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Abstract

This paper considers the problem of detecting break points for a broad class of non-stationary
time series models. In this formulation, the number and locations of the break points are assumed
unknown. Each segment is assumed to be modeled from a class of parametric time series models
for stationary processes. The minimum description length (MDL) principle is used as a criterion
for estimating the number of break points, the location of break points, and the parametric
model in each segment. The best segmentation found by minimizing the MDL criterion is
obtained using a genetic algorithm. The implementation of this approach is illustrated using
GARCH, stochastic volatility, and generalized state-space models as the parametric model for
the segments. Empirical results show the good performance of the estimates of the number of

breaks and their locations for these various models.

KEY WORDS: GARCH, genetic algorithm, minimum description length principle, model selec-
tion, multiple change points, non-stationary time series, state-space models, stochastic volatility

model.

1 Introduction

In this paper the problem of modeling a class of non-stationary time series by segmenting the series
into different stationary processes is considered. The number of break points and their locations are
assumed to be unknown. An automatic procedure, termed Auto-Seg for automatic segmentation,

is developed for obtaining an optimal segmentation.



Testing for a single change point in the distribution for independent observations has been
broadly studied in the literature. The multiple change point case, a much more difficult problem,
has also been considered. A review and an extensive list of references can be found in Shaban
(1980); Zacks (1983); Krishnaiah and Miao (1988); Bhattacharya (1994); and Csorg6 and Horvath
(1997).

In time series, various versions of the change point problem has also been studied. Picard
(1985); Davis, Huang and Yao (1995) and Kitagawa, Takanami and Matsumoko (2001) studied the
single change point problem in which the pieces are assumed to be autoregressive (AR) processes.
Here a change occurs if one of the AR parameters, including the constant term, or white noise
variance changes. Tong’s threshold models (see Tong, 1990) also include AR models with changes
in parameter values. However, these changes are triggered by lagged values of time series rather
than at specified time points.

Multiple change points are considered in Kitagawa and Akaike (1978) and Davis, Lee and
Rodriguez-Yam (2005) where the observed non-stationary “linear” series is decomposed into AR
processes. A more general piecewise stationary process, for which the piecewise AR process is a
particular case, is considered in Ombao, Raz, Von Sachs and Malow (2001). McCulloch and Tsay
(1993); Djurié¢ (1994), Lavielle (1998) and Punskaya et al. (2002) follow a Bayesian approach to the
change point problem of time series. Csorgé and Horvath (1997) devote a chapter to the change
point problem for dependent observations.

In this paper we consider the multiple change point problem for a class of non-stationary
processes in which the pieces are modeled by a specified parametric class of stationary time series.
More precisely, let 75, 7 = 1,..., m, denote the breakpoints between the j-th and (j41)-th segments
respectively, and set 79 = 1 and 7,41 = n + 1. It is assumed that the j-th piece of the time series

{Y;} is modeled by a stationary time series {X; ;}; i.e.,
Yi =Xy, 71j-1 <t<1y, (1)

where the pieces {X;;}, 7 =1,...,m + 1 are independent, {X; ;}; £ = 0,41, £2,..., has stationary
distribution pgj(-), and 6; is a member of a parametric space ©; with 8; # 0,1, j = 1,...,m.

The following examples illustrate this formulation.



Example 1 (Segmented AR process) Consider the case when {X; ;} is the AR(p;) process
Xij = ¢jo+ dj X1y +.. .+ bjp; Xip; g+ 0jEr, (2)

where the noise sequence {¢;} is iid N(0, 1). If the autoregressive order p; is assumed unknown,
then the parameter ; becomes (p;, ¢;, 0]2), where ¢; = (¢jo, ..., djp,;) is the vector of AR pa-
rameters. This setup has been considered by Kitagawa and Akaike (1978) and Davis, et al. (2005).
If pj is known, then 6; = (¢;, 032-).

Example 2 (GARCH(p,q) process) In this example, the j-th piece of the process {Y;} is mod-
eled as a generalized autoregressive conditionally heteroscedastic (GARCH) process introduced by

Bollerslev (1986); i.e.,
Yi=Xy, 151 <t<m7y,
where for each j, {X; ;} is the GARCH(p;, ¢;) model:
Xij = oy
In the above {g;} is iid N(0, 1) and oy; is a positive function of X;; given by
ij =ap; + O‘let{l,j +...4+ aj,ijt{pj’j + /BjIUtQ—l,j +...+ Bj,qjat{qj’j, i1 <t<Tj,  (3)

subject to the constraints g j > 0, c;j > 0,0 =1,...,m+1,and a; j+...+ay ;+61+. .. +0¢; 5 <
1. Assuming that the orders p; and g; are unknown, then 8; = (p;, ¢;, a5, o, ,Bj), where a; and
B, are the vectors of a;’s and ;s in (3), respectively.

Example 3 (State space model) The j-th piece of the time series {Y;} is modeled by a state-space

model (SSM). If {a;} is the state process, then the conditional distribution

pytlog, a1, .o, gy, yn) = plylow), 1o <t <1y, (4)

is assumed to belong to a known parametric family of distributions and the state process {«a;} is
given by

ap = Xy, Tj1 <t <Tj,

where for each j, {X;;} is the AR(p;) process in (2). Assuming the order p; is unknown, the vector

of parameters becomes ; = (4, ?;, 032-), where §; is the vector of say ¢; parameters associated



with the specification of p(yfay), 7,1 <t < 75, and ¢, is the vector of ¢;’s associated with the
AR model in (2).

Two state-space models considered in this paper are the stochastic volatility model (SVM) and
the Poisson driven model (PDM); which belong to the ezponential family of distributions. Durbin

and Koopman (1997) and Kuk (1999) consider the following form for this family

p(yt\at) = e(zzﬁ+at)yt*b(Z?B+at)+c(yt)7 (5)

where z; is a vector of covariates observed at time ¢; B is a vector of parameters; and b(-) and ¢()
are known real functions.

In this paper we focus on Examples 2 and 3; a more thorough treatment of Example 1 was
given in Davis, et al. (2005). The SVM and GARCH are popular models for analyzing log returns
of financial time series. The PDM is a frequently used model for time series of counts. For example,
Zeger (1988); Harvey and Fernandes (1989) and Davis, Dunsmuir and Wang (1998) have used these
models for modeling counts of individuals infected by a rare disease. Unlike Examples 1 and 2, the
likelihood of the SVM and PDM models do not have a closed form expression, which makes the
estimation of break points for these models computationally challenging.

The problem of finding a “best” combination of m, 7;’s and possibly the orders of the segmented
models can be treated as a model selection problem of non-nested models. The best combination
of these values are then found by optimizing a desired objective function. Various selection criteria
has been used in the literature for the change point problem. For example, Kitagawa and Akaike
(1978) and Kitagawa, et al. (2001) used the AIC criterion; Yao (1988) used the Bayesian information
criterion (BIC); and Lee (1995) and Liu, Wu and Zidek (1997) used modified versions of BIC. More
recently Bai and Perron (1998, 2003) considered criteria based on squared-residuals, Lavielle (1998)
and Gustaffson (2000) used maximum a posteriori (MAP) criterion; and Davis, et al. (2005) used
the minimum description length (MDL) principle of Rissanen (1989).

In this paper we adopt the MDL principle. For even moderate values of n, optimization of this
criterion is not easy task. To solve this optimization problem we develop a genetic algorithm (GA)
to find nearly optimal values.

The rest of this paper is organized as follows. In Section 2 we derive a general expression for



the MDL and apply it to the piecewise state space model. In Section 3 we give an overview of
the genetic algorithm and discuss its implementation to the segmentation problem. In Section 4
we study the performance of Auto-Seg via simulation and in Section 5 the Auto-Seg procedure is

applied to the S&P 500 series.

2 Model Selection

Denote by M the class of piecewise processes defined in (1). In this section we find the code
length of data associated with members F € M. If CLz(z) denote the code length of an object z
associated with model F, then by the two-part description length method of Rissanen (1989) (see

also Lee, 2001) it is given by

CLy(y) = CLy(F) + CLr(&|F),

where y = (y1,y2,...,yn) is the observed data, CLx(F) denotes the code length of the fitted model
F and CLz(é|F) is the code length of the corresponding residuals (conditional on the fitted model
.7:") The MDL criterion selects the model that yields the minimum length of a code used to encode
the observed data y.

Recall that 8; is the vector of all model parameters in the j-th piece. It is convenient to
partition 6; as ; = (Cj, 't,bj), where ¢; and 1 are the integer-valued and real-valued parameters
in @;, respectively. For example, for the piecewise AR models in Example 1, ¢; denotes the AR
order of the j-th piece while 1; denotes the corresponding AR coefficients. We assume that once
¢; is specified, 9; can be estimated via maximum likelihood estimation. The resulting estimate

will be denoted as I}j. Finally let ¢; and d; be the lengths of the vectors ¢; and 1, respectively.

Since F is composed of m, 7j’s, ¢;’s and 1,21]-’8, we further decompose CLf(]:") into

CLr(F)=CLg(m)+ CLxE(T1,...,Tm)

+COLr(¢) 4 4+ CLr(Cps1) + CLE(1) + ..o + CLE(P41)-

Let n; := 7; — 7;_1 denote the number of observations in the j-th segment of F. Notice that

complete knowledge of (7,..., 7, ) implies complete knowledge of (n1,...,ny,41), and vice versa,



hence CLz(11,...,7n) = CLg(ny,...,nme1). In general, to encode an integer I whose value is not
upper bounded, approximately log, I bits are needed. Thus CLz(m) = logym and CLz((;) =
szzl logy Ckj, where (y; is the k-th entry of ¢;. If there is no integer parameter in 8; we define
CLz(¢;) == 0. On the other hand, if the upper bound, say Iy, of I is known, approximately
log, Iy bits are required. Since all n;’s are bounded by n, CLxz(n;) = logy n for all j. To calculate
CL]-‘(":bj), we use the following result of Rissanen: a maximum likelihood estimate of a real pa-
rameter computed from N observations can be effectively encoded with %logg N bits. Since each

of the d; parameters of {bj is computed from n; observations,
. d;
CLr(%h;) = 5 logy n;.

Thus, we obtain

m+1 € m+1
CLz(F)=1logym+ (m+1)logyn + Z Z log, Crj + Z 10g2 nj.
7j=1 k=1

Now, let Lj(v,bj; y;) be the observed likelihood of the j-th piece. As demonstrated by Rissanen
(1989), the code length for the residuals € is given by the negative of the log likelihood of the fitted

model F. This results in the following MDL expression for CLz(y)

m+1 €;
MDL(maTla"'7Tmacla--.7Cm+l) = logm—i-(m—I-l)logn—i—ZZlong]
j=1 k=1
m+1 m+1
+ Z Lrogn, — > Liyiv). (6)

1

<.
Il

where the last summand is obtained from the assumption that the pieces are independent. Notice
that in (6) we have changed the logarithm to base e rather than base 2. The best fitting model for

y is then the minimizer of MDL(m, 1,...,7m, €1, -, {my) in (6).

Example 4 (State space model (SSM)) Recall from Example 3 that 8; = (p;, d;, ¢;, 0]2-). Let us
assume that p; is the only integer parameter in 6;. Then ¢, = (p;) and ¥; = (¢, 6]-,032-). Thus,

c; =1, d; = pj + gj + 2, where g; is defined in Example 3, and

m+1 €; m—+1 m+1 D + 4 + 2
Z Zlog Ckj = Z logp;, and Z ] logn; = Z = - ] logn;.
71=1 k=1



Now, let y; := (vyt,..-, yt+nj,1) and o = (ay,..., at+n].,1), 7j—1 < t < 7j be the vector of
observations and states of the j-th piece of F. Also, let Aj = (¢, 032). The likelihood corresponding

to this piece based on the complete data (y;, a;) becomes
L(y;yj.a;) = plyjlag, d;)p(eg|A))
nj
= (Hp(yt,ﬂat,j,&j)) ‘Vj|1/26*(ij*M)TVJ'(ij*uj)/?/(QW)"j/?7
t=1

where V;l = cov{a,}, p; =vj/(1—¢1j—...— ¢p; j)1 is the vector of means of the state process,
and 1 is a vector of ones. From (7) it follows that the likelihood of the observed data is given by

the product of n;-fold integrals

m+1

L biy) = [] [ LWy ag)da (7
=1

Except in simple cases, the integrals in (7) cannot be computed explicitly. In this paper we
use the approximation L,(t;;y;) to the likelihood given in Davis and Rodriguez-Yam (2005).
Briefly, this approximation is based on a second order Taylor series expansion of log p(y;|a;;d;) in
a neighborhood of the posterior mode of p(a;ly;; 'c,bj). To simplify notation, for the j-th piece we
“drop” the subindex j that appears in y;, a;, etc. Now, let £(0;y|a) := log p(y|a; 0) and R(o, o)
be the remainder of its second order Taylor series expansion. Also, let p(a]y; ) be the posterior
distribution of e and let a* the mode of this distribution. Since p(aly; ) x p(y|a, §)p(a|X) =
L(¢;y, ) the vector of modes a* can be found by maximizing the complete likelihood. Davis and

Rodriguez-Yam (2005) found the following approximation to the posterior distribution p(a|y;p)

palaly;9) = ¢p(asa”, (K" + V), (8)
where ¢(.; p, ¥) is the multivariate normal density with mean g and covariance matrix 3 and
82

K* = ———/4(6; o
8a8aT£(07y‘a)‘a—a

The likelihood then admits the factorization
L(tpy) = La(9; y)Era(9),
where Er,(¢) := [ ef@@)p, (aly;)da and

V|1/2 Lo TV (et
Lo(¢3y) := Weh 3 ( w)'V( B (9)

7



R(ese™) in Er,(4p), an approximation to the likeli-

Here h* := 4(0;y|a)|a=a- Ignoring the term e
hood is given by (9). For the SVM and PDM models, the estimates obtained by maximizing this
approximation function were found to be close to the Monte Carlo maximum likelihood estimates

given for example by Durbin and Koopman (1997) and Sandmann and Koopman (1998).

Replacing L(v;y) with L,(v;y), equation (6) then becomes

m+1
MDL(m, 71, ...y Tms P1s -+ -y Pm+1) = logm+ (m +1)logn + Z logp;
7=1
m+1 m+1
Pj+q;+2 5
+ Z %lognj - Z La('abj;y'j)v (10)
7=1 7j=1

where 1:[1]- is the optimizer of (9). The best fitting model for y is then the minimizer of MDL(m,

Tlse vy Tmy Ply--- ,pm+1) n (10)

3 Optimization Using the Genetic Algorithm

3.1 Genetic Algorithm

To give an idea of how the genetic algorithm (GA) works for our segmentation problem, we describe
how to optimize the MDL in (10) for the state space model from Example 4. The implementation
details for other examples are similar.

Even for moderate values of n, the optimization of MDL(m, 71,..., T, P1,-.-, Pm+1) with
respect to m, Ty, ..., Ty, D1, - - -, Pma1 1S NOt easy. A procedure that we will use to overcome this
problem is the GAs, a class of evolutionary algorithms, first proposed by Holland (1975). Broadly
speaking GAs are a randomized search technique that mimic natural selection to find the maximum
or high values of an objective function. Among others, Chatterjee, et al. (1996), Gaetan (2000)
and Lee (2002) have applied GAs to statistical problems with good results.

The basic component of the GA are structures, typically named chromosomes, which are usually
represented as vectors . While the basics of the canonical GA can be found in Holland (1975) and
Eshelman (2000), we give a brief summary here. An initial population of M chromosomes are
selected (usually at random) and to each individual a probability, which can be proportional to its

observed fitness, is assigned. Then an offspring is created by mating individuals selected according



to the assigned probabilities. Two typical genetic operators (mating) are crossover and mutation.
The new offspring and the parents are merged to create a new population (generation) of size M.
The process is iterated to create new generations. The iterations are stopped once a convergence
criterion is met.

De Jong (1975) suggests to return the best individual found in successive generations. This is
referred to as an elitist step which guarantees monotonicity of the algorithm.

There are many variations of the canonical GA. For example, parallel implementations can be
applied to speed up the convergence rate as well as to reduce the chance of converging to sub-optimal
solutions (Forrest 1991; Alba and Troya 1999). In this paper we implement the Island Model.
Instead of running only one search in one giant population, the island model simultaneously runs
NI (Number-of-Islands) canonical GAs in N1 different sub-populations. Periodically, a number of
individuals are allowed to migrate amongst the islands according to some migration policy. The
migration can be implemented in numerous ways (Martin, Lienig and Cohoon 2000; Alba and
Troya 2002). In this paper, we adopt the following migration policy: after every M; generations,
the worst My chromosomes from the j-th island are replaced by the best My chromosomes from
the (j — 1)-th island, j = 1,..., NI. For j = 1 the best My chromosomes are migrated from the
N1I-th island. In all of our simulations, the number of islands (NI) was set to either 10 or 20,

M; =5, My = 2 and a sub-population size of 10 or 20.

3.2 Implementation Details

This section provides details of our implementation of the GA tailored to the piecewise state space
model.
Chromosome Representation: The chromosome representation is given by the vector § =

(01,...,0p) of length n with gene values

-1, if there is no break at time ¢,

Ot

Djs the AR order of the j-th piece.

Furthermore, the following “minimum span” constraint is imposed on 4: if the AR order of a certain

piece in F is p, then this piece is made to have at least m, observations. This predefined integer



m,, is chosen to guarantee that there are enough observations for obtaining quality estimates for
the parameters of the segment modeled as a state space process with AR order equal to p. Also,
in the implementation of the algorithm an upper bound Py on the order p;’s of the AR processes
is imposed.

Initial Population Generation: Each individual of the initial population is selected randomly,
accordingly to the following strategy: First, select a value for p; from {0, 1,..., Py} with distribution
mp, p = 0,1,..., Py and set §; = p; i.e., the first AR piece is of order p;. Then the next m, —1
genes 0;’s (i.e., dg to 5mp1) are set to —1, so that the above minimum span constraint is imposed for
this first piece. Now for the next gene (5mp1+1 in line, it will either be initialized as a break point,
or it will be assigned —1 with probability 1 — np. If 0y, 41 is assigned the value py, where p is
randomly drawn from {0, 1, ..., Py} with distribution 7, p = 0,1,..., %, then this implies that the
second AR process is of order py, and the next m,, —1 d;’s will be assigned —1 so that the minimum
span constraint is enforced. On the other hand, if 6, +1 is assigned —1, the initialization process
will move to the next gene in line and a decision should be made if this gene should be a “break

“—1” gene. This process continues in a similar fashion, and a random chromosome

point” gene or a
is generated when the process hits the last gene 6,,. We use mg = min{m,,...,mp,}/n.

Crossover and Mutation: Once a set of initial random chromosomes is generated, new chro-
mosomes are generated by either a crossover or a mutation operation. We set the probability for
conducting a crossover operation as 1 — min(my)/n.

For the crossover operation, two parent chromosomes are chosen from the current population
of chromosomes. These two parents are chosen with probabilities inversely proportional to their
ranks sorted by their MDL values. In other words, chromosomes that have smaller MDL values
will have a higher chance of being selected. From these two parents, the gene values d;’s of the
child chromosome will be inherited in the following manner. Firstly for ¢ = 1, §; will take on the
corresponding d; value from either the first or the second parent with equal probabilities. If this
value is —1, then the same gene—inheriting process will be repeated for the next gene in line (i.e.,

d¢41). If this value is not —1, then it is a non-negative integer p; corresponding the AR order of

the current piece. In this case the minimum span constraint will be imposed (i.e., the next m,, —1

10



d;’s will be set to —1), and the same gene—inheriting process will be applied to the next available
0y

For mutation one child is reproduced from one parent. Again, this process starts with ¢ = 1,
and every d; (subject to the minimum span constraint) can take on one of the following three
possible values: (i) with probability 7p it will take the corresponding d; value from the parent, (ii)
with probability nx it will take the value —1, and (iii) with probability 1 — 7p — 7y, it will take
the a new randomly generated AR order p;. In this paper we set 7p = 0.3 and mn = 0.3.

Declaration of Convergence: Recall that we adopt the island model in which migration is
allowed for every M; generations. At the end of each migration the overall best chromosome is
noted. If this best chromosome does not change for 10 consecutive migrations, or the total number

of migrations exceeds 20, this best chromosome is taken as the solution to this optimization problem.

4 Simulations

4.1 Financial time series

In this section the performance of Auto-Seg is evaluated via simulation when the GARCH models
introduced in Example 2 are used to study changes in the dynamics of returns of financial assets.
The setup of this simulation is similar to that of Andreou and Ghysels (2002), who consider piecewise
processes. For these models, the pieces are considered to be GARCH(1,1) models. When m = 1,

we have a two piece GARCH(1,1) model given by
Yt,k = Ot kEt, k=1,2

where

orp = wi + x|+ Brot 1 (11)

and {e;} ~ iid N(0,1). Each two-piecewise process has a break at 71 = 501 with a total sample size
of n=1000. For each data generation process, only one of the §;’s or the w;’s are modified from
the GARCH model in the first segment while the other parameters remain unchanged (see column
labeled as Model parameters in Table 1). For completeness, the case of no breaks (i.e., the second

piece has the same parameters as the first piece) is included for each data generation process.
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For a given two-piecewise process, let 8;, denote the vector of parameters of the j-th piece,
J = 1,2. In the notation of Section 2, 6; = 1, and since the orders are fixed at p; = q; = 1, the

MDL is given by

m—+1 m—+1
MDL(m, T1,...,Tm) = logm + (m + 1) logn + Z logn; — Z Lq({bj;yj), (12)
j=1 j=1

where Lq(v,bj; y;) is the quasi-likelihood function. The estimation of the parameters ¥ are obtained
using the quasi-maximum likelihood method (Lee and Hansen, 1994). Note the coefficient of log n;
in (12) should be 3/2 instead of 1. This is due to the strong correlation between w; and the other
parameters which suggests the number of free parameters should be d; = 2 instead of 3.

Table 1 lists the relative frequencies of the number of breaks estimated by Auto-Seg obtained
from 500 replicates. The AG values were taken from Table III of Andreou and Ghysels (2002)
and are also based on 500 replicates. Their estimates are based on the Lavielle and Moulines
least-squares procedure (Lavielle and Moulines, 2000) applied to the squared values Y;> and using
the Bayesian Information (BIC) as a penalty function criterion. In the last column in this table
the unconditional variances of Y; ;, 7 = 1,2, are shown. As a general rule, the “detection rate”
is influenced by the size of the change of these variances. The larger the change the higher the
detection rate. For example, in Scenario C the increase in variance is 0.33, which is slightly larger
than 0.25, the increase of variance of Scenario G. For Auto-Seg the detection rates are 0.122 and
0.192, respectively, while for AG, these values are 0.140 and 0.240, respectively.

For illustrative purposes, Figure 1 shows typical realizations of Scenarios C and D defined
in Table 1. Realizations of Scenario C/D are shown in the top/bottom panels of this figure. In
Figure 1, the dotted vertical lines at 506 and 502 are the breaks found by Auto-Seg for these two

~23

“versions” of volatilities (6;’s) are shown for these realizations. In the

realizations. In Figure 2 two
top panel, the estimated volatilities were obtained when the realization of Scenario C is modeled
as a single segment. The volatilities shown in the second panel were obtained using a two-piece
GARCH(1,1) process with a break at 506 found by Auto-Seg. In both panels, the Auto-Seg break is
shown as the vertical dotted line. The plots in the last two panels are the analogous volatilities for
the realization of Scenario D (the break is at 502). From Figure 2 we notice that for the realization

of Scenario D the “one-piece” volatilities are not much different than the “two-piece” volatilities. It
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Table 1: Summary of Auto-Seq estimated break points based on 500 replications when there is a break at 501
of the sample in the GARCH process. In the last column, the unconditional variances of both pieces (when
applies) are shown. The AG values were taken from Table I1I, Andreou and Ghysels (2002). The length of
the realizations is n = 1000.

# of break points Unconditional
Piecewise GARCH(1,1) scenario 0 1 > 2 variance
No break points
A: (0.4, 0.1, 0.5) Auto-Seg  0.958 0.042  0.000 1.00
AG 0.960 0.030 0.010
B: (0.1, 0.1, 0.8) Auto-Seg  0.956 0.045  0.00  1.00
AG 0.880  0.070  0.050

Break in the dynamics of volatility
C: (0.4, 0.1, 0.5) — (0.4, 0.1, 0.6)  Auto-Seg  0.804 0.192 0.004 1.00, 1.33

AG 0.720 0.240  0.040

D: (0.4, 0.1,0.5) — (0.4, 0.1, 0.8)  Auto-Seg  0.000 0.964 0.036  1.00, 4.00
AG 0.000 0.950 0.050

E: (0.1,0.1, 0.8) — (0.1, 0.1, 0.7)  Auto-Seg  0.370 0.626 0.004  1.00, 0.50
AG 0.210  0.750  0.030

F: (0.1,0.1,0.8) — (0.1, 0.1,0.4)  Auto-Seg  0.004 0.978 0.018  1.00, 0.20
AG 0.000 0.720 0.280

Break in the constant of volatility
G: (0.4, 0.1, 0.5) — (0.5, 0.1, 0.5)  Auto-Seg 0.878 0.122 0.000 1.00, 1.25

AG 0.850 0.140  0.010

H: (0.4, 0.1, 0.5) — (0.8, 0.1, 0.5)  Auto-Seg  0.072 0.912 0.016  1.00, 2.00
AG 0.000 0.940 0.060

I: (0.1,0.1,0.8) — (0.3, 0.1,0.8)  Auto-Seg  0.068 0.910 0.022  1.00, 3.00
AG 0.000 0.940 0.060

J: (0.1, 0.1,0.8) — (0.5, 0.1, 0.8)  Auto-Seg 0.008 0.952 0.040  1.00, 5.00
AG 0.000 0.860 0.140

is not the case for the realization of Scenario C. However, notice that the volatilities for ¢ between
1 and 505 closely agree.

Next, we consider a different setup in which there is no break in the data generating process.
The first row of Figure 3 contains a realization of Scenario A defined in Table 1 and Auto-Seg
found no breaks. For this realization, the MDL was computed for a two piece model with breaks
at true locations ¢, t = 25,30, ...,975. These MDL values are shown as the solid line in the second
row of Figure 3 with minimum MDL value of 1,410.0 at location 265. The horizontal dashed
line in this row is the MDL with no breaks (1,404.8). In the third row the estimated volatilities
based on a single piece are shown. In the last row we show the estimated volatilities based on
two GARCH(1,1) models with break at location 265 (minimizer of two-piece MDL values shown in
the second row). Notice that the one-piece estimated volatilities (third row) have smaller variance
than that based on two piece GARCH fit (fourth row). In the latter, the pattern of the volatilities
in the first piece is unexpected and does not agree with the realization in the first row. We also
compared Auto-Seg to the sequential procedure proposed by Berkes, et al. (2004). To estimate

changes in the GARCH model, Berkes, et al. (2004) construct a stopping time based on quasi-
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Figure 1: Typical realizations from Scenarios C (top panel) and D (bottom panel) defined in Table 1. The
vertical dotted lines are the break points found by Auto-Seg.

maximum likelihood estimates. For their simulation study they use GARCH(1,1) models with the

following sets of parameter values

Model 1: w; = 0.05, g = 0.4, B1 = 0.3 (03, =0.17),
Model 2: wy = 0.05, g = 0.5, B1 = 0.0 (03, =0.10),

Model 3: w; = 1.00, g = 0.3, 1 = 0.2 (03, =2.00),

where a%,t is the unconditional variance of Y;. They also assume changes from Model 1 to Model 2
and from Model 1 to Model 3 at different time locations (see Table 2). Notice that unlike Andreou
and Ghysels (2002), this simulation study of Berkes, et al. (2004) allows for changes to more than
one parameter. For example, when Model 1 changes to Model 3 at t=250, all three parameters
are altered. In Table 2 we show some basic statistics for both the breaks from Auto-Seg and the
sequential method. For Auto-Seg, the statistics are from the estimated break points based on 500

replicates. In the row labeled as BERKES, elementary statistics for the distribution of the first
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Figure 2: Top two panels: Estimated volatilities of the realization of Scenario C shown in Figure 1 under
the assumption of no break (first panel) and using the break (second panel) found by Auto-Seg. The last two
panels are the analogous plots for the realization of Scenario D.

exceedance of the 10% critical level, taken from Table 4 of Berkes, et al. (2004) are shown. For
Auto-Seg estimates, the proportion of replicates that contain one break point is shown in the last
column (Freq). Observe that for the first three configurations, the proportion of replicates with
one break is large, while for the last configuration, this proportion is small. This is in agreement
with Berkes, et al. (2004) results, where the proportion of trajectories that crossed the 10% critical
level at ¢ < 400 is only 0.071 while for ¢ < 500 this proportion is 0.252 (values taken from Table 3

of Berkes, et al., 2004). This is also in agreement with the results from Table 1. For this latter
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Figure 3: First row: A typical realization of Scenario A defined in Table 6. Second row: two-piece MDL
computed in a grid of points (solid line) and one-piece MDL (horizontal dashed line). Third panel: estimated
volatilities based on a single piece. Fourth row: estimated volatilities based on two pieces by introducing an
artificial break at location 265.

configuration, the unconditional variance is 0.17 for the first piece and 0.10 for the second piece.
Since the change of variance is small, a high detection rate is not expected.

For each scenario considered in Table 3, with the realizations considered in this table (i.e.,
realizations for which Auto-Seg found exactly one break), the parameters of each piece defined by
the Auto-Seg break point were computed. For each scenario, the average and standard error of
these estimates are shown in Table 3. Also included in this table is the average of the optimized

MDL values. These values are shown in the column 8. Also, in the last column the average of the
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Table 2: Auto-Seg: elementary statistics for the distribution of the estimated location of break points (repli-
cations with only one break). BERKES: elementary statistics for the distribution of the first exceedance for

the 10% critical level (from Table 4 of Berkes, et al. (2004)).
Mean SE Min Q1 Med Q3 Max  Freq

Model 1 — Model 3 at t=50
Auto-Seg 52.62 11.70 37 50 50 52 233 0.98
BERKES 71.40 12.40 50 63 71 79 135

Model 1 — Model 3 at t=250
Auto-Seg 251.18 4.50 228 250 250 252 271 0.99
BERKES  272.30 18.10 89 262 271 282 338

Model 1 — Model 3 at t=500
Auto-Seg 501.22 4.76 481 500 500 502 551 0.98
BERKES 516.40 54.70 121 511 523 538 618

Model 1 — Model 2 at t=250
Auto-Seg 237.28 85.68 38 204.5  237.5 263.0 918 0.52
BERKES 612.90 66.50 89 498.0 589.0 710.0 1000

MDL values obtained when only one piece is fitted to each realization is shown. In all cases, the
two-pieces MDL average is considerable less than that of the one-piece MDL.

Table 3: Parameters estimates for the Scenarios B, C, D and E based on the replicates with two fitted pieces.
Piece 1 Piece 2 MDL
w a B w « B two-piece  one-piece
Model 1T — Model 3 at t=50
True 0.05 0.40 0.30 1.00 0.30 0.20
mean 0.07 0.37 0.23 1.02 0.30 0.19 1677.40 1702.50
std  0.04 0.26 0.26 0.21 0.05 0.12
Model 1T — Model 3 at t=250
True 0.05 0.40 0.30 1.00 0.30 0.20
mean 0.05 0.39 0.28 1.02 0.30 0.19 1418.53 1574.03
std 0.02 0.15 0.15 0.23 0.06 0.13
Model 1 — Model 3 at t=500
True 0.05 0.40 0.30 1.00 0.30 0.20
mean 0.05 0.39 0.29 1.01 0.29 0.20 1094.64 1143.83
std  0.01 0.13 0.11 0.27 0.08 0.16
Model 1 — Model 2 at t=250
True 0.05 0.40 0.30 0.05 0.50 0.00
mean 0.06 0.37 0.31 0.05 0.49 0.02 250.90 255.24
std 0.03 0.17 0.17 0.01 0.01 0.04

4.2 Stochastic Volatility Model

In the previous section the performance of Auto-Seg on a piecewise GARCH(1,1) model was studied.
Another competing model that is often used for financial time series is the stochastic volatility model

defined by the equation

yr = 0yl = e“t/%¢,,

where oy = v + ¢pay_1 +ny, {&} ~ iid, N(0,1), and {n;} ~ iid N(0,0%), t=1,...,n, and |¢| < 1.
This model can be written in the SSM framework given in Example 3 from Section 1. We are

unaware of any work on the break point problem for the SV models. In this section, we consider
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the performance of Auto-Seg on a two-piece model where each piece is the stochastic volatility
model. The vector of parameters of this process is 1 = (7, $,0?). Let us consider the models
generated by the parameter values:

Model 1 : y=-0.8106703, ¢ = 0.90, 0> = 0.45560010,

Model 2 : y=-0.3738736, ¢ = 0.95, 02 = 0.06758185,

Model 3 : y=-0.3973738, ¢ = 0.95, 02 = 0.06758185.

The two piecewise processes considered in this section are listed in the last four lines of Table 4.
The first piece of these processes is Model 1. Models B and D have one true break at 513 and
Scenarios C and E have true breaks at 1025. The number of observations for each scenario is 2048.
In the last column of this table, the true unconditional variances of each piece are displayed. The
unconditional variance of the first piece is 0.0010, while the unconditional variances of the second
piece of the processes B and D are 0.0008 (small decrease). The unconditional variance of the
second pieces of the processes C and E are 0.0005, which is half the variance of the first piece.
For each of these piecewise processes, let 8; be the vector of parameters of the j-th piece. In

the notation of Section 2, 8; = 9;. Then ¢; = 0 and d; = 3 and from (6) we obtain

m—+1 3 m—+1
MDL(m, 71,...,Tm) = logm + (m + 1) logn + z; 3 logn; — 2; La(¥;3y5, @), (13)
]: ]:

where La('t:bj; Yj, ;) is defined in Example 4. For each scenario, Auto-Seg procedure was applied
to 500 realizations. The relative frequencies of the number of breaks estimated by Auto-Seg are
displayed in columns 2 and 3 of Table 4.

Table 4: Summary of Auto-Seg break points obtained from 500 replications. The length of the realizations
is n = 2048.

# of break points

Scenario 0 1 o2

A: Model 1 100.0 0.0 0.0010

B: Model 1 — Model 2 at t= 513 18.2 81.8 0.0010, 0.0008
C: Model 1 — Model 2 at t=1025 0.4 99.6 0.0010, 0.0008
D: Model 1 — Model 3 at t= 513 17.2 82.8 0.0010, 0.0005
E: Model 1 — Model 3 at t=1025 1.2 98.8 0.0010, 0.0005

As an illustration, in Figure 4 we show typical realizations of Scenarios B (top panel) and E
(bottom panel). In Figure 4 for the realization of Scenario B Auto-Seg found a break at location

550 (dashed vertical line) and for that of Scenario E it found a break at 1019 (dashed vertical line).
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Figure 4: Realizations from the piecewise stochastic volatility Scenarios B and E defined in Table 4. The
vertical dotted lines are break points found by Auto-Seg.

In Figure 5 two estimates of the posterior mode a* of the vector of states described in Example
4 are shown for these realizations. In the top panel, the estimated modes were obtained when a
single (unsegmented) model fitted to a realization of Scenario B. The estimated modes shown in
the second panel were obtained using the two-piece SVM found by Auto-Seg (i.e., there is a break
at 550). In both panels, the Auto-Seg break is shown as the vertical dotted lines. The plots in
the last two panels are the analogous modes for the realization of Scenario E for which Auto-Seg
found a break at 1019. Although in Figure 5 there are differences between both estimates of the
posterior mode (i.e., without and with the Auto-Seg break) the agreement of the “shapes” between
these estimates is remarkable.

Finally, elementary statistics for those replicates of Scenarios B through E from Table 4, for

which Auto-Seg found exactly one break, are given in Table 5.
4.3 Poisson Parameter Driven process

In this section we consider the performance of Auto-Seg on a two-piecewise Poisson process. That is,

for each piece, the observation equation p(y;|cs; §) has a Poisson distribution with rate \; := ef+a¢,
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Figure 5: Top two panels: Estimated posterior mode of the vector of states for the realization of Scenario C
shown in Figure 4 under the assumption of no break (first panel) and using the break (second panel) found
by Auto-Seg. The last two panels are the analogous plots for the realization from Scenario E.

Table 5: Elementary statistics for the distribution of the estimated location of break points of those replica-
tions with one break for the scenarios given in Table 4.

Scenario Mean SE Min Q1 Med Q3 Max  Freq
Unconditional variance decreases from 0.0010 to 0.0008

B 506.83 90.44 207 481 509 535 1239 409

C 1020.84 80.68 657 993 1023 1047 1525 498
Unconditional variance decreases from 0.0010 to 0.0005

D 502.59 72.04 203 479 507 527 831 414

E 1018.37 79.44 685 985 1023 1047 1469 494

and the state equation is oy = ¢y 1 + ¢, {m} ~ iid N(0, 0?), t = 1,...,n, and |¢| < 1. The
vector of parameters of this process is ¥ = (3, ¢, 02). Let us consider the PDM models with the

following set of parameter values:
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Model 1: 8 = -1.5702, ¢ = 0.50, 0> = 1.9237,
Model 2: 38 = -1.3061, ¢ =-0.50, 0> = 1.5277,
Model 3: 8 =-1.3061, ¢ =0.90, 0? = 0.3870,
Model 4: 8 =-0.9373, ¢ =-0.50, 0> = 0.9745,
Model 5: 8 =-0.9373, ¢ =0.90, 02 = 0.2469.
The two piecewise PDM processes considered in this section are defined in the first column
of Table 6. The first piece of these processes is Model 1 with a true break at either 257 or 513.
The total number of observations for all models is 1024. In the last column of this table the true
unconditional variances of each piece are displayed. The unconditional variance of the first pieces
is 7.5, while the unconditional variances of the second piece of the processes B, C, D and E are 4.5
(small decrease). The unconditional variance of the second pieces of the processes G, G, H and 1
are 2.25, which is a larger decrease. Notice that the MDL calculation of this piecewise process is
identical to that for the SVM given in Section 4.2.
For each scenario , Auto-Seg was applied to 500 realizations. The relative frequencies of the

number of breaks estimated by Auto-Seg are displayed in columns 2 and 3 of Table 6. As in

Table 6: Summary of estimated Auto-Seg break points obtained from 500 replications. The length of the
realizations is n = 1024.

# of break points
Scenario 0 1 2

Ty

A: Model 1 100.0 0.0 7.5

B: Model 1 — Model 2 at t=257 34.0 66.0 7.5,4.5
C: Model 1 — Model 2 at t=513 11.6 88.4 7.5,4.5
D: Model 1 — Model 3 at t=257 31.0 69.0 7.5,4.5
E: Model 1 — Model 3 at t=513 16.8  83.2 7.5,4.5
F: Model 1 — Model 4 at t=257 13.4  86.6 7.5, 2.25
G: Model 1 — Model 4 at t=513 2.2 978 7.5, 2.25
H: Model 1 — Model 5 at t=257 16.0 84.0 7.5,2.25
I: Model 1 — Model 5 at t=513 9.0 91.0 7.5, 2.25

the GARCH case, the performance of Auto-Seg improves when the change of variance between
the pieces increases (e.g., the detection rate for Scenario E is better than that for Scenario C).
Notice that the change of variances of the pieces of Scenario C is larger than that of the pieces
of Scenario C. Another noteworthy comment from Table 6 is that the performance of Auto-Seg
can vary when the change of variances are the same. For example, the change of variances of

Scenarios B and D are the same, however the performance of Auto-Seg is better for Scenario D.
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In addition, the detection rate depends on the location of the break; e.g., Scenario F and G have
similar parameter values except the locations, which are 257 and 513 respectively. The fact that
for Scenario A with no break Auto-Seg never finds a break point is remarkable. The detection rates
for the scenarios with one break in this table vary from 66.0% to 97.8%. Taking in consideration
that for all the scenarios the sample size (1024) is not large, the performance of Auto-Seg for these
scenario is good.

As an illustration, in Figure 6 we show typical realizations of Scenarios C (top panel) and H

(bottom panel). In this figure for the realization of Scenario B Auto-Seg found a break at location
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Figure 6: Realizations from the piecewise Poisson processes B and H, respectively (defined in the first column
of Table 6). Vertical dotted lines are break points found by Auto-Seg.

520 (dashed vertical line) and for that of Scenario H it found a break at 256 (dashed vertical line).
Like for the SVM, we computed two estimates of the posterior mode of the vector of states. In the
top panel of Figure 7 the estimated modes were obtained when the realization of Scenario C is not
segmented. The estimated modes shown in the second panel of this figure were obtained using the
two piecewise PDM found by Auto-Seg (i.e., with a break at 520). In both panels, the Auto-Seg

break is shown as the vertical dotted. The plots in the last two panels are the analogous modes for
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the realization of Scenario H for which Auto-Seg found a break at location 256.
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Figure 7: Posterior mode of the realization of Scenario C shown in Figure 6 under the assumption of
no break (first panel) and using the break (second panel) found by Auto-Seg. The last two panels are the
analogous plots for the realization of Scenario H.

From Figure 7 we notice that for the realization of Scenario C the estimated modes of the
vector of states does not differ too much. That is not the case for the realization of Scenario H.
In this case (bottom two panels) the mode of the first piece is underestimated when no breaks are
considered. Notice that the modes of the second piece look quite similar.

We include now the case where there is no break in the underlying scenario. In the first row of

Figure 8 a realization of Scenario A defined in Table 6 is shown. Auto-Seg did not find any break for
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this realization. Now, the MDL computed at the break with location at time ¢, £ = 25,30,...,995
was computed. These MDL values are shown as the solid line in the second row of Figure 8.
Ignoring the last few MDL values on the right the minimum MDL value in this grid is 1,195.2 at
550. The horizontal dashed line in this row shows the MDL with no breaks (1,183.7). In the third
row the estimated posterior mode of the vector of states based on a single piece is shown. In the
last row we show the estimate of the posterior mode based on two PDM scenarios having a break

at the minimizer of the two-piece MDL values are shown in the second row of this figure. Notice
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Figure 8: First row: A typical realization of Scenario A defined in Table 6. Second row: two-piece MDL
computed in a grid of points (solid line) and one-piece MDL (horizontal dashed line). Third panel: estimated
posterior mode based on a single piece. Fourth row: estimated posterior mode based on two pieces with break
at location 550.
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that the two sets of estimates agree.
Elementary statistics for the replicates of the two-piecewise models from Table 6 for which

Auto-Seg found one break are given in Table 7. As seen in Table 7 the mean of the fitted breaks are

Table 7: Elementary statistics for the distribution of the estimated location of break points of those replica-

tions with only one break for the models given in Table 6.
Scenario  Mean SE Min Q1 Med Q3 Max  Freq
Unconditional variance decreases from 7.5 to 4.5

B 245.6  40.9 107 222 240 260.0 419 66.0
C 505.9 49.1 213 487 515 526.0 772 88.4
D 265.0 66.9 117 226 246 305.0 881 69.0
E 520.8 67.7 312 491 520 540.3 905 83.2
Unconditional variance decreases from 7.5 to 2.25
F 250.1  40.2 100 229 246 258.0 571 86.6
G 509.6 34.9 318 501 516 528.0 641 97.8
H 265.8 67.0 103 224 249 308.0 747 84.0
1 522.1  60.6 136 509 522 541.0 857 91.0

generally close to the true value. The increase in change of variances tend to decrease the standard
error of the locations of the breaks; e.g., the standard errors of the breaks of Scenarios C and G
are 49.1 and 34.9, respectively.

For illustration purposes we obtain the densities of the estimated breaks of Scenarios B and
F. The variances change from 7.5 to 4.5 for the first scenario and from 7.5 to 2.25 for the second
scenario. In Figure 9 the estimated densities are shown as a dotted line for the density of the breaks

of Scenario B and as a solid line for the density of the breaks of Scenario F.
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Figure 9: Estimated densities of the locations of the breaks of Scenarios B (dotted line) and F (solid line).

Notice that both densities are multimodal in spite of the fact that Scenario F has a large change
of variances among the pieces. We believe that the multimodality in these densities is due to the

small sample size of the realizations of the process.
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Now consider the two piece models from Table 6. For those realizations for which Auto-Seg
found exactly one break, the parameters of each piece were estimated. The average and standard
error of these estimates are shown in Table 8. Also in the last two columns in this table, the average
of the minimized MDL and the average of the MDL values obtained when no breaks are considered
are given.

Table 8: Parameters estimates for the two-piecewise Poisson models from Table 6.

Piece 1 Piece 2 MDL
Scenario B ) o? B 1) o? two-piece  one-piece
Unconditional variance decreases from 7.5 to 4.5
B True -1.5702 0.50 1.9237 -1.3061 -0.50 1.5277
mean -1.6535 0.45 2.1635 -1.3918 -0.46 1.8113 1122.37 1130.12
std  0.3547 0.12 0.6467 0.1154 0.06 0.2854
C True -1.5702 0.50 1.9237 -1.3061 -0.50 1.5277
mean -1.6442 0.41 2.1400 -1.3878 -0.46 1.8067 1107.32 1117.21
std  0.2327 0.10  0.4576 0.1472 0.07  0.3395
D True -1.5702 0.50 1.9237 -1.3061 0.90 0.3870
mean -1.7020 0.32 2.3957 -1.2580 0.90 0.3692 1046.14 1053.28
std  0.3572 0.15 0.6200 0.2578 0.03 0.0833
E True -1.5702 0.50 1.9237 -1.3061 0.90 0.3870
mean -1.6641 0.37 2.2258 -1.2717  0.90 0.3667 1052.57 1061.99
std  0.2480 0.11  0.4715 0.3246 0.03 0.0979
Unconditional variance decreases from 7.5 to 2.25
F True -1.5702 0.50 1.9237 -0.9373 -0.50 0.9745
mean -1.7097 0.40 2.2389 -0.9866 -0.47 1.1224 1166.49 1176.60
std  0.3437 0.15 0.6569 0.0875 0.06 0.1626
G True -1.5702 0.50 1.9237 -0.9373 -0.50 0.9745
mean -1.6528 0.39 2.1683 -0.9875 -0.47 1.1115 1137.65 1151.41
std  0.2291 0.11  0.4589 0.1105 0.08 0.2135
H True -1.5702 0.50 1.9237 -0.9373 0.90 0.2469
mean -1.6967 0.35 2.3187  -0.9309 0.89 0.2453 1092.90 1102.29
std  0.3521 0.16  0.6283 0.2037 0.03 0.0571
1 True -1.5702 0.50 1.9237 -0.9373 0.90 0.2469
mean -1.6633 0.38 2.2065 -0.9171 0.89 0.2419 1089.66 1101.82
std  0.2336 0.11  0.4577  0.2483 0.04 0.0743

In general, the estimates are sightly biased. This is true for the state-space Poisson model
with no regime change even when the Monte Carlo approximation of the likelihood is used to
estimate the parameters of this model (see for example Sandman and Koopman, 1998 and Davis

and Rodriguez-Yam, 2005).
5 An Application

The Auto-Seg procedure was applied to analyze change points in the Standard and Poors 500 index
(S&P 500) over the period Jan/4/1989 to Oct/19/2001 at daily frequency. This stock market series

was also analyzed by Andreou and Ghysels (2002) during this same period. They were interested
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in studying the impact, if any, on the Asian and Russian financial crises which started in July
1997 and continued into 1998. This section of S&P 500 consists of 3,230 observations. The log
returns r; of this series is shown in Figure 10. Auto-Seg was applied to the log returns series and
4 segments were found with break locations at 197, 726 and 2,229 which are shown as the vertical

dotted lines in Figure 10. In Table 9 we show the breaks found by Andreou and Ghysels (2002)
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Figure 10: Log returns of the SE&P index over the period Jan/4{/1989-Oct/19/2001. The dotted vertical
lines are the breaks found by Auto-Seg.

when the Lavielle and Moulines procedure is applied to the absolute and squared returns using the

BIC and LWZ. The latter is a modified BIC proposed in Liu et al. (1997). In Table 9, the last

Table 9: Breaks of the S&P 500 index. The AG values are taken from Table VII of Andreou and Ghysels
(2002). Auto-Seg: best piece-wise GARCH(1,1) process found by Auto-Seg.

Selection
Process  Criterion Number and location of breaks
Auto-Seg rt MDL 3 13/10/89, 15/11/91, 27/10/97
AG [re| BIC 3 27/12/91, 5/1/96, 28/7/98
LWZ 2 20/8/91, 3/2/97
(r¢)? BIC 1 14/10/97
LWZ 1 14/10/97

break found by Auto-Seg is in close agreement with the single break found by Andreou and Ghysels
(2002) when squared returns are used in the Lavielle and Moulines procedure. In Figure 11 three
sets of volatilities are shown. In the top panel the volatilities were obtained by fitting a single
GARCH(1,1) model to the log returns of the S&P 500 series. In the middle panel the volatilities
were obtained fitting a model based on a break at 27/10/97 that is close to the single break found by
Andreou and Ghysels (2002). In the bottom panel the volatilities were obtained using the Auto-Seg
breaks. Notice in Figure 11 that the single-break volatilities (middle panel) resemble the estimated

volatilities based on Auto-Seg (bottom panel). As a reference, the MDL values of the fitted fitted
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Figure 11: Estimated volatilities of the log returns of the S&P 500 series. Top: estimated volatilities
under no breaks. Middle panel: volatilities when a break in 27/10/97 is assumed. Bottom panel: Estimated
volatilities based on the Auto-Seg breaks.

models in this figure are —10, 688, —10,752 and —10, 705, respectively. As expected, the difference
between the best Auto-Seg MDL and the single piece MDL is much greater than between the best

Auto-Seg MDL and the single-break MDL model.
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