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Gaussian processes

The class of Gaussian processes is one of the most
widely used families of stochastic processes for mod-
eling dependent data observed over time, or space,
or time and space. The popularity of such processes
stems primarily from two essential properties. First,
a Gaussian process is completely determined by its
mean and covariance functions. This property facili-
tates model fitting as only the first- and second-order
moments of the process require specification. Second,
solving the prediction problem is relatively straight-
forward. The best predictor of a Gaussian process
at an unobserved location is a linear function of
the observed values and, in many cases, these func-
tions can be computed rather quickly using recursive
formulas.

The fundamental characterization, as described
below, of a Gaussian process is that all the finite-
dimensional distributions have a multivariate normal
(or Gaussian) distribution. In particular the distribu-
tion of each observation must be normally distributed.
There are many applications, however, where this
assumption is not appropriate. For example, con-
sider observations x1, . . . , xn, where xt denotes a 1
or 0, depending on whether or not the air pollution
on the tth day at a certain site exceeds a govern-
ment standard. A model for there data should only
allow the values of 0 and 1 for each daily obser-
vation thereby precluding the normality assumption
imposed by a Gaussian model. Nevertheless, Gaus-
sian processes can still be used as building blocks
to construct more complex models that are appro-
priate for non-Gaussian data. See [3–5] for more on
modeling non-Gaussian data.

Basic Properties

A real-valued stochastic process fXt, t 2 Tg, where
T is an index set, is a Gaussian process if all the
finite-dimensional distributions have a multivariate
normal distribution. That is, for any choice of dis-
tinct values t1, . . . , tk 2 T, the random vector X D
	Xt1 , . . . , Xtk 


0 has a multivariate normal distribu-
tion with mean vector m D EX and covariance matrix
 D cov	X,X
, which will be denoted by

X ¾ N	m, 


Provided the covariance matrix  is nonsingular, the
random vector X has a Gaussian probability density
function given by

fX	x
 D 	2

�n/2	det 
�1/2

ð exp	� 1
2 	x � m
0�1	x � m

 	1


In environmental applications, the subscript t will
typically denote a point in time, or space, or space
and time. For simplicity, we shall restrict attention to
the case of time series for which t represents time.
In such cases, the index set T is usually [0,1
 for
time series recorded continuously or f0, 1, . . . , g for
time series recorded at equally spaced time units.

The mean and covariance functions of a Gaussian
process are defined by

�	t
 D EXt 	2


and
�	s, t
 D cov	Xs, Xt
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respectively. While Gaussian processes depend only
on these two quantities, modeling can be diffi-
cult without introducing further simplifications on
the form of the mean and covariance functions.
The assumption of stationarity frequently provides
the proper level of simplification without sacrificing
much generalization. Moreover, after applying ele-
mentary transformations to the data, the assumption
of stationarity of the transformed data is often quite
plausible.

A Gaussian time series fXtg is said to be station-
ary if

1. m	t
 D EXt D � is independent of t, and
2. �	t C h, t
 D cov	XtCh, Xt
 is independent of t for

all h.

For stationary processes, it is conventional to express
the covariance function � as a function on T instead
of on Tð T. That is, we define �	h
 D cov	XtCh, Xt

and call it the autocovariance function of the process.
For stationary Gaussian processes fXtg, we have

3. Xt ¾ N	�, �	0

 for all t, and
4. 	XtCh, Xt
0 has a bivariate normal distribution

with covariance matrix[
�	0
 �	h

�	h
 �	0


]
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for all t and h.
A general stochastic process fXtg satisfying con-

ditions 1 and 2 is said to be weakly or second-order
stationary. The first- and second-order moments of
weakly stationary processes are invariant with respect
to time translations. A stochastic process fXtg is
strictly stationary if the distribution of 	Xt1 , . . . , Xtn

is the same as 	Xt1Cs , . . . , XtnCs 
 for any s. In other
words, the distributional properties of the time series
are the same under any time translation. For Gaus-
sian time series, the concepts of weak and strict
stationarity coalesce. This result follows immediately
from the fact that for weakly stationary processes,
	Xt1 , . . . , Xtn
 and 	Xt1Cs , . . . , XtnCs 
 have the same
mean vector and covariance matrix. Since each of the
two vectors has a multivariate normal distribution,
they must be identically distributed.

Properties of the Autocovariance Function

An autocovariance function �	Ð
 has the properties:

1. �	0
 ½ 0,
2. j�	h
j � �	0
 for all h,
3. �	h
 D �	�h
, i.e. �	Ð
 is an even function.

Autocovariances have another fundamental prop-
erty, namely that of non-negative definiteness,

n∑
i,jD1

ai�	ti � tj
aj ½ 0 	4


for all positive integers n, real numbers a1, . . . , an,
and t1, . . . , tn 2 T. Note that the expression on the
left of (4) is merely the variance of a1Xt1 C Ð Ð Ð C
anXtn and hence must be non-negative. Conversely,
if a function �	Ð
 is non-negative definite and even,
then it must be an autocovariance function of some
stationary Gaussian process.

Gaussian Linear Processes

If fXt, t D 0,š1,š2, . . . , g is a stationary Gaussian
process with mean 0, then the Wold decomposition
allows Xt to be expressed as a sum of two indepen-
dent components,

Xt D
1∑
jD0

 jZt�j C Vt 	5


where fZtg is a sequence of independent and identi-
cally distributed (iid) normal random variables with
mean 0 and variance �2, f jg is a sequence of square
summable coefficients with  0 D 1, and fVtg is a
deterministic process that is independent of fZtg. The
Zt are referred to as innovations and are defined by
Zt D Xt � E	XtjXt�1, Xt�2, . . .). A process fVtg is
deterministic if Vt is completely determined by its
past history fVs, s < tg. An example of such a pro-
cesses is the random sinusoid, Vt D A cos	�t C
,
where A and  are independent random variables
with A ½ 0 and  distributed uniformly on [0, 2
). In
this case, V2 is completely determined by the values
of V0 and V1. In most time series modeling applica-
tions, the deterministic component of a time series is
either not present or easily removed.

Purely nondeterministic Gaussian processes do not
possess a deterministic component and can be repre-
sented as a Gaussian linear processes,

Xt D
1∑
jD0

 jZt�j 	6


The autocovariance of fXtg has the form

�	h
 D
1∑
jD0

 j jCh 	7


The class of autoregressive (AR) processes, and its
extensions, autoregressive moving-average (ARMA)
processes, are dense in the class of Gaussian linear
processes. A Gaussian AR(p) process satisfies the
recursions

Xt D !1Xt�1 C Ð Ð Ð C !pXt�p C Zt 	8


where fZtg is an iid sequence of N	0, �2
 ran-
dom variables, and the polynomial !	z
 D 1 � !1z �
Ð Ð Ð � !pzp has no zeros inside or on the unit cir-
cle. The AR(p) process has a linear representation
(6) where the coefficients are found as functions of
the !j (see [2]). Now for any Gaussian linear process,
there exists an AR(p) process such that the difference
in the two autocovariance functions can be made arbi-
trarily small for all lags. In fact, the autocovariances
can be matched up perfectly for the first p lags.
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Prediction

Recall that if two random vectors X1 and X2 have a
joint normal distribution, i.e.[

X1
X2

]
¾ N

([
m1
m2

]
,

[
11 12
21 22

])

and 22 is nonsingular, then the conditional distri-
bution of X1 given X2 has a multivariate normal
distribution with mean

mX1jX2 D m1 C12
�1
22 	X2 � m2
 	9


and covariance matrix

X1jX2 D 11 �12
�1
22 21 	10


The key observation here is that the best mean
square error predictor of X1 in terms of X2
(i.e. the multivariate function g	X2
 that minimizes
EjjX1 � g	X2
jj2, where jj Ð jj is Euclidean distance)
is E	X1jX2
 D mX1jX2 which is a linear function of
X2. Also, the covariance matrix of prediction error,
X1jX2 , does not depend on the value of X2. These
results extend directly to the prediction problem for
Gaussian processes.

Suppose fXt, t D 1, 2, . . .g is a stationary Gaussian
process with mean � and autocovariance function
�	Ð
 and that based on the random vector consisting
of the first n observations, Xn D 	X1, . . . , Xn
0, we
wish to predict the next observation XnC1. Prediction
for other lead times is analogous to this special case.
Applying the formula in (9), the best one-step-ahead
predictor of XnC1 is given by

X̂nC1: D E	XnC1jX1, . . . , Xn
 D �C !n1	Xn � �


C Ð Ð Ð C !nn	X1 � �
 	11


where
	!n1, . . . , !nn


0 D �1
n �n 	12


n D cov	Xn,Xn
, and �n D cov	XnC1,Xn
 D
	�	1
, . . . , �	n

0. The mean square error of predic-
tion is given by

vn D �	0
� � 0
n

�1
n �n 	13


These formulas assume that n is nonsingular. If
n is singular, then there is a linear relationship
among X1, . . . , Xn and the prediction problem can
then be recast by choosing a generating prediction

subset consisting of linear independent variables. The
covariance matrix of this prediction subset will be
nonsingular. A mild and easily verifiable condition
for ensuring nonsingularity of n for all n is that
�	h
 ! 0 as h ! 1 with �	0
 > 0 (see [1]).

While (12) and (13) completely solve the pre-
diction problem, these equations require the inver-
sion of an nð n covariance matrix which may
be difficult and time consuming for large n. The
Durbin–Levinson algorithm (see [1]) allows one to
compute the coefficient vector !n D 	!n1, . . . , !nn
0
and the one-step prediction errors vn recursively from
!n�1, vn�1, and the autocovariance function.

The Durbin–Levinson Algorithm

The coefficients !n in the calculation of the one-step
prediction error (11) and the mean square error of
prediction (13) can be computed recursively from the
equations

!nn D

�	n
�

n∑
jD1

!n�1,j�	n� 1



�1

v�1
n�1



!n,1
...

!n,n�1


 D



!n�1,1
...

!n�1,n�1


 � !nn



!n�1,n�1

...
!n�1,1




vn D vn�1	1 � !2
nn
 	14


where !11 D �	1
/�	0
 and v0 D �	0
.
If fXtg follows that AR(p) process in (8), then

the recursions simplify a great deal. In particular,
for n > p, the coefficients !nj D !j for j D 1, . . . , p
and !nj D 0 for j > p giving

X̂nC1 D !1Xn C Ð Ð Ð C !pXn�p 	15


with vn D �2.
The sequence of coefficients f!jj, j ½ 1g is called

the partial autocorrelation function and is a useful tool
for model identification. The partial autocorrelation at
lag j is interpreted as the correlation between X1 and
XjC1 after correcting for the intervening observations
X2, . . . , Xj. Specifically, !jj is the correlation of
the two residuals obtained by regression of X1 and
XjC1 on the intermediate observations X2, . . . , Xj.
Of particular interest is the relationship between !nn
and the reduction in the one-step mean square error
as the number of predictors is increased from n� 1
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to n. The one-step prediction error has the following
decomposition in terms of the partial autocorrelation
function:

vn D �	0
	1 � !2
11
 Ð Ð Ð 	1 � !2

nn
 	16


For a Gaussian process, XnC1 � X̂nC1 is normally
distributed with mean 0 and variance vn. Thus,

X̂nC1 š z1�˛/2v�1/2
n

constitute (1 � ˛) 100% prediction bounds for the
observation XnC1, where z1�˛/2 is the (1 � ˛/2)
quantile of the standard normal distribution. In
other words, XnC1 lies between the bounds X̂nC1 š
z1�˛/2v

�1/2
n with probability 1 � ˛.

Estimation for Gaussian Processes

One of the advantages of Gaussian models is that
an explicit and closed form of the likelihood is
readily available. Suppose that fXt, t D 1, 2, . . . , g
is a stationary Gaussian time series with mean �
and autocovariance function �	Ð
. Denote the data
vector by Xn D 	X1, . . . , Xn
 and the vector of one-
step predictors by X̂n D 	X̂1, . . . , X̂n
0, where X̂1 D
� and X̂j D E	XjjX1, . . . , Xj�1
 for j ½ 2. If n
denotes the covariance matrix of Xn, which we
assume is nonsingular, then the likelihood of Xn is

L	n, �
 D 	2

�n/2	det n

�1/2

ð exp
(

� 1
2 	Xn � �1
0�1

n 	Xn � �1

)

	17

where 1 D 	1, . . . , 1
0. Typically, n will be express-
ible in terms of a finite number of unknown param-
eters, ˇ1, . . . , ˇr , so that the maximum likelihood
estimator of these parameters and � are those val-
ues that maximize L for the given dataset. Under
mild regularity assumptions, the resulting maximum
likelihood estimators are approximately normally dis-
tributed with covariance matrix given by the inverse
of the Fisher information.

In most settings, direct-closed-form maximization
of L with respect to the parameter set is not achiev-
able. In order to maximize L using numerical meth-
ods, either derivatives or repeated calculation of the
function are required. For moderate to large sample
sizes n, calculation of both the determinant of n and
the quadratic form in the exponential of L can be dif-
ficult and time consuming. On the other hand, there

is a useful representation of the likelihood in terms of
the one-step prediction errors and their mean square
errors. By the form of X̂n, we can write

Xn � X̂n D AnXn 	18


where An is a lower triangular square matrix with
ones on the diagonal. Inverting this expression,
we have

Xn D Cn	Xn � X̂n
 	19


where Cn is also lower triangular with ones on the
diagonal. Since Xj � E	XjjX1, . . . , Xj�1
 is uncor-
related with X1, . . . , Xj�1, it follows that the vec-
tor Xn � X̂n consists of uncorrelated, and hence
independent, normal random variables with mean
0 and variance vj�1, j D 1, . . . , n. Taking covari-
ances on both sides of (19) and setting Dn D
diagfv0, . . . , vn�1g, we find that

n D CnDnC
0
n 	20


and

	Xn � �1
0�1
n 	Xn � �1
 D 	Xn � X̂n
0D�1

n

	Xn � X̂n
 D
n∑
jD1

	Xj � X̂j
2

vj�1
	21


It follows that det n D v0v1 . . . vn�1 so that the
likelihood reduces to

L	n, �
 D 	2

�n/2	v0v1 . . . vn�1

�1/2

exp


�1

2

n∑
jD1

	Xj � X̂j
2

vj�1


 	22


The calculation of the one-step prediction errors and
their mean square errors required in the computation
of L based on (22) can be simplified further for
a variety of time series models such as ARMA
processes. We illustrate this for an AR process.

Gaussian Likelihood for an AR(p) Process

If fXtg is the AR(p) process specified in (8) with
mean �, then one can take advantage of the simple
form for the one-step predictors and associated mean
square errors. The likelihood becomes

L	!1, . . . , !p, �, �
2
 D 	2

�	n�p
/2��	n�p




VAG002-

Gaussian processes 5

ð exp


�1

2

n∑
jDpC1

	Xj � X̂j
2

�2


 	2

�p/2

ð 	v0v1 . . . vp�1

�1/2 exp


�1

2

p∑
jD1

	Xj � X̂j
2

vj�1




	23


where, for j > p, X̂j D �C !1	Xj�1 � �
C Ð Ð Ð C
!p	Xj�p�1 � �
 are the one-step predictors. The
likelihood is a product of two terms, the conditional
density of Xn given Xp and the density of Xp. Often,
just the conditional maximum likelihood estimator
is computed which is found by maximizing the first
term. For the AR process, the conditional maximum
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Figure 1 Average maximum temperature, 1885–1993. Regression line is 16.83 C 0.008 45t
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Figure 2 QQ plot for normality of the innovations
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likelihood estimator can be computed in closed form.

Example This example consists of the average
maximum temperature over the month of September
for the years 1895–1993 in an area of the US whose
vegetation is characterized as tundra. The time series
x1, . . . , x99 is plotted in Figure 1. Here we investigate
the possibility of the data exhibiting a slight linear
trend. After inspecting the residuals from fitting a
least squares regression line to the data, we entertain
a time series model of the form

Xt D ˇ0 C ˇ1t CWt 	24


where fWtg is the Gaussian AR(1),

Wt D !1Wt�1 C Zt 	25


and fZtg is a sequence of iid N	0, �2
 random vari-
ables. After maximizing the Gaussian likelihood over
the parameters ˇ0, ˇ1, !1, and �2, we find that the
maximum likelihood estimate of the mean function is
16.83 C 0.008 45t. The maximum likelihood parame-
ters of !1 and �2 are estimated by 0.1536 and 1.3061,
respectively. The maximum likelihood estimates of
ˇ0 and ˇ1 can be viewed as generalized least squares
estimates assuming that the residual process follows
the estimated AR(1) model. The resulting standard
errors of these estimates are 0.277 81 and 0.004 82,
respectively, which provides some doubt about the

significance of a nonzero slope of the line. Without
modeling the dependence in the residuals, the slope
would have been deemed significant using classical
inference procedures. By modeling the dependence
in the residuals, the evidence in favor of a nonzero
slope has diminished somewhat. The QQ plot of the
estimated innovations is displayed in Figure 2. This
plot shows that the AR(1) model is not far from being
Gaussian. Further details about inference procedures
for regression models with time series errors can be
found in [2, Chapter 6].
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