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tThis paper 
onsiders the problem of dete
ting break points for a broad 
lass of non-stationarytime series models. In this formulation, the number and lo
ations of the break points are assumedunknown. Ea
h segment is assumed to be modeled from a 
lass of parametri
 time series modelsfor stationary pro
esses. The minimum des
ription length (MDL) prin
iple is used as a 
riterionfor estimating the number of break points, the lo
ation of break points, and the parametri
model in ea
h segment. The best segmentation found by minimizing the MDL 
riterion isobtained using a geneti
 algorithm. The implementation of this approa
h is illustrated usingGARCH, sto
hasti
 volatility, and generalized state-spa
e models as the parametri
 model forthe segments. Empiri
al results show the good performan
e of the estimates of the number ofbreaks and their lo
ations for these various models.KEY WORDS: GARCH, geneti
 algorithm, minimum des
ription length prin
iple, model sele
-tion, multiple 
hange points, non-stationary time series, state-spa
e models, sto
hasti
 volatilitymodel.1 Introdu
tionIn this paper the problem of modeling a 
lass of non-stationary time series by segmenting the seriesinto di�erent stationary pro
esses is 
onsidered. The number of break points and their lo
ations areassumed to be unknown. An automati
 pro
edure, termed Auto-Seg for automati
 segmentation,is developed for obtaining an optimal segmentation.1



Testing for a single 
hange point in the distribution for independent observations has beenbroadly studied in the literature. The multiple 
hange point 
ase, a mu
h more diÆ
ult problem,has also been 
onsidered. A review and an extensive list of referen
es 
an be found in Shaban(1980); Za
ks (1983); Krishnaiah and Miao (1988); Bhatta
harya (1994); and Cs�org}o and Horv�ath(1997).In time series, various versions of the 
hange point problem has also been studied. Pi
ard(1985); Davis, Huang and Yao (1995) and Kitagawa, Takanami and Matsumoko (2001) studied thesingle 
hange point problem in whi
h the pie
es are assumed to be autoregressive (AR) pro
esses.Here a 
hange o

urs if one of the AR parameters, in
luding the 
onstant term, or white noisevarian
e 
hanges. Tong's threshold models (see Tong, 1990) also in
lude AR models with 
hangesin parameter values. However, these 
hanges are triggered by lagged values of time series ratherthan at spe
i�ed time points.Multiple 
hange points are 
onsidered in Kitagawa and Akaike (1978) and Davis, Lee andRodriguez-Yam (2005) where the observed non-stationary \linear" series is de
omposed into ARpro
esses. A more general pie
ewise stationary pro
ess, for whi
h the pie
ewise AR pro
ess is aparti
ular 
ase, is 
onsidered in Ombao, Raz, Von Sa
hs and Malow (2001). M
Cullo
h and Tsay(1993); Djuri�
 (1994), Lavielle (1998) and Punskaya et al. (2002) follow a Bayesian approa
h to the
hange point problem of time series. Cs�org}o and Horv�ath (1997) devote a 
hapter to the 
hangepoint problem for dependent observations.In this paper we 
onsider the multiple 
hange point problem for a 
lass of non-stationarypro
esses in whi
h the pie
es are modeled by a spe
i�ed parametri
 
lass of stationary time series.More pre
isely, let �j, j = 1; : : : ; m, denote the breakpoints between the j-th and (j+1)-th segmentsrespe
tively, and set �0 = 1 and �m+1 = n + 1. It is assumed that the j-th pie
e of the time seriesfYtg is modeled by a stationary time series fXt;jg; i.e.,Yt = Xt;j ; �j�1 � t < �j ; (1)where the pie
es fXt;jg, j = 1; : : : ;m+ 1 are independent, fXt;jg; t = 0;�1;�2; : : :, has stationarydistribution p�j (�), and �j is a member of a parametri
 spa
e �j with �j 6= �j+1, j = 1; : : : ;m.The following examples illustrate this formulation.2



Example 1 (Segmented AR pro
ess) Consider the 
ase when fXt;jg is the AR(pj) pro
essXt;j = �j0 + �j1Xt�1;j + : : :+ �j;pjXt�pj ;j + �j"t; (2)where the noise sequen
e f"tg is iid N(0, 1). If the autoregressive order pj is assumed unknown,then the parameter �j be
omes (pj, �j , �2j ), where �j = (�j0; : : : ; �j;pj ) is the ve
tor of AR pa-rameters. This setup has been 
onsidered by Kitagawa and Akaike (1978) and Davis, et al. (2005).If pj is known, then �j = (�j , �2j ).Example 2 (GARCH(p,q) pro
ess) In this example, the j-th pie
e of the pro
ess fYtg is mod-eled as a generalized autoregressive 
onditionally heteros
edasti
 (GARCH) pro
ess introdu
ed byBollerslev (1986); i.e., Yt = Xt;j ; �j�1 � t < �j ;where for ea
h j, fXt;jg is the GARCH(pj , qj) model:Xtj = �tj"t:In the above f"tg is iid N(0, 1) and �tj is a positive fun
tion of Xtj given by�2tj = �0;j + �j1X2t�1;j + : : : + �j;pjX2t�pj ;j + �j1�2t�1;j + : : :+ �j;qj�2t�qj ;j; �j�1 � t < �j; (3)subje
t to the 
onstraints �0;j > 0, �i;j � 0, i = 1; : : : ;m+1, and �1;j+: : :+�qj ;j+�1;j+: : :+�qj ;j <1. Assuming that the orders pj and qj are unknown, then �j = (pj , qj, �0;j , �j , �j), where �j and�j are the ve
tors of �j's and �j 's in (3), respe
tively.Example 3 (State spa
e model) The j-th pie
e of the time series fYtg is modeled by a state-spa
emodel (SSM). If f�tg is the state pro
ess, then the 
onditional distributionp(ytj�t; �t�1; : : : ; �1; yt�1; : : : ; y1) = p(ytj�t); �j�1 � t < �j ; (4)is assumed to belong to a known parametri
 family of distributions and the state pro
ess f�tg isgiven by �t = Xtj ; �j�1 � t < �j ;where for ea
h j, fXtjg is the AR(pj) pro
ess in (2). Assuming the order pj is unknown, the ve
torof parameters be
omes �j = (Æj; �j; �2j ), where Æj is the ve
tor of say qj parameters asso
iated3



with the spe
i�
ation of p(ytj�t), �j�1 � t < �j , and �j is the ve
tor of �j 's asso
iated with theAR model in (2).Two state-spa
e models 
onsidered in this paper are the sto
hasti
 volatility model (SVM) andthe Poisson driven model (PDM); whi
h belong to the exponential family of distributions. Durbinand Koopman (1997) and Kuk (1999) 
onsider the following form for this familyp(ytj�t) = e(zTt �+�t)yt�b(zTt �+�t)+
(yt); (5)where zt is a ve
tor of 
ovariates observed at time t; � is a ve
tor of parameters; and b(�) and 
(�)are known real fun
tions.In this paper we fo
us on Examples 2 and 3; a more thorough treatment of Example 1 wasgiven in Davis, et al. (2005). The SVM and GARCH are popular models for analyzing log returnsof �nan
ial time series. The PDM is a frequently used model for time series of 
ounts. For example,Zeger (1988); Harvey and Fernandes (1989) and Davis, Dunsmuir and Wang (1998) have used thesemodels for modeling 
ounts of individuals infe
ted by a rare disease. Unlike Examples 1 and 2, thelikelihood of the SVM and PDM models do not have a 
losed form expression, whi
h makes theestimation of break points for these models 
omputationally 
hallenging.The problem of �nding a \best" 
ombination ofm, �j's and possibly the orders of the segmentedmodels 
an be treated as a model sele
tion problem of non-nested models. The best 
ombinationof these values are then found by optimizing a desired obje
tive fun
tion. Various sele
tion 
riteriahas been used in the literature for the 
hange point problem. For example, Kitagawa and Akaike(1978) and Kitagawa, et al. (2001) used the AIC 
riterion; Yao (1988) used the Bayesian information
riterion (BIC); and Lee (1995) and Liu, Wu and Zidek (1997) used modi�ed versions of BIC. Morere
ently Bai and Perron (1998, 2003) 
onsidered 
riteria based on squared-residuals, Lavielle (1998)and Gusta�son (2000) used maximum a posteriori (MAP) 
riterion; and Davis, et al. (2005) usedthe minimum des
ription length (MDL) prin
iple of Rissanen (1989).In this paper we adopt the MDL prin
iple. For even moderate values of n, optimization of this
riterion is not easy task. To solve this optimization problem we develop a geneti
 algorithm (GA)to �nd nearly optimal values.The rest of this paper is organized as follows. In Se
tion 2 we derive a general expression for4



the MDL and apply it to the pie
ewise state spa
e model. In Se
tion 3 we give an overview ofthe geneti
 algorithm and dis
uss its implementation to the segmentation problem. In Se
tion 4we study the performan
e of Auto-Seg via simulation and in Se
tion 5 the Auto-Seg pro
edure isapplied to the S&P 500 series.2 Model Sele
tionDenote by M the 
lass of pie
ewise pro
esses de�ned in (1). In this se
tion we �nd the 
odelength of data asso
iated with members F 2 M. If CLF(z) denote the 
ode length of an obje
t zasso
iated with model F , then by the two-part des
ription length method of Rissanen (1989) (seealso Lee, 2001) it is given by CLF (y) = CLF (F̂) + CLF(êjF̂);where y = (y1; y2; : : : ; yn) is the observed data, CLF (F̂) denotes the 
ode length of the �tted modelF̂ and CLF(êjF̂) is the 
ode length of the 
orresponding residuals (
onditional on the �tted modelF̂). The MDL 
riterion sele
ts the model that yields the minimum length of a 
ode used to en
odethe observed data y.Re
all that �j is the ve
tor of all model parameters in the j-th pie
e. It is 
onvenient topartition �j as �j = (�j ,  j), where �j and  j are the integer-valued and real-valued parametersin �j , respe
tively. For example, for the pie
ewise AR models in Example 1, �j denotes the ARorder of the j-th pie
e while  j denotes the 
orresponding AR 
oeÆ
ients. We assume that on
e�j is spe
i�ed,  j 
an be estimated via maximum likelihood estimation. The resulting estimatewill be denoted as  ̂j. Finally let 
j and dj be the lengths of the ve
tors �j and  j , respe
tively.Sin
e F̂ is 
omposed of m, �j's, �j 's and  ̂j 's, we further de
ompose CLF (F̂) intoCLF(F̂) = CLF (m) +CLF (�1; : : : ; �m)+ CLF(�1) + : : :+ CLF(�m+1) + CLF( ̂1) + : : :+ CLF( ̂m+1):Let nj := �j � �j�1 denote the number of observations in the j-th segment of F̂ . Noti
e that
omplete knowledge of (�1; : : : ; �m) implies 
omplete knowledge of (n1; : : : ; nm+1), and vi
e versa,5



hen
e CLF (�1; : : : ; �m) = CLF (n1; : : : ; nm+1): In general, to en
ode an integer I whose value is notupper bounded, approximately log2 I bits are needed. Thus CLF(m) = log2m and CLF(�j) =P
jk=1 log2 �kj, where �kj is the k-th entry of �j . If there is no integer parameter in �j we de�neCLF (�j) := 0. On the other hand, if the upper bound, say IU , of I is known, approximatelylog2 IU bits are required. Sin
e all nj's are bounded by n, CLF (nj) = log2 n for all j. To 
al
ulateCLF ( ̂j), we use the following result of Rissanen: a maximum likelihood estimate of a real pa-rameter 
omputed from N observations 
an be e�e
tively en
oded with 12 log2N bits. Sin
e ea
hof the dj parameters of  ̂j is 
omputed from nj observations,CLF( ̂j) = dj2 log2 nj:Thus, we obtainCLF(F̂) = log2m+ (m+ 1) log2 n+ m+1Xj=1 
jXk=1 log2 �kj + m+1Xj=1 dj2 log2 nj:Now, let Lj( j ;yj) be the observed likelihood of the j-th pie
e. As demonstrated by Rissanen(1989), the 
ode length for the residuals ê is given by the negative of the log likelihood of the �ttedmodel F̂ . This results in the following MDL expression for CLF(y)MDL(m; �1; : : : ; �m; �1; : : : ; �m+1) = logm+ (m+ 1) log n+ m+1Xj=1 
jXk=1 log �kj+m+1Xj=1 dj2 log nj � m+1Xj=1 L( ̂j ;yj); (6)where the last summand is obtained from the assumption that the pie
es are independent. Noti
ethat in (6) we have 
hanged the logarithm to base e rather than base 2. The best �tting model fory is then the minimizer of MDL(m; �1; : : : ; �m; �1; : : : ; �m+1) in (6).Example 4 (State spa
e model (SSM)) Re
all from Example 3 that �j = (pj ; Æj ; �j ; �2j ). Let usassume that pj is the only integer parameter in �j. Then �j = (pj) and  j = (�j ; Æj; �2j ). Thus,
j = 1, dj = pj + qj + 2, where qj is de�ned in Example 3, andm+1Xj=1 
jXk=1 log �kj = m+1Xj=1 log pj; and m+1Xj=1 dj2 log nj = m+1Xj=1 pj + qj + 22 lognj:6



Now, let yj := (yt; : : : ; yt+nj�1) and �j := (�t; : : : ; �t+nj�1), �j�1 � t < �j be the ve
tor ofobservations and states of the j-th pie
e of F̂ . Also, let �j := (�; �2j ). The likelihood 
orrespondingto this pie
e based on the 
omplete data (yj ;�j) be
omesL( j;yj ;�j) = p(yj j�j; Æj)p(�j j�j)=  njYt=1 p(yt;jj�t;j ; Æj)! jVj j1=2e�(�j��j)TVj(�j��j)=2=(2�)nj=2;where V�1j := 
ovf�jg, �j = 
j=(1��1;j � : : :��pj ;j)1 is the ve
tor of means of the state pro
ess,and 1 is a ve
tor of ones. From (7) it follows that the likelihood of the observed data is given bythe produ
t of nj-fold integralsL( 1; � � � ; m+1;y) = m+1Yj=1 Z L( j;yj ;�j)d�j : (7)Ex
ept in simple 
ases, the integrals in (7) 
annot be 
omputed expli
itly. In this paper weuse the approximation La( j;yj) to the likelihood given in Davis and Rodriguez-Yam (2005).Brie
y, this approximation is based on a se
ond order Taylor series expansion of log p(yj j�j; Æj) ina neighborhood of the posterior mode of p(�j jyj ; j). To simplify notation, for the j-th pie
e we\drop" the subindex j that appears in yj , �j, et
. Now, let `(�;yj�) := log p(yj�;�) and R(�;��)be the remainder of its se
ond order Taylor series expansion. Also, let p(�jy; ) be the posteriordistribution of � and let �� the mode of this distribution. Sin
e p(�jy; ) / p(yj�; Æ)p(�j�) =L( ;y;�) the ve
tor of modes �� 
an be found by maximizing the 
omplete likelihood. Davis andRodriguez-Yam (2005) found the following approximation to the posterior distribution p(�jy; )pa(�jy; ) = �(�;��; (K� +V)�1); (8)where �(:;�;�) is the multivariate normal density with mean � and 
ovarian
e matrix � andK� := � �2����T `(�;yj�)j�=�� :The likelihood then admits the fa
torizationL( ;y) = La( ;y)Era( );where Era( ) := R eR(�;��)pa(�jy; )d� andLa( ;y) := jVj1=2jK� +Vj1=2 eh�� 12 (����)TV(����): (9)7



Here h� := `(�;yj�)j�=�� . Ignoring the term eR(�;��) in Era( ), an approximation to the likeli-hood is given by (9). For the SVM and PDM models, the estimates obtained by maximizing thisapproximation fun
tion were found to be 
lose to the Monte Carlo maximum likelihood estimatesgiven for example by Durbin and Koopman (1997) and Sandmann and Koopman (1998).Repla
ing L( ;y) with La( ;y), equation (6) then be
omesMDL(m; �1; : : : ; �m; p1; : : : ; pm+1) = logm+ (m+ 1) log n+ m+1Xj=1 log pj+ m+1Xj=1 pj + qj + 22 lognj � m+1Xj=1 La( ̂j;yj); (10)where  ̂j is the optimizer of (9). The best �tting model for y is then the minimizer of MDL(m,�1,: : :, �m, p1; : : : ; pm+1) in (10).3 Optimization Using the Geneti
 Algorithm3.1 Geneti
 AlgorithmTo give an idea of how the geneti
 algorithm (GA) works for our segmentation problem, we des
ribehow to optimize the MDL in (10) for the state spa
e model from Example 4. The implementationdetails for other examples are similar.Even for moderate values of n, the optimization of MDL(m, �1; : : :, �m, p1; : : :, pm+1) withrespe
t to m, �1, : : :, �m, p1, : : :, pm+1 is not easy. A pro
edure that we will use to over
ome thisproblem is the GAs, a 
lass of evolutionary algorithms, �rst proposed by Holland (1975). Broadlyspeaking GAs are a randomized sear
h te
hnique that mimi
 natural sele
tion to �nd the maximumor high values of an obje
tive fun
tion. Among others, Chatterjee, et al. (1996), Gaetan (2000)and Lee (2002) have applied GAs to statisti
al problems with good results.The basi
 
omponent of the GA are stru
tures, typi
ally named 
hromosomes, whi
h are usuallyrepresented as ve
tors . While the basi
s of the 
anoni
al GA 
an be found in Holland (1975) andEshelman (2000), we give a brief summary here. An initial population of M 
hromosomes aresele
ted (usually at random) and to ea
h individual a probability, whi
h 
an be proportional to itsobserved �tness, is assigned. Then an o�spring is 
reated by mating individuals sele
ted a

ording8



to the assigned probabilities. Two typi
al geneti
 operators (mating) are 
rossover and mutation.The new o�spring and the parents are merged to 
reate a new population (generation) of size M .The pro
ess is iterated to 
reate new generations. The iterations are stopped on
e a 
onvergen
e
riterion is met.De Jong (1975) suggests to return the best individual found in su

essive generations. This isreferred to as an elitist step whi
h guarantees monotoni
ity of the algorithm.There are many variations of the 
anoni
al GA. For example, parallel implementations 
an beapplied to speed up the 
onvergen
e rate as well as to redu
e the 
han
e of 
onverging to sub-optimalsolutions (Forrest 1991; Alba and Troya 1999). In this paper we implement the Island Model.Instead of running only one sear
h in one giant population, the island model simultaneously runsNI (Number-of-Islands) 
anoni
al GAs in NI di�erent sub-populations. Periodi
ally, a number ofindividuals are allowed to migrate amongst the islands a

ording to some migration poli
y. Themigration 
an be implemented in numerous ways (Martin, Lienig and Cohoon 2000; Alba andTroya 2002). In this paper, we adopt the following migration poli
y: after every Mi generations,the worst MN 
hromosomes from the j-th island are repla
ed by the best MN 
hromosomes fromthe (j � 1)-th island, j = 1; : : : ; NI. For j = 1 the best MN 
hromosomes are migrated from theNI-th island. In all of our simulations, the number of islands (NI) was set to either 10 or 20,Mi = 5, MN = 2 and a sub-population size of 10 or 20.3.2 Implementation DetailsThis se
tion provides details of our implementation of the GA tailored to the pie
ewise state spa
emodel.Chromosome Representation: The 
hromosome representation is given by the ve
tor Æ =(Æ1; : : : ; Æn) of length n with gene valuesÆt = 8><>: �1; if there is no break at time t,pj; the AR order of the j-th pie
e.Furthermore, the following \minimum span" 
onstraint is imposed on Æ: if the AR order of a 
ertainpie
e in F is p, then this pie
e is made to have at least mp observations. This prede�ned integer9



mp is 
hosen to guarantee that there are enough observations for obtaining quality estimates forthe parameters of the segment modeled as a state spa
e pro
ess with AR order equal to p. Also,in the implementation of the algorithm an upper bound P0 on the order pj 's of the AR pro
essesis imposed.Initial Population Generation: Ea
h individual of the initial population is sele
ted randomly,a

ordingly to the following strategy: First, sele
t a value for p1 from f0; 1; : : : ; P0g with distribution�p, p = 0; 1; : : : ; P0 and set Æ1 = p1; i.e., the �rst AR pie
e is of order p1. Then the next mp1�1genes Æi's (i.e., Æ2 to Æmp1 ) are set to �1, so that the above minimum span 
onstraint is imposed forthis �rst pie
e. Now for the next gene Æmp1+1 in line, it will either be initialized as a break point,or it will be assigned �1 with probability 1 � �B. If Æmp1+1 is assigned the value p2, where p2 israndomly drawn from f0; 1; : : : ; P0g with distribution �p, p = 0; 1; : : : ; P0, then this implies that these
ond AR pro
ess is of order p2, and the next mp2�1 Æi's will be assigned �1 so that the minimumspan 
onstraint is enfor
ed. On the other hand, if Æmp1+1 is assigned �1, the initialization pro
esswill move to the next gene in line and a de
ision should be made if this gene should be a \breakpoint" gene or a \�1" gene. This pro
ess 
ontinues in a similar fashion, and a random 
hromosomeis generated when the pro
ess hits the last gene Æn. We use �B = minfm1; : : : ;mP0g=n.Crossover and Mutation: On
e a set of initial random 
hromosomes is generated, new 
hro-mosomes are generated by either a 
rossover or a mutation operation. We set the probability for
ondu
ting a 
rossover operation as 1�min(mp)=n.For the 
rossover operation, two parent 
hromosomes are 
hosen from the 
urrent populationof 
hromosomes. These two parents are 
hosen with probabilities inversely proportional to theirranks sorted by their MDL values. In other words, 
hromosomes that have smaller MDL valueswill have a higher 
han
e of being sele
ted. From these two parents, the gene values Æi's of the
hild 
hromosome will be inherited in the following manner. Firstly for t = 1, Æt will take on the
orresponding Æt value from either the �rst or the se
ond parent with equal probabilities. If thisvalue is �1, then the same gene{inheriting pro
ess will be repeated for the next gene in line (i.e.,Æt+1). If this value is not �1, then it is a non-negative integer pj 
orresponding the AR order ofthe 
urrent pie
e. In this 
ase the minimum span 
onstraint will be imposed (i.e., the next mpj � 110



Æt's will be set to �1), and the same gene{inheriting pro
ess will be applied to the next availableÆt. For mutation one 
hild is reprodu
ed from one parent. Again, this pro
ess starts with t = 1,and every Æt (subje
t to the minimum span 
onstraint) 
an take on one of the following threepossible values: (i) with probability �P it will take the 
orresponding Æt value from the parent, (ii)with probability �N it will take the value �1, and (iii) with probability 1 � �P � �N , it will takethe a new randomly generated AR order pj. In this paper we set �P = 0:3 and �N = 0:3.De
laration of Convergen
e: Re
all that we adopt the island model in whi
h migration isallowed for every Mi generations. At the end of ea
h migration the overall best 
hromosome isnoted. If this best 
hromosome does not 
hange for 10 
onse
utive migrations, or the total numberof migrations ex
eeds 20, this best 
hromosome is taken as the solution to this optimization problem.4 Simulations4.1 Finan
ial time seriesIn this se
tion the performan
e of Auto-Seg is evaluated via simulation when the GARCH modelsintrodu
ed in Example 2 are used to study 
hanges in the dynami
s of returns of �nan
ial assets.The setup of this simulation is similar to that of Andreou and Ghysels (2002), who 
onsider pie
ewisepro
esses. For these models, the pie
es are 
onsidered to be GARCH(1,1) models. When m = 1,we have a two pie
e GARCH(1,1) model given byYt;k = �t;k"t; k = 1; 2where �2t;k = !k + �kY 2t�1;k + �k�2t�1;k; (11)and f"tg � iid N(0; 1). Ea
h two-pie
ewise pro
ess has a break at �1 = 501 with a total sample sizeof n=1000. For ea
h data generation pro
ess, only one of the �k's or the !k's are modi�ed fromthe GARCH model in the �rst segment while the other parameters remain un
hanged (see 
olumnlabeled as Model parameters in Table 1). For 
ompleteness, the 
ase of no breaks (i.e., the se
ondpie
e has the same parameters as the �rst pie
e) is in
luded for ea
h data generation pro
ess.11



For a given two-pie
ewise pro
ess, let �j, denote the ve
tor of parameters of the j-th pie
e,j = 1; 2. In the notation of Se
tion 2, �j =  j, and sin
e the orders are �xed at pj = qj = 1, theMDL is given byMDL(m; �1; : : : ; �m) = logm+ (m+ 1) log n+ m+1Xj=1 lognj � m+1Xj=1 Lq( ̂j;yj); (12)where Lq( j ;yj) is the quasi-likelihood fun
tion. The estimation of the parameters  j are obtainedusing the quasi-maximum likelihood method (Lee and Hansen, 1994). Note the 
oeÆ
ient of log njin (12) should be 3/2 instead of 1. This is due to the strong 
orrelation between wj and the otherparameters whi
h suggests the number of free parameters should be dj = 2 instead of 3.Table 1 lists the relative frequen
ies of the number of breaks estimated by Auto-Seg obtainedfrom 500 repli
ates. The AG values were taken from Table III of Andreou and Ghysels (2002)and are also based on 500 repli
ates. Their estimates are based on the Lavielle and Moulinesleast-squares pro
edure (Lavielle and Moulines, 2000) applied to the squared values Y 2t and usingthe Bayesian Information (BIC) as a penalty fun
tion 
riterion. In the last 
olumn in this tablethe un
onditional varian
es of Yt;j, j = 1; 2, are shown. As a general rule, the \dete
tion rate"is in
uen
ed by the size of the 
hange of these varian
es. The larger the 
hange the higher thedete
tion rate. For example, in S
enario C the in
rease in varian
e is 0.33, whi
h is slightly largerthan 0.25, the in
rease of varian
e of S
enario G. For Auto-Seg the dete
tion rates are 0.122 and0.192, respe
tively, while for AG, these values are 0.140 and 0.240, respe
tively.For illustrative purposes, Figure 1 shows typi
al realizations of S
enarios C and D de�nedin Table 1. Realizations of S
enario C/D are shown in the top/bottom panels of this �gure. InFigure 1, the dotted verti
al lines at 506 and 502 are the breaks found by Auto-Seg for these tworealizations. In Figure 2 two \versions" of volatilities (�̂2t 's) are shown for these realizations. In thetop panel, the estimated volatilities were obtained when the realization of S
enario C is modeledas a single segment. The volatilities shown in the se
ond panel were obtained using a two-pie
eGARCH(1,1) pro
ess with a break at 506 found by Auto-Seg. In both panels, the Auto-Seg break isshown as the verti
al dotted line. The plots in the last two panels are the analogous volatilities forthe realization of S
enario D (the break is at 502). From Figure 2 we noti
e that for the realizationof S
enario D the \one-pie
e" volatilities are not mu
h di�erent than the \two-pie
e" volatilities. It12



Table 1: Summary of Auto-Seg estimated break points based on 500 repli
ations when there is a break at 501of the sample in the GARCH pro
ess. In the last 
olumn, the un
onditional varian
es of both pie
es (whenapplies) are shown. The AG values were taken from Table III, Andreou and Ghysels (2002). The length ofthe realizations is n = 1000. # of break points Un
onditionalPie
ewise GARCH(1,1) s
enario 0 1 � 2 varian
eNo break pointsA: (0.4, 0.1, 0.5) Auto-Seg 0.958 0.042 0.000 1.00AG 0.960 0.030 0.010B: (0.1, 0.1, 0.8) Auto-Seg 0.956 0.045 0.00 1.00AG 0.880 0.070 0.050Break in the dynami
s of volatilityC: (0.4, 0.1, 0.5) ! (0.4, 0.1, 0.6) Auto-Seg 0.804 0.192 0.004 1.00, 1.33AG 0.720 0.240 0.040D: (0.4, 0.1, 0.5) ! (0.4, 0.1, 0.8) Auto-Seg 0.000 0.964 0.036 1.00, 4.00AG 0.000 0.950 0.050E: (0.1, 0.1, 0.8) ! (0.1, 0.1, 0.7) Auto-Seg 0.370 0.626 0.004 1.00, 0.50AG 0.210 0.750 0.030F: (0.1, 0.1, 0.8) ! (0.1, 0.1, 0.4) Auto-Seg 0.004 0.978 0.018 1.00, 0.20AG 0.000 0.720 0.280Break in the 
onstant of volatilityG: (0.4, 0.1, 0.5) ! (0.5, 0.1, 0.5) Auto-Seg 0.878 0.122 0.000 1.00, 1.25AG 0.850 0.140 0.010H: (0.4, 0.1, 0.5) ! (0.8, 0.1, 0.5) Auto-Seg 0.072 0.912 0.016 1.00, 2.00AG 0.000 0.940 0.060I: (0.1, 0.1, 0.8) ! (0.3, 0.1, 0.8) Auto-Seg 0.068 0.910 0.022 1.00, 3.00AG 0.000 0.940 0.060J: (0.1, 0.1, 0.8) ! (0.5, 0.1, 0.8) Auto-Seg 0.008 0.952 0.040 1.00, 5.00AG 0.000 0.860 0.140is not the 
ase for the realization of S
enario C. However, noti
e that the volatilities for t between1 and 505 
losely agree.Next, we 
onsider a di�erent setup in whi
h there is no break in the data generating pro
ess.The �rst row of Figure 3 
ontains a realization of S
enario A de�ned in Table 1 and Auto-Segfound no breaks. For this realization, the MDL was 
omputed for a two pie
e model with breaksat true lo
ations t, t = 25; 30; : : : ; 975. These MDL values are shown as the solid line in the se
ondrow of Figure 3 with minimum MDL value of 1,410.0 at lo
ation 265. The horizontal dashedline in this row is the MDL with no breaks (1,404.8). In the third row the estimated volatilitiesbased on a single pie
e are shown. In the last row we show the estimated volatilities based ontwo GARCH(1,1) models with break at lo
ation 265 (minimizer of two-pie
e MDL values shown inthe se
ond row). Noti
e that the one-pie
e estimated volatilities (third row) have smaller varian
ethan that based on two pie
e GARCH �t (fourth row). In the latter, the pattern of the volatilitiesin the �rst pie
e is unexpe
ted and does not agree with the realization in the �rst row. We also
ompared Auto-Seg to the sequential pro
edure proposed by Berkes, et al. (2004). To estimate
hanges in the GARCH model, Berkes, et al. (2004) 
onstru
t a stopping time based on quasi-13
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Figure 1: Typi
al realizations from S
enarios C (top panel) and D (bottom panel) de�ned in Table 1. Theverti
al dotted lines are the break points found by Auto-Seg.maximum likelihood estimates. For their simulation study they use GARCH(1,1) models with thefollowing sets of parameter valuesModel 1: !1 = 0:05, �1 = 0:4, �1 = 0:3 (�2Yt=0.17),Model 2: !1 = 0:05, �1 = 0:5, �1 = 0:0 (�2Yt=0.10),Model 3: !1 = 1:00, �1 = 0:3, �1 = 0:2 (�2Yt=2.00),where �2Yt is the un
onditional varian
e of Yt. They also assume 
hanges from Model 1 to Model 2and from Model 1 to Model 3 at di�erent time lo
ations (see Table 2). Noti
e that unlike Andreouand Ghysels (2002), this simulation study of Berkes, et al. (2004) allows for 
hanges to more thanone parameter. For example, when Model 1 
hanges to Model 3 at t=250, all three parametersare altered. In Table 2 we show some basi
 statisti
s for both the breaks from Auto-Seg and thesequential method. For Auto-Seg, the statisti
s are from the estimated break points based on 500repli
ates. In the row labeled as BERKES, elementary statisti
s for the distribution of the �rst14
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Figure 2: Top two panels: Estimated volatilities of the realization of S
enario C shown in Figure 1 underthe assumption of no break (�rst panel) and using the break (se
ond panel) found by Auto-Seg. The last twopanels are the analogous plots for the realization of S
enario D.ex
eedan
e of the 10% 
riti
al level, taken from Table 4 of Berkes, et al. (2004) are shown. ForAuto-Seg estimates, the proportion of repli
ates that 
ontain one break point is shown in the last
olumn (Freq). Observe that for the �rst three 
on�gurations, the proportion of repli
ates withone break is large, while for the last 
on�guration, this proportion is small. This is in agreementwith Berkes, et al. (2004) results, where the proportion of traje
tories that 
rossed the 10% 
riti
allevel at t � 400 is only 0.071 while for t � 500 this proportion is 0.252 (values taken from Table 3of Berkes, et al., 2004). This is also in agreement with the results from Table 1. For this latter15
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Figure 3: First row: A typi
al realization of S
enario A de�ned in Table 6. Se
ond row: two-pie
e MDL
omputed in a grid of points (solid line) and one-pie
e MDL (horizontal dashed line). Third panel: estimatedvolatilities based on a single pie
e. Fourth row: estimated volatilities based on two pie
es by introdu
ing anarti�
ial break at lo
ation 265.
on�guration, the un
onditional varian
e is 0.17 for the �rst pie
e and 0.10 for the se
ond pie
e.Sin
e the 
hange of varian
e is small, a high dete
tion rate is not expe
ted.For ea
h s
enario 
onsidered in Table 3, with the realizations 
onsidered in this table (i.e.,realizations for whi
h Auto-Seg found exa
tly one break), the parameters of ea
h pie
e de�ned bythe Auto-Seg break point were 
omputed. For ea
h s
enario, the average and standard error ofthese estimates are shown in Table 3. Also in
luded in this table is the average of the optimizedMDL values. These values are shown in the 
olumn 8. Also, in the last 
olumn the average of the16



Table 2: Auto-Seg: elementary statisti
s for the distribution of the estimated lo
ation of break points (repli-
ations with only one break). BERKES: elementary statisti
s for the distribution of the �rst ex
eedan
e forthe 10% 
riti
al level (from Table 4 of Berkes, et al. (2004)).Mean SE Min Q1 Med Q3 Max FreqModel 1 ! Model 3 at t=50Auto-Seg 52.62 11.70 37 50 50 52 233 0.98BERKES 71.40 12.40 50 63 71 79 135Model 1 ! Model 3 at t=250Auto-Seg 251.18 4.50 228 250 250 252 271 0.99BERKES 272.30 18.10 89 262 271 282 338Model 1 ! Model 3 at t=500Auto-Seg 501.22 4.76 481 500 500 502 551 0.98BERKES 516.40 54.70 121 511 523 538 618Model 1 ! Model 2 at t=250Auto-Seg 237.28 85.68 38 204.5 237.5 263.0 918 0.52BERKES 612.90 66.50 89 498.0 589.0 710.0 1000MDL values obtained when only one pie
e is �tted to ea
h realization is shown. In all 
ases, thetwo-pie
es MDL average is 
onsiderable less than that of the one-pie
e MDL.Table 3: Parameters estimates for the S
enarios B, C, D and E based on the repli
ates with two �tted pie
es.Pie
e 1 Pie
e 2 MDL! � � ! � � two-pie
e one-pie
eModel 1 ! Model 3 at t=50True 0.05 0.40 0.30 1.00 0.30 0.20mean 0.07 0.37 0.23 1.02 0.30 0.19 1677.40 1702.50std 0.04 0.26 0.26 0.21 0.05 0.12Model 1 ! Model 3 at t=250True 0.05 0.40 0.30 1.00 0.30 0.20mean 0.05 0.39 0.28 1.02 0.30 0.19 1418.53 1574.03std 0.02 0.15 0.15 0.23 0.06 0.13Model 1 ! Model 3 at t=500True 0.05 0.40 0.30 1.00 0.30 0.20mean 0.05 0.39 0.29 1.01 0.29 0.20 1094.64 1143.83std 0.01 0.13 0.11 0.27 0.08 0.16Model 1 ! Model 2 at t=250True 0.05 0.40 0.30 0.05 0.50 0.00mean 0.06 0.37 0.31 0.05 0.49 0.02 250.90 255.24std 0.03 0.17 0.17 0.01 0.01 0.044.2 Sto
hasti
 Volatility ModelIn the previous se
tion the performan
e of Auto-Seg on a pie
ewise GARCH(1,1) model was studied.Another 
ompeting model that is often used for �nan
ial time series is the sto
hasti
 volatility modelde�ned by the equation yt = �t�t = e�t=2�t;where �t = 
 + ��t�1 + �t; f�tg � iid, N(0; 1), and f�tg � iid N(0; �2); t = 1; : : : ; n, and j�j < 1.This model 
an be written in the SSM framework given in Example 3 from Se
tion 1. We areunaware of any work on the break point problem for the SV models. In this se
tion, we 
onsider17



the performan
e of Auto-Seg on a two-pie
e model where ea
h pie
e is the sto
hasti
 volatilitymodel. The ve
tor of parameters of this pro
ess is  = (
; �; �2). Let us 
onsider the modelsgenerated by the parameter values:Model 1 : 
=-0.8106703, � = 0.90, �2 = 0.45560010,Model 2 : 
=-0.3738736, � = 0.95, �2 = 0.06758185,Model 3 : 
=-0.3973738, � = 0.95, �2 = 0.06758185.The two pie
ewise pro
esses 
onsidered in this se
tion are listed in the last four lines of Table 4.The �rst pie
e of these pro
esses is Model 1. Models B and D have one true break at 513 andS
enarios C and E have true breaks at 1025. The number of observations for ea
h s
enario is 2048.In the last 
olumn of this table, the true un
onditional varian
es of ea
h pie
e are displayed. Theun
onditional varian
e of the �rst pie
e is 0.0010, while the un
onditional varian
es of the se
ondpie
e of the pro
esses B and D are 0.0008 (small de
rease). The un
onditional varian
e of these
ond pie
es of the pro
esses C and E are 0.0005, whi
h is half the varian
e of the �rst pie
e.For ea
h of these pie
ewise pro
esses, let �j be the ve
tor of parameters of the j-th pie
e. Inthe notation of Se
tion 2, �j =  j. Then 
j = 0 and dj = 3 and from (6) we obtainMDL(m; �1; : : : ; �m) = logm+ (m+ 1) log n+ m+1Xj=1 32 log nj � m+1Xj=1 La( ̂j;yj ;�j); (13)where La( ̂j;yj ;�j) is de�ned in Example 4. For ea
h s
enario, Auto-Seg pro
edure was appliedto 500 realizations. The relative frequen
ies of the number of breaks estimated by Auto-Seg aredisplayed in 
olumns 2 and 3 of Table 4.Table 4: Summary of Auto-Seg break points obtained from 500 repli
ations. The length of the realizationsis n = 2048. # of break pointsS
enario 0 1 �2YA: Model 1 100.0 0.0 0.0010B: Model 1 ! Model 2 at t= 513 18.2 81.8 0.0010, 0.0008C: Model 1 ! Model 2 at t=1025 0.4 99.6 0.0010, 0.0008D: Model 1 ! Model 3 at t= 513 17.2 82.8 0.0010, 0.0005E: Model 1 ! Model 3 at t=1025 1.2 98.8 0.0010, 0.0005As an illustration, in Figure 4 we show typi
al realizations of S
enarios B (top panel) and E(bottom panel). In Figure 4 for the realization of S
enario B Auto-Seg found a break at lo
ation550 (dashed verti
al line) and for that of S
enario E it found a break at 1019 (dashed verti
al line).18
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Figure 4: Realizations from the pie
ewise sto
hasti
 volatility S
enarios B and E de�ned in Table 4. Theverti
al dotted lines are break points found by Auto-Seg.In Figure 5 two estimates of the posterior mode �� of the ve
tor of states des
ribed in Example4 are shown for these realizations. In the top panel, the estimated modes were obtained when asingle (unsegmented) model �tted to a realization of S
enario B. The estimated modes shown inthe se
ond panel were obtained using the two-pie
e SVM found by Auto-Seg (i.e., there is a breakat 550). In both panels, the Auto-Seg break is shown as the verti
al dotted lines. The plots inthe last two panels are the analogous modes for the realization of S
enario E for whi
h Auto-Segfound a break at 1019. Although in Figure 5 there are di�eren
es between both estimates of theposterior mode (i.e., without and with the Auto-Seg break) the agreement of the \shapes" betweenthese estimates is remarkable.Finally, elementary statisti
s for those repli
ates of S
enarios B through E from Table 4, forwhi
h Auto-Seg found exa
tly one break, are given in Table 5.4.3 Poisson Parameter Driven pro
essIn this se
tion we 
onsider the performan
e of Auto-Seg on a two-pie
ewise Poisson pro
ess. That is,for ea
h pie
e, the observation equation p(ytj�t; Æ) has a Poisson distribution with rate �t := e�+�t ,19
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Figure 5: Top two panels: Estimated posterior mode of the ve
tor of states for the realization of S
enario Cshown in Figure 4 under the assumption of no break (�rst panel) and using the break (se
ond panel) foundby Auto-Seg. The last two panels are the analogous plots for the realization from S
enario E.Table 5: Elementary statisti
s for the distribution of the estimated lo
ation of break points of those repli
a-tions with one break for the s
enarios given in Table 4.S
enario Mean SE Min Q1 Med Q3 Max FreqUn
onditional varian
e de
reases from 0.0010 to 0.0008B 506.83 90.44 207 481 509 535 1239 409C 1020.84 80.68 657 993 1023 1047 1525 498Un
onditional varian
e de
reases from 0.0010 to 0.0005D 502.59 72.04 203 479 507 527 831 414E 1018.37 79.44 685 985 1023 1047 1469 494and the state equation is �t = ��t�1 + �t, f�tg � iid N(0; �2); t = 1; : : : ; n, and j�j < 1. Theve
tor of parameters of this pro
ess is  = (�; �; �2). Let us 
onsider the PDM models with thefollowing set of parameter values: 20



Model 1: � = -1.5702, � = 0.50, �2 = 1.9237,Model 2: � = -1.3061, � =-0.50, �2 = 1.5277,Model 3: � =-1.3061, � =0.90, �2 = 0.3870,Model 4: � =-0.9373, � =-0.50, �2 = 0.9745,Model 5: � =-0.9373, � =0.90, �2 = 0.2469.The two pie
ewise PDM pro
esses 
onsidered in this se
tion are de�ned in the �rst 
olumnof Table 6. The �rst pie
e of these pro
esses is Model 1 with a true break at either 257 or 513.The total number of observations for all models is 1024. In the last 
olumn of this table the trueun
onditional varian
es of ea
h pie
e are displayed. The un
onditional varian
e of the �rst pie
esis 7.5, while the un
onditional varian
es of the se
ond pie
e of the pro
esses B, C, D and E are 4.5(small de
rease). The un
onditional varian
e of the se
ond pie
es of the pro
esses G, G, H and Iare 2.25, whi
h is a larger de
rease. Noti
e that the MDL 
al
ulation of this pie
ewise pro
ess isidenti
al to that for the SVM given in Se
tion 4.2.For ea
h s
enario , Auto-Seg was applied to 500 realizations. The relative frequen
ies of thenumber of breaks estimated by Auto-Seg are displayed in 
olumns 2 and 3 of Table 6. As inTable 6: Summary of estimated Auto-Seg break points obtained from 500 repli
ations. The length of therealizations is n = 1024. # of break pointsS
enario 0 1 �2YA: Model 1 100.0 0.0 7.5B: Model 1 ! Model 2 at t=257 34.0 66.0 7.5, 4.5C: Model 1 ! Model 2 at t=513 11.6 88.4 7.5, 4.5D: Model 1 ! Model 3 at t=257 31.0 69.0 7.5, 4.5E: Model 1 ! Model 3 at t=513 16.8 83.2 7.5, 4.5F: Model 1 ! Model 4 at t=257 13.4 86.6 7.5, 2.25G: Model 1 ! Model 4 at t=513 2.2 97.8 7.5, 2.25H: Model 1 ! Model 5 at t=257 16.0 84.0 7.5, 2.25I: Model 1 ! Model 5 at t=513 9.0 91.0 7.5, 2.25the GARCH 
ase, the performan
e of Auto-Seg improves when the 
hange of varian
e betweenthe pie
es in
reases (e.g., the dete
tion rate for S
enario E is better than that for S
enario C).Noti
e that the 
hange of varian
es of the pie
es of S
enario C is larger than that of the pie
esof S
enario C. Another noteworthy 
omment from Table 6 is that the performan
e of Auto-Seg
an vary when the 
hange of varian
es are the same. For example, the 
hange of varian
es ofS
enarios B and D are the same, however the performan
e of Auto-Seg is better for S
enario D.21



In addition, the dete
tion rate depends on the lo
ation of the break; e.g., S
enario F and G havesimilar parameter values ex
ept the lo
ations, whi
h are 257 and 513 respe
tively. The fa
t thatfor S
enario A with no break Auto-Seg never �nds a break point is remarkable. The dete
tion ratesfor the s
enarios with one break in this table vary from 66.0% to 97.8%. Taking in 
onsiderationthat for all the s
enarios the sample size (1024) is not large, the performan
e of Auto-Seg for theses
enario is good.As an illustration, in Figure 6 we show typi
al realizations of S
enarios C (top panel) and H(bottom panel). In this �gure for the realization of S
enario B Auto-Seg found a break at lo
ation
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Figure 6: Realizations from the pie
ewise Poisson pro
esses B and H, respe
tively (de�ned in the �rst 
olumnof Table 6). Verti
al dotted lines are break points found by Auto-Seg.520 (dashed verti
al line) and for that of S
enario H it found a break at 256 (dashed verti
al line).Like for the SVM, we 
omputed two estimates of the posterior mode of the ve
tor of states. In thetop panel of Figure 7 the estimated modes were obtained when the realization of S
enario C is notsegmented. The estimated modes shown in the se
ond panel of this �gure were obtained using thetwo pie
ewise PDM found by Auto-Seg (i.e., with a break at 520). In both panels, the Auto-Segbreak is shown as the verti
al dotted. The plots in the last two panels are the analogous modes for22



the realization of S
enario H for whi
h Auto-Seg found a break at lo
ation 256.
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Figure 7: Posterior mode of the realization of S
enario C shown in Figure 6 under the assumption ofno break (�rst panel) and using the break (se
ond panel) found by Auto-Seg. The last two panels are theanalogous plots for the realization of S
enario H.From Figure 7 we noti
e that for the realization of S
enario C the estimated modes of theve
tor of states does not di�er too mu
h. That is not the 
ase for the realization of S
enario H.In this 
ase (bottom two panels) the mode of the �rst pie
e is underestimated when no breaks are
onsidered. Noti
e that the modes of the se
ond pie
e look quite similar.We in
lude now the 
ase where there is no break in the underlying s
enario. In the �rst row ofFigure 8 a realization of S
enario A de�ned in Table 6 is shown. Auto-Seg did not �nd any break for23



this realization. Now, the MDL 
omputed at the break with lo
ation at time t, t = 25; 30; : : : ; 995was 
omputed. These MDL values are shown as the solid line in the se
ond row of Figure 8.Ignoring the last few MDL values on the right the minimum MDL value in this grid is 1,195.2 at550. The horizontal dashed line in this row shows the MDL with no breaks (1,183.7). In the thirdrow the estimated posterior mode of the ve
tor of states based on a single pie
e is shown. In thelast row we show the estimate of the posterior mode based on two PDM s
enarios having a breakat the minimizer of the two-pie
e MDL values are shown in the se
ond row of this �gure. Noti
e
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Figure 8: First row: A typi
al realization of S
enario A de�ned in Table 6. Se
ond row: two-pie
e MDL
omputed in a grid of points (solid line) and one-pie
e MDL (horizontal dashed line). Third panel: estimatedposterior mode based on a single pie
e. Fourth row: estimated posterior mode based on two pie
es with breakat lo
ation 550. 24



that the two sets of estimates agree.Elementary statisti
s for the repli
ates of the two-pie
ewise models from Table 6 for whi
hAuto-Seg found one break are given in Table 7. As seen in Table 7 the mean of the �tted breaks areTable 7: Elementary statisti
s for the distribution of the estimated lo
ation of break points of those repli
a-tions with only one break for the models given in Table 6.S
enario Mean SE Min Q1 Med Q3 Max FreqUn
onditional varian
e de
reases from 7.5 to 4.5B 245.6 40.9 107 222 240 260.0 419 66.0C 505.9 49.1 213 487 515 526.0 772 88.4D 265.0 66.9 117 226 246 305.0 881 69.0E 520.8 67.7 312 491 520 540.3 905 83.2Un
onditional varian
e de
reases from 7.5 to 2.25F 250.1 40.2 100 229 246 258.0 571 86.6G 509.6 34.9 318 501 516 528.0 641 97.8H 265.8 67.0 103 224 249 308.0 747 84.0I 522.1 60.6 136 509 522 541.0 857 91.0generally 
lose to the true value. The in
rease in 
hange of varian
es tend to de
rease the standarderror of the lo
ations of the breaks; e.g., the standard errors of the breaks of S
enarios C and Gare 49.1 and 34.9, respe
tively.For illustration purposes we obtain the densities of the estimated breaks of S
enarios B andF. The varian
es 
hange from 7.5 to 4.5 for the �rst s
enario and from 7.5 to 2.25 for the se
onds
enario. In Figure 9 the estimated densities are shown as a dotted line for the density of the breaksof S
enario B and as a solid line for the density of the breaks of S
enario F.
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Figure 9: Estimated densities of the lo
ations of the breaks of S
enarios B (dotted line) and F (solid line).Noti
e that both densities are multimodal in spite of the fa
t that S
enario F has a large 
hangeof varian
es among the pie
es. We believe that the multimodality in these densities is due to thesmall sample size of the realizations of the pro
ess.25



Now 
onsider the two pie
e models from Table 6. For those realizations for whi
h Auto-Segfound exa
tly one break, the parameters of ea
h pie
e were estimated. The average and standarderror of these estimates are shown in Table 8. Also in the last two 
olumns in this table, the averageof the minimized MDL and the average of the MDL values obtained when no breaks are 
onsideredare given. Table 8: Parameters estimates for the two-pie
ewise Poisson models from Table 6.Pie
e 1 Pie
e 2 MDLS
enario � � �2 � � �2 two-pie
e one-pie
eUn
onditional varian
e de
reases from 7.5 to 4.5B True -1.5702 0.50 1.9237 -1.3061 -0.50 1.5277mean -1.6535 0.45 2.1635 -1.3918 -0.46 1.8113 1122.37 1130.12std 0.3547 0.12 0.6467 0.1154 0.06 0.2854C True -1.5702 0.50 1.9237 -1.3061 -0.50 1.5277mean -1.6442 0.41 2.1400 -1.3878 -0.46 1.8067 1107.32 1117.21std 0.2327 0.10 0.4576 0.1472 0.07 0.3395D True -1.5702 0.50 1.9237 -1.3061 0.90 0.3870mean -1.7020 0.32 2.3957 -1.2580 0.90 0.3692 1046.14 1053.28std 0.3572 0.15 0.6200 0.2578 0.03 0.0833E True -1.5702 0.50 1.9237 -1.3061 0.90 0.3870mean -1.6641 0.37 2.2258 -1.2717 0.90 0.3667 1052.57 1061.99std 0.2480 0.11 0.4715 0.3246 0.03 0.0979Un
onditional varian
e de
reases from 7.5 to 2.25F True -1.5702 0.50 1.9237 -0.9373 -0.50 0.9745mean -1.7097 0.40 2.2389 -0.9866 -0.47 1.1224 1166.49 1176.60std 0.3437 0.15 0.6569 0.0875 0.06 0.1626G True -1.5702 0.50 1.9237 -0.9373 -0.50 0.9745mean -1.6528 0.39 2.1683 -0.9875 -0.47 1.1115 1137.65 1151.41std 0.2291 0.11 0.4589 0.1105 0.08 0.2135H True -1.5702 0.50 1.9237 -0.9373 0.90 0.2469mean -1.6967 0.35 2.3187 -0.9309 0.89 0.2453 1092.90 1102.29std 0.3521 0.16 0.6283 0.2037 0.03 0.0571I True -1.5702 0.50 1.9237 -0.9373 0.90 0.2469mean -1.6633 0.38 2.2065 -0.9171 0.89 0.2419 1089.66 1101.82std 0.2336 0.11 0.4577 0.2483 0.04 0.0743In general, the estimates are sightly biased. This is true for the state-spa
e Poisson modelwith no regime 
hange even when the Monte Carlo approximation of the likelihood is used toestimate the parameters of this model (see for example Sandman and Koopman, 1998 and Davisand Rodriguez-Yam, 2005).5 An Appli
ationThe Auto-Seg pro
edure was applied to analyze 
hange points in the Standard and Poors 500 index(S&P 500) over the period Jan/4/1989 to O
t/19/2001 at daily frequen
y. This sto
k market serieswas also analyzed by Andreou and Ghysels (2002) during this same period. They were interested26



in studying the impa
t, if any, on the Asian and Russian �nan
ial 
rises whi
h started in July1997 and 
ontinued into 1998. This se
tion of S&P 500 
onsists of 3,230 observations. The logreturns rt of this series is shown in Figure 10. Auto-Seg was applied to the log returns series and4 segments were found with break lo
ations at 197, 726 and 2,229 whi
h are shown as the verti
aldotted lines in Figure 10. In Table 9 we show the breaks found by Andreou and Ghysels (2002)
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Figure 10: Log returns of the S&P index over the period Jan/4/1989-O
t/19/2001. The dotted verti
allines are the breaks found by Auto-Seg.when the Lavielle and Moulines pro
edure is applied to the absolute and squared returns using theBIC and LWZ. The latter is a modi�ed BIC proposed in Liu et al. (1997). In Table 9, the lastTable 9: Breaks of the S&P 500 index. The AG values are taken from Table VII of Andreou and Ghysels(2002). Auto-Seg: best pie
e-wise GARCH(1,1) pro
ess found by Auto-Seg.Sele
tionPro
ess Criterion Number and lo
ation of breaksAuto-Seg rt MDL 3 13/10/89, 15/11/91, 27/10/97AG jrtj BIC 3 27/12/91, 5/1/96, 28/7/98LWZ 2 20/8/91, 3/2/97(rt)2 BIC 1 14/10/97LWZ 1 14/10/97break found by Auto-Seg is in 
lose agreement with the single break found by Andreou and Ghysels(2002) when squared returns are used in the Lavielle and Moulines pro
edure. In Figure 11 threesets of volatilities are shown. In the top panel the volatilities were obtained by �tting a singleGARCH(1,1) model to the log returns of the S&P 500 series. In the middle panel the volatilitieswere obtained �tting a model based on a break at 27/10/97 that is 
lose to the single break found byAndreou and Ghysels (2002). In the bottom panel the volatilities were obtained using the Auto-Segbreaks. Noti
e in Figure 11 that the single-break volatilities (middle panel) resemble the estimatedvolatilities based on Auto-Seg (bottom panel). As a referen
e, the MDL values of the �tted �tted27
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Figure 11: Estimated volatilities of the log returns of the S&P 500 series. Top: estimated volatilitiesunder no breaks. Middle panel: volatilities when a break in 27/10/97 is assumed. Bottom panel: Estimatedvolatilities based on the Auto-Seg breaks.models in this �gure are �10; 688, �10; 752 and �10; 705, respe
tively. As expe
ted, the di�eren
ebetween the best Auto-Seg MDL and the single pie
e MDL is mu
h greater than between the bestAuto-Seg MDL and the single-break MDL model.A
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