250.90 255.24std 0.03 0.17 0.17 0.01 0.01 0.044.2 Stohasti Volatility ModelIn the previous setion the performane of Auto-Seg on a pieewise GARCH(1,1) model was studied.Another ompeting model that is often used for �nanial time series is the stohasti volatility modelde�ned by the equation yt = �t�t = e�t=2�t;where �t =  + ��t�1 + �t; f�tg � iid, N(0; 1), and f�tg � iid N(0; �2); t = 1; : : : ; n, and j�j < 1.This model an be written in the SSM framework given in Example 3 from Setion 1. We areunaware of any work on the break point problem for the SV models. In this setion, we onsider17



the performane of Auto-Seg on a two-piee model where eah piee is the stohasti volatilitymodel. The vetor of parameters of this proess is  = (; �; �2). Let us onsider the modelsgenerated by the parameter values:Model 1 : =-0.8106703, � = 0.90, �2 = 0.45560010,Model 2 : =-0.3738736, � = 0.95, �2 = 0.06758185,Model 3 : =-0.3973738, � = 0.95, �2 = 0.06758185.The two pieewise proesses onsidered in this setion are listed in the last four lines of Table 4.The �rst piee of these proesses is Model 1. Models B and D have one true break at 513 andSenarios C and E have true breaks at 1025. The number of observations for eah senario is 2048.In the last olumn of this table, the true unonditional varianes of eah piee are displayed. Theunonditional variane of the �rst piee is 0.0010, while the unonditional varianes of the seondpiee of the proesses B and D are 0.0008 (small derease). The unonditional variane of theseond piees of the proesses C and E are 0.0005, whih is half the variane of the �rst piee.For eah of these pieewise proesses, let �j be the vetor of parameters of the j-th piee. Inthe notation of Setion 2, �j =  j. Then j = 0 and dj = 3 and from (6) we obtainMDL(m; �1; : : : ; �m) = logm+ (m+ 1) log n+ m+1Xj=1 32 log nj � m+1Xj=1 La( ̂j;yj ;�j); (13)where La( ̂j;yj ;�j) is de�ned in Example 4. For eah senario, Auto-Seg proedure was appliedto 500 realizations. The relative frequenies of the number of breaks estimated by Auto-Seg aredisplayed in olumns 2 and 3 of Table 4.Table 4: Summary of Auto-Seg break points obtained from 500 repliations. The length of the realizationsis n = 2048. # of break pointsSenario 0 1 �2YA: Model 1 100.0 0.0 0.0010B: Model 1 ! Model 2 at t= 513 18.2 81.8 0.0010, 0.0008C: Model 1 ! Model 2 at t=1025 0.4 99.6 0.0010, 0.0008D: Model 1 ! Model 3 at t= 513 17.2 82.8 0.0010, 0.0005E: Model 1 ! Model 3 at t=1025 1.2 98.8 0.0010, 0.0005As an illustration, in Figure 4 we show typial realizations of Senarios B (top panel) and E(bottom panel). In Figure 4 for the realization of Senario B Auto-Seg found a break at loation550 (dashed vertial line) and for that of Senario E it found a break at 1019 (dashed vertial line).18
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Figure 4: Realizations from the pieewise stohasti volatility Senarios B and E de�ned in Table 4. Thevertial dotted lines are break points found by Auto-Seg.In Figure 5 two estimates of the posterior mode �� of the vetor of states desribed in Example4 are shown for these realizations. In the top panel, the estimated modes were obtained when asingle (unsegmented) model �tted to a realization of Senario B. The estimated modes shown inthe seond panel were obtained using the two-piee SVM found by Auto-Seg (i.e., there is a breakat 550). In both panels, the Auto-Seg break is shown as the vertial dotted lines. The plots inthe last two panels are the analogous modes for the realization of Senario E for whih Auto-Segfound a break at 1019. Although in Figure 5 there are di�erenes between both estimates of theposterior mode (i.e., without and with the Auto-Seg break) the agreement of the \shapes" betweenthese estimates is remarkable.Finally, elementary statistis for those repliates of Senarios B through E from Table 4, forwhih Auto-Seg found exatly one break, are given in Table 5.4.3 Poisson Parameter Driven proessIn this setion we onsider the performane of Auto-Seg on a two-pieewise Poisson proess. That is,for eah piee, the observation equation p(ytj�t; Æ) has a Poisson distribution with rate �t := e�+�t ,19
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Figure 5: Top two panels: Estimated posterior mode of the vetor of states for the realization of Senario Cshown in Figure 4 under the assumption of no break (�rst panel) and using the break (seond panel) foundby Auto-Seg. The last two panels are the analogous plots for the realization from Senario E.Table 5: Elementary statistis for the distribution of the estimated loation of break points of those replia-tions with one break for the senarios given in Table 4.Senario Mean SE Min Q1 Med Q3 Max FreqUnonditional variane dereases from 0.0010 to 0.0008B 506.83 90.44 207 481 509 535 1239 409C 1020.84 80.68 657 993 1023 1047 1525 498Unonditional variane dereases from 0.0010 to 0.0005D 502.59 72.04 203 479 507 527 831 414E 1018.37 79.44 685 985 1023 1047 1469 494and the state equation is �t = ��t�1 + �t, f�tg � iid N(0; �2); t = 1; : : : ; n, and j�j < 1. Thevetor of parameters of this proess is  = (�; �; �2). Let us onsider the PDM models with thefollowing set of parameter values: 20



Model 1: � = -1.5702, � = 0.50, �2 = 1.9237,Model 2: � = -1.3061, � =-0.50, �2 = 1.5277,Model 3: � =-1.3061, � =0.90, �2 = 0.3870,Model 4: � =-0.9373, � =-0.50, �2 = 0.9745,Model 5: � =-0.9373, � =0.90, �2 = 0.2469.The two pieewise PDM proesses onsidered in this setion are de�ned in the �rst olumnof Table 6. The �rst piee of these proesses is Model 1 with a true break at either 257 or 513.The total number of observations for all models is 1024. In the last olumn of this table the trueunonditional varianes of eah piee are displayed. The unonditional variane of the �rst pieesis 7.5, while the unonditional varianes of the seond piee of the proesses B, C, D and E are 4.5(small derease). The unonditional variane of the seond piees of the proesses G, G, H and Iare 2.25, whih is a larger derease. Notie that the MDL alulation of this pieewise proess isidential to that for the SVM given in Setion 4.2.For eah senario , Auto-Seg was applied to 500 realizations. The relative frequenies of thenumber of breaks estimated by Auto-Seg are displayed in olumns 2 and 3 of Table 6. As inTable 6: Summary of estimated Auto-Seg break points obtained from 500 repliations. The length of therealizations is n = 1024. # of break pointsSenario 0 1 �2YA: Model 1 100.0 0.0 7.5B: Model 1 ! Model 2 at t=257 34.0 66.0 7.5, 4.5C: Model 1 ! Model 2 at t=513 11.6 88.4 7.5, 4.5D: Model 1 ! Model 3 at t=257 31.0 69.0 7.5, 4.5E: Model 1 ! Model 3 at t=513 16.8 83.2 7.5, 4.5F: Model 1 ! Model 4 at t=257 13.4 86.6 7.5, 2.25G: Model 1 ! Model 4 at t=513 2.2 97.8 7.5, 2.25H: Model 1 ! Model 5 at t=257 16.0 84.0 7.5, 2.25I: Model 1 ! Model 5 at t=513 9.0 91.0 7.5, 2.25the GARCH ase, the performane of Auto-Seg improves when the hange of variane betweenthe piees inreases (e.g., the detetion rate for Senario E is better than that for Senario C).Notie that the hange of varianes of the piees of Senario C is larger than that of the pieesof Senario C. Another noteworthy omment from Table 6 is that the performane of Auto-Segan vary when the hange of varianes are the same. For example, the hange of varianes ofSenarios B and D are the same, however the performane of Auto-Seg is better for Senario D.21



In addition, the detetion rate depends on the loation of the break; e.g., Senario F and G havesimilar parameter values exept the loations, whih are 257 and 513 respetively. The fat thatfor Senario A with no break Auto-Seg never �nds a break point is remarkable. The detetion ratesfor the senarios with one break in this table vary from 66.0% to 97.8%. Taking in onsiderationthat for all the senarios the sample size (1024) is not large, the performane of Auto-Seg for thesesenario is good.As an illustration, in Figure 6 we show typial realizations of Senarios C (top panel) and H(bottom panel). In this �gure for the realization of Senario B Auto-Seg found a break at loation
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Figure 6: Realizations from the pieewise Poisson proesses B and H, respetively (de�ned in the �rst olumnof Table 6). Vertial dotted lines are break points found by Auto-Seg.520 (dashed vertial line) and for that of Senario H it found a break at 256 (dashed vertial line).Like for the SVM, we omputed two estimates of the posterior mode of the vetor of states. In thetop panel of Figure 7 the estimated modes were obtained when the realization of Senario C is notsegmented. The estimated modes shown in the seond panel of this �gure were obtained using thetwo pieewise PDM found by Auto-Seg (i.e., with a break at 520). In both panels, the Auto-Segbreak is shown as the vertial dotted. The plots in the last two panels are the analogous modes for22



the realization of Senario H for whih Auto-Seg found a break at loation 256.
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Figure 7: Posterior mode of the realization of Senario C shown in Figure 6 under the assumption ofno break (�rst panel) and using the break (seond panel) found by Auto-Seg. The last two panels are theanalogous plots for the realization of Senario H.From Figure 7 we notie that for the realization of Senario C the estimated modes of thevetor of states does not di�er too muh. That is not the ase for the realization of Senario H.In this ase (bottom two panels) the mode of the �rst piee is underestimated when no breaks areonsidered. Notie that the modes of the seond piee look quite similar.We inlude now the ase where there is no break in the underlying senario. In the �rst row ofFigure 8 a realization of Senario A de�ned in Table 6 is shown. Auto-Seg did not �nd any break for23



this realization. Now, the MDL omputed at the break with loation at time t, t = 25; 30; : : : ; 995was omputed. These MDL values are shown as the solid line in the seond row of Figure 8.Ignoring the last few MDL values on the right the minimum MDL value in this grid is 1,195.2 at550. The horizontal dashed line in this row shows the MDL with no breaks (1,183.7). In the thirdrow the estimated posterior mode of the vetor of states based on a single piee is shown. In thelast row we show the estimate of the posterior mode based on two PDM senarios having a breakat the minimizer of the two-piee MDL values are shown in the seond row of this �gure. Notie
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Figure 8: First row: A typial realization of Senario A de�ned in Table 6. Seond row: two-piee MDLomputed in a grid of points (solid line) and one-piee MDL (horizontal dashed line). Third panel: estimatedposterior mode based on a single piee. Fourth row: estimated posterior mode based on two piees with breakat loation 550. 24



that the two sets of estimates agree.Elementary statistis for the repliates of the two-pieewise models from Table 6 for whihAuto-Seg found one break are given in Table 7. As seen in Table 7 the mean of the �tted breaks areTable 7: Elementary statistis for the distribution of the estimated loation of break points of those replia-tions with only one break for the models given in Table 6.Senario Mean SE Min Q1 Med Q3 Max FreqUnonditional variane dereases from 7.5 to 4.5B 245.6 40.9 107 222 240 260.0 419 66.0C 505.9 49.1 213 487 515 526.0 772 88.4D 265.0 66.9 117 226 246 305.0 881 69.0E 520.8 67.7 312 491 520 540.3 905 83.2Unonditional variane dereases from 7.5 to 2.25F 250.1 40.2 100 229 246 258.0 571 86.6G 509.6 34.9 318 501 516 528.0 641 97.8H 265.8 67.0 103 224 249 308.0 747 84.0I 522.1 60.6 136 509 522 541.0 857 91.0generally lose to the true value. The inrease in hange of varianes tend to derease the standarderror of the loations of the breaks; e.g., the standard errors of the breaks of Senarios C and Gare 49.1 and 34.9, respetively.For illustration purposes we obtain the densities of the estimated breaks of Senarios B andF. The varianes hange from 7.5 to 4.5 for the �rst senario and from 7.5 to 2.25 for the seondsenario. In Figure 9 the estimated densities are shown as a dotted line for the density of the breaksof Senario B and as a solid line for the density of the breaks of Senario F.
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Figure 9: Estimated densities of the loations of the breaks of Senarios B (dotted line) and F (solid line).Notie that both densities are multimodal in spite of the fat that Senario F has a large hangeof varianes among the piees. We believe that the multimodality in these densities is due to thesmall sample size of the realizations of the proess.25



Now onsider the two piee models from Table 6. For those realizations for whih Auto-Segfound exatly one break, the parameters of eah piee were estimated. The average and standarderror of these estimates are shown in Table 8. Also in the last two olumns in this table, the averageof the minimized MDL and the average of the MDL values obtained when no breaks are onsideredare given. Table 8: Parameters estimates for the two-pieewise Poisson models from Table 6.Piee 1 Piee 2 MDLSenario � � �2 � � �2 two-piee one-pieeUnonditional variane dereases from 7.5 to 4.5B True -1.5702 0.50 1.9237 -1.3061 -0.50 1.5277mean -1.6535 0.45 2.1635 -1.3918 -0.46 1.8113 1122.37 1130.12std 0.3547 0.12 0.6467 0.1154 0.06 0.2854C True -1.5702 0.50 1.9237 -1.3061 -0.50 1.5277mean -1.6442 0.41 2.1400 -1.3878 -0.46 1.8067 1107.32 1117.21std 0.2327 0.10 0.4576 0.1472 0.07 0.3395D True -1.5702 0.50 1.9237 -1.3061 0.90 0.3870mean -1.7020 0.32 2.3957 -1.2580 0.90 0.3692 1046.14 1053.28std 0.3572 0.15 0.6200 0.2578 0.03 0.0833E True -1.5702 0.50 1.9237 -1.3061 0.90 0.3870mean -1.6641 0.37 2.2258 -1.2717 0.90 0.3667 1052.57 1061.99std 0.2480 0.11 0.4715 0.3246 0.03 0.0979Unonditional variane dereases from 7.5 to 2.25F True -1.5702 0.50 1.9237 -0.9373 -0.50 0.9745mean -1.7097 0.40 2.2389 -0.9866 -0.47 1.1224 1166.49 1176.60std 0.3437 0.15 0.6569 0.0875 0.06 0.1626G True -1.5702 0.50 1.9237 -0.9373 -0.50 0.9745mean -1.6528 0.39 2.1683 -0.9875 -0.47 1.1115 1137.65 1151.41std 0.2291 0.11 0.4589 0.1105 0.08 0.2135H True -1.5702 0.50 1.9237 -0.9373 0.90 0.2469mean -1.6967 0.35 2.3187 -0.9309 0.89 0.2453 1092.90 1102.29std 0.3521 0.16 0.6283 0.2037 0.03 0.0571I True -1.5702 0.50 1.9237 -0.9373 0.90 0.2469mean -1.6633 0.38 2.2065 -0.9171 0.89 0.2419 1089.66 1101.82std 0.2336 0.11 0.4577 0.2483 0.04 0.0743In general, the estimates are sightly biased. This is true for the state-spae Poisson modelwith no regime hange even when the Monte Carlo approximation of the likelihood is used toestimate the parameters of this model (see for example Sandman and Koopman, 1998 and Davisand Rodriguez-Yam, 2005).5 An AppliationThe Auto-Seg proedure was applied to analyze hange points in the Standard and Poors 500 index(S&P 500) over the period Jan/4/1989 to Ot/19/2001 at daily frequeny. This stok market serieswas also analyzed by Andreou and Ghysels (2002) during this same period. They were interested26



in studying the impat, if any, on the Asian and Russian �nanial rises whih started in July1997 and ontinued into 1998. This setion of S&P 500 onsists of 3,230 observations. The logreturns rt of this series is shown in Figure 10. Auto-Seg was applied to the log returns series and4 segments were found with break loations at 197, 726 and 2,229 whih are shown as the vertialdotted lines in Figure 10. In Table 9 we show the breaks found by Andreou and Ghysels (2002)
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Figure 10: Log returns of the S&P index over the period Jan/4/1989-Ot/19/2001. The dotted vertiallines are the breaks found by Auto-Seg.when the Lavielle and Moulines proedure is applied to the absolute and squared returns using theBIC and LWZ. The latter is a modi�ed BIC proposed in Liu et al. (1997). In Table 9, the lastTable 9: Breaks of the S&P 500 index. The AG values are taken from Table VII of Andreou and Ghysels(2002). Auto-Seg: best piee-wise GARCH(1,1) proess found by Auto-Seg.SeletionProess Criterion Number and loation of breaksAuto-Seg rt MDL 3 13/10/89, 15/11/91, 27/10/97AG jrtj BIC 3 27/12/91, 5/1/96, 28/7/98LWZ 2 20/8/91, 3/2/97(rt)2 BIC 1 14/10/97LWZ 1 14/10/97break found by Auto-Seg is in lose agreement with the single break found by Andreou and Ghysels(2002) when squared returns are used in the Lavielle and Moulines proedure. In Figure 11 threesets of volatilities are shown. In the top panel the volatilities were obtained by �tting a singleGARCH(1,1) model to the log returns of the S&P 500 series. In the middle panel the volatilitieswere obtained �tting a model based on a break at 27/10/97 that is lose to the single break found byAndreou and Ghysels (2002). In the bottom panel the volatilities were obtained using the Auto-Segbreaks. Notie in Figure 11 that the single-break volatilities (middle panel) resemble the estimatedvolatilities based on Auto-Seg (bottom panel). As a referene, the MDL values of the �tted �tted27
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