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Abstract

This paper considers the problem of modeling a class of non-stationary time series using
piecewise autoregressive (AR) processes. The number and locations of the piecewise autore-
gressive segments, as well as the orders of the respective AR processes, are assumed to be
unknown. The minimum description length principle is applied to compare various segmented
AR fits to the data. The goal is to find the “best” combination of the number of segments, the
lengths of the segments, and the orders of the piecewise AR processes. Such a “best” combi-
nation is implicitly defined as the optimizer of an objective function, and a genetic algorithm
is implemented to solve this difficult optimization problem. Numerical results from simulation
experiments and real data analyses show that the procedure enjoys excellent empirical proper-

ties. The segmentation of multivariate time series is also considered. Assuming that the true
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underlying model is a segmented autoregression, this procedure is shown to be consistent for
estimating the location of the breaks.
KEY WORDS: Non-stationarity, change-points, minimum description length principle, genetic

algorithm.

1 INTRODUCTION

In this paper we consider the problem of modeling a non-stationary time series by segmenting the
series into blocks of different autoregressive (AR) processes. The number of break points, denoted
by m, as well as their locations and the orders of the respective AR models are assumed to be
unknown. We propose an automatic procedure for obtaining such a partition.

In order to describe the setup, for j = 1,...,m, denote the break point between the j-th and
(7 +1)-th AR processes as 7;, and set 79 = 1 and 7,41 = n 4+ 1. Then the j-th piece of the series

is modeled as an AR process
Y =X, 121 <t<Ty, (1)
where {X; ;} is the AR(p;) process
Xt =79+ ¢y Xe—15+ .+ bjp; Xe—p;.j + TjEL,

Y = (v, i1, d)j’pj,ojz) is the parameter vector corresponding to this AR(p;) process, and
the noise sequence {e;} is iid with mean 0 and variance 1. Given an observed series {y;}" ;.
the objective is to obtain a “best” fitting model from this class of piecewise AR processes. This
is equivalent to finding the “best” combination of the number of pieces m + 1, the break point
locations 71,..., 7y, and the AR orders pi,...,pmy1. We propose an automatic procedure for
obtaining such a partition. This proposed automatic piecewise autoregressive modeling procedure

will be referred to as Auto-PARM. Note that once these parameters are specified, maximum



likelihood estimates of the AR parameters 1,’s for each segment are easily computed. The
primary objective of the methodology developed in this paper is to actually estimate structural
breaks for a time series. Under this scenario, it is assumed that some aspect of a time series
changes at various times. Such change might be a shift in the mean level of the process, a change
in variance, and/or a change in the dependence structure of the process. The sequence of time
series between two change-points is assumed to be modeled as a sequence of stationary processes,
each of which can be adequately modeled by an autoregressive process. Potential applications of
this setup can be found in social sciences in which time series may be impacted by changes in
government policies and time series from signal processing engineering, and manufacturing where
production processes are often subject to unpredictable changes in the manufacturing process.
As a secondary objective, our methodology can also be viewed as a procedure for approxi-
mating locally stationary time series by piecewise AR processes. To see this, we note that the
piecewise AR process considered in (1) is a special case of the piecewise stationary process (see

also Adak 1998)

m—+1
Y't,n = Z Xt,jI[Tj,l/n,Tj/n)(t/n)a
j=1
where {X;;},7 = 1,...,m + 1 is a sequence of stationary process. Under certain conditions,

Ombao, Raz, Von Sachs, and Malow (2001) argue that locally stationary processes (in the sense
of Dahlhaus 1997) can be well approximated by piecewise stationary processes. Roughly speaking,
a process is locally stationary if its time-varying spectrum at time ¢ and frequency w is |A(t/n, w)|?,
where A(u,w), u € [0,1], w € [-1/2,1/2] is a continuous function in u. Since AR processes are
dense in the class of weakly stationary (purely non-deterministic) processes, the piecewise AR
process is dense in the class of locally stationary processes.

The above problem of finding a “best” combination of m, 7;’s and p;’s can be treated as

a statistical model selection problem, in which candidate models may have different numbers of



parameters. To solve this selection problem we apply the minimum description length (MDL)
principle of Rissanen (1989) to define a best fitting model (see Saito 1994 and Hansen and Yu
2000 for a comprehensive review of MDL). The basic idea behind the MDL principle is that, the
best fitting model is the one that enables the maximum compression of the data. Successes in
applying MDL to a variety of practical problems have been widely reported in the literature; see,
for example, Lee (2000), Hansen and Yu (2001) and Jornsten and Yu (2003).

As demonstrated below, the best fitted model derived by the MDL principle is defined im-
plicitly as the optimizer of some criterion. Practical optimization of this criterion is not a trivial
task, as the search space (consisting of m, 7;’s and p;’s) is enormous. To tackle this problem,
we use a genetic algorithm (GA) described for example by Holland (1975). Genetic algorithms
are becoming a popular tool in statistical optimization applications (e.g., Gaetan 2000; Pittman
2002; Lee and Wong 2003), and seem particularly well suited for our MDL optimization problem
as can be seen in our numerical studies.

Various versions of the above break point detection problem have been considered in the
literature. For example, Bai and Perron (1998, 2003) examine the multiple change-point modelling
for the case of multiple linear regression, Inclan and Tiao (1994) and Chen and Gupta (1997)
consider the problem of detecting multiple variance change-points in a sequence of independent
Gaussian random variables, and Kim and Nelson (1999) provide a summary of various applications
of the hidden Markov approach to econometrics. Kitagawa and Akaike (1978) implemented an
“on-line” procedure based on AIC to determine segments. To implement their method, suppose
that an autoregressive model AR(py) has been fitted to the dataset {y1,y2,...,yn,} and that a
new block {yn41s---,Yng+n, } Of m1 Observations becomes available, which can be modeled as an
AR(p1) autoregressive model. Then, the time ng is considered a breaking point when the AIC

value of the two independent pieces is smaller than the AIC of the autoregressive that results



when the dataset {y1,...,Yny+n, } 18 modeled as a single autoregressive model of order p,. Each
pj,j = 0,1,2 is selected among the values 0,1,..., K (K is a predefined value) that minimizes
the AIC criterion. The iteration is continued until no more data are available. Like K, my is
a predefined value. Ombao et al. (2001) implement a segmentation procedure using the SLEX
transformation, a family of orthogonal transformations. For a particular segmentation, a “cost”
function is computed as the sum of the costs at all the blocks that define the segmentation.
The best segmentation is then defined as the one with minimum cost. Again, because it is not
computationally feasible to consider all possible segmentations, they assume that the length of the
segments follow a dyadic structure; i.e., an integer power of 2. Bayesian approaches have also been
studied; e.g., see Lavielle (1998) and Punskaya et al. (2002). Both procedures choose the final
optimal segmentation as the one that maximizes the posterior distribution of the observed series.
Numerical results suggest that both procedures enjoy excellent empirical properties. However,
theoretical results supporting these procedures are lacking.

For most of the above mentioned procedures, including Auto-PARM, the “best” segmentation
is defined as the optimizer of an objective function. Sequential type searching algorithms are
adopted by some of these procedures for locating such a “best” segmentation; e.g., Kitagawa and
Akaike (1978), Inclan and Tiao (1994) and Ombao et al. (2001). On one hand one would expect
that these sequential procedures, when comparing to our genetic algorithm approach, require
less computational time to locate a good approximation to the true optimizer. On the other
hand, since the genetic algorithm approach examines a much bigger portion of the search space
for the optimization, one should also expect that the genetic algorithm approach provides better
approximations to the true optimizer. A detailed comparison between the Auto-PARM procedure
and the Auto-SLEX procedure of Ombao et al.(2001) is given in Section 4 below.

The rest of this paper is organized as follows. In Section 2 we derive an expression for the MDL



for a given piecewise AR model. In Section 3 we give an overview of the genetic algorithm and
discuss its implementation to the segmentation problem. In Section 4 we study the performance
of the GA via simulation and in Section 5 the GA is applied to 2 test datasets that have been used
in the literature. The case of a multivariate time series and an application is given in Section 6.
In Section 7 we summarize our findings and discuss the relative merits of Auto-PARM and other
structural break detection procedures. Finally, some theoretical results supporting our procedure

are provided in the Appendix.

2 MODEL SELECTION USING MINIMUM DESCRIPTION

LENGTH

2.1 Derivation of MDL

This section applies the MDL principle to select a best fitting model from the piecewise AR model
class defined by (1). Denote this whole class of piecewise AR models as M and any model from
this class as F € M. In the current context the MDL principle defines the “best” fitting model
from M as the one that produces the shortest code length that completely describes the observed
datay = (y1,¥2,...,yn). Loosely speaking, the code length of an object is the amount of memory
space that is required to store the object. In the applications of MDL, one classical way to store y
is to split y into two components: (i) a fitted model F plus (ii) the portion of y that is unexplained
by F. This latter component can be interpreted as the residuals, denoted by € =y — y, where ¥
is the fitted vector for y. If CLz(z) denotes the code length of object z using model F, one has

the following decomposition

CLz(y) = CLr(¥) + CLg(&|F),



where C'Lz(F) denotes the code length of the fitted model F and C'Lxz(é|F) is the code length
of the corresponding residuals (conditional on the fitted model .7:") In short the MDL principle
suggests that a best fitting piecewise AR model F is the one that minimizes CLx(y).

Now the task is to derive expressions for CLxz(F) and CLxz(é|F). We begin with CLx(F).
Let n; := 7; — 751 denote the number of observations in the j-th segment of F. Since F is

composed of m, 7;’s, p;’s and 121j’s, we further decompose CLf(]:") into

CL#(F) = CLg(m) +CLx(71,...,Tm) + CLED1, -, Pms1) + CLr(thy) + ...+ CLr(h,,11)

- CL]:(m) + CL]:(nlu .- 7nm+1) + CL}-(pla s 7pm+1) + CL]:(,{bl) +...+ CL]:(I:Abm+1)

The last expression was obtained by the fact that complete knowledge of (7,...,7,) implies
complete knowledge of (ni,...,nmy41), and vice versa. In general, to encode an integer I whose
value is not bounded, approximately log, I bits are needed. Thus CLg(m) = logym and

CLx(p;j) = logypj. On the other hand, if the upper bound, say Iy, of I is known, approxi-
mately log, Iy bits are required. Since all n;’s are bounded by n, CLx(n;) = logy n for all j. To
calculate CLf(v:bj), we use the following result of Rissanen: a maximum likelihood estimate of
a real parameter computed from N observations can be effectively encoded with %logQ N bits.

Since each of the p; + 2 parameters of {p ; is computed from n; observations,

; pj+2
CLy(th;) = =5 logy n,.

Combining these results, we obtain

m+1 m+1 i + 9
CLx(F) =loggm+ (m +1)logyn + Z logy pj + Z 1 logy nj. (3)
j=1 j=1

Next we derive an expression for CLx(é|F); that is, the code length for the residuals &.
From Shannon’s classical results in information theory, Rissanen demonstrates that the code

length of & is given by the negative of the log likelihood of the fitted model F. To proceed, let



Yj = (Yr,_1»---»Yr;—1) be the vector of observations for the j-th piece in (1). For simplicity, we
consider that p;, the mean of the j-th piece in (1), is 0. Denote the covariance matrix of y; as
V;l = cov{y;}, and let Vj be an estimate for V;. Even though the ¢;’s are not assumed to be
Gaussian, inference procedures will be based on a Gaussian likelihood. Such inference procedures
are often referred to quasi-likelihood. Assumming the segments are independent, the Gaussian

likelihood of the piecewise process is given by
e 1
o 1
L(maTﬂaTlu"'7Tmap17"'7pm+17¢17"'7¢m+1;y) = H(27T) 2 |V]|2€Xp{_§yrjrvfly]}7

Jj=1

and hence the code length of & given the fitted model F is

CL]:(é‘]}) ~ = lOgQ L(m7 TOy T1y- -3 T ,‘:blu s 7,‘:bm+1; y)
m+1
n; 1 -~ 1 T
= Z{? log(2m) — 3 log |V;| + 3Yi V,y;}log,e. (4)
j=1
Combining (3) and (4) and using logarithm base e rather than base 2, we obtain the following

approximation for CLz(y) by

m+1 m+1

i+ 2
logm + (m + 1) logn + Z log pj + Z p];- log n;
7=1 7=1
m+1 s 1 1
+ 2{7] log(2m) — 5 log [V + §ijijJ‘}- (5)
j=1

Using the standard approximation to the likelihood for AR models, i.e., —2log(likelihood) by

n; log 6]2-, where 6]2 is the Y-W estimate of 0]2- (Brockwell and Davis 1991), we define

m+1
MDL(m, 1, .y T, P1s -« - s Pm+1) = logm + (m + 1) logn + Z logp;
7=1
m+1p‘ 4o mil,
+ Z 1 5 logn; + Z Ejlog(%r&;) (6)
j=1 j=1

We propose selecting the best fitting model for y as the model F € M that minimizes

MDL(mﬂTla vy Tmy Ply-- - apm—l—l)-



2.2 Consistency

To this point, we have not assumed the existence of a true model for the time series. However,
to study theoretical properties of these estimates, an underlying model must be specified. Here
we assume that there exist true values mg and )\2, j=1,...,mg, such that 0 < A} <\ < ... <

Aomo < 1. The observations y1,...,y, are assumed to be a realization from the piecewise AR

process defined in (1) with 7; = [\

inl, i =1,2,...,mp, where [z] is the greatest integer that is

less than or equal to z. In estimating the break points 7,..., Tpp,, it is necessary to require that
the segments have a sufficient number of observations to adequately estimate the specified AR
parameter values. Otherwise, the estimation is over-determined resulting in an infinite value for
the likelihood. So, to ensure sufficient separation of the breakpoints, choose € > 0 small such that

ek minizl,___,m0+1(>\? - )\?71) and set
A ={( A1, A00), 0 < M < <. <A < LA — A1 >ei=1,2...,m+ 1},

where Ag := 0 and A\, 41 := 1. Setting A := (Aq,...,\p,) and p = (p1,...,Pm+1), the parameters

m, A and p are then estimated by minimizing MDL over m < My, 0 < p < Py, and A € A,,., i.e,

A . 2
m, >‘7p = arg mSMIOI,l(}gpSPO EMDL(ma Aup)u
AEAm

where My and Py are upper bounds for m and pj;, respectively. In the appendix we prove the

following consistency result.

Proposition 1 For the model specified in (1), when mg, the number of break points is known,

then 5\]- — )\2, a.s., 7 =12 ...,mgp.

In Proposition 1, the true number of breaks my is assumed known. As the simulation studies

in Section 4 show, for unknown myg, the estimator /Mg obtained with our procedure seems to be



consistent, although we do not have a proof. Even in the independent case, the consistency of 1y

is known in only some special cases (e.g., Lee 1997 and Yao 1988).

3 OPTIMIZATION USING GENETIC ALGORITHMS

As the search space is enormous, optimization of MDL(m, 7y, ..., T, P1,- -+, Pm-+1) 18 a nontrivial

task. In this section we propose using a genetic algorithm (GA) to effectively tackle this problem.

3.1 General Description

The basic idea of the canonical form of GAs can be described as follows. An initial set, or
population, of possible solutions to an optimization problem is obtained and represented in vector
form. These vectors are often called chromosomes and are free to “evolve” in the following way.
Parent chromosomes are randomly chosen from the initial population and chromosomes having
lower (higher) values of the objective criterion to be minimized (maximized) would have a higher
chance of being chosen. Then offspring are produced by applying a crossover or a mutation
operation to the chosen parents. Once a sufficient number of such second generation offspring are
produced, third generation offspring are further produced from these second generation offspring
in a similar fashion. This process continues for a number of generations. If one believes in Darwin’s
Theory of Natural Selection, the expectation is that objective criterion values of the offspring will
gradually improve over generations and approach the optimal value.

In a crossover operation, one child chromosome is produced from “mixing” two parent chro-
mosomes. The aim is to allow the possibility that the child receives different best parts from its
parents. A typical “mixing” strategy is that every child gene location has an equal chance of
receiving either the corresponding father gene or the corresponding mother gene. This crossover

operation is the distinct feature that makes genetic algorithms different from other optimization

10



methods. For possible variants of the crossover operation, consult Davis (1991).

In a mutation operation one child chromosome is produced from one parent chromosome. The
child is essentially the same as its parent except for a small number of genes where randomness
is introduced to alter the types of genes. Such a mutation operation prevents the algorithm from
being trapped in local optima.

In order to preserve the best chromosome of a current generation, an additional step, called
the elitist step, may be performed. Here the worst chromosome of the next generation is replaced
with the best chromosome of the current generation. Inclusion of this elitist step guarantees the
monotonicity of the algorithm.

There are many variations of the above canonical GA. For example, parallel implementations
can be applied to speed up the convergence rate as well as to reduce the chance of converging
to sub-optimal solutions (Forrest 1991; Alba and Troya 1999). In this paper we implement
the Island Model. Instead of running only one search in one giant population, the island model
simultaneously runs NI (Number-of-Islands) canonical GAs in N1 different sub-populations. The
key feature is, periodically, a number of individuals are migrated amongst the islands according to
some migration policy. The migration can be implemented in numerous ways (Martin, Lienig and
Cohoon 2000; Alba and Troya 2002). In this paper, we adopt the following migration policy: after
every M; generations, the worst My chromosomes from the j-th island are replaced by the best
My chromosomes from the (j —1)-th island, j = 1,..., NI. For j = 1 the best My chromosomes
are migrated from the NI-th island. In our simulations we used NI = 40, M; =5, My = 2 and

a sub-population size of 40.

11



3.2 Implementation Details

This subsection provides details of our implementation of the GAs that is tailored to our piecewise
AR model fitting.

Chromosome Representation: The performance of a genetic algorithm certainly depends on
how a possible solution is represented as a chromosome, and for the current problem a chromosome
should carry complete information for any 7 € M. That is, the break points 7;’s as well as
the AR orders p;’s. Once these quantities are specified, maximum likelihood estimates of other
model parameters can be uniquely determined. Here we propose using the following chromosome

representation: a chromosome & = (01, ...,0y) is of length n with gene values d; defined as

—1, if no break point at ¢,

pj, ift=7; 1 and the AR order for the j-th piece is p;.

Furthermore, the following “minimum span” constraint is imposed on §: say if the AR order
of a certain piece in F is p, then this piece is made to have at least m, observations. This
predefined integer m,, is chosen to guarantee that there are enough observations for obtaining
quality estimates for the parameters of the AR(p) process. Also, in the practical implementation
of the algorithm, one needs to impose an upper bound P on the order p;’s of the AR processes.
There seems to be no universal choice for Fp, as for complicated series one needs a large P to
capture for example seasonality, while for small series F; cannot be larger than the number of
observations n. For all our numerical works we set Py = 20, and the corresponding minimum
span my’s are listed in Table 1.
Table 1: Values of m,, used in the simulations.

p 01 2 3 4 5 6 710 11-20
m, 10 12 14 16 18 20 25 50

Our empirical experience suggests that the above representation scheme, together with the

minimum span constraint, is extremely effective for the purpose of using GAs to minimize

12



MDL(m, T1, ..., Ty P1s - - -, Pma1). 1t is most likely due to the fact that the location informa-
tion of the break points and the order of the AR processes are explicitly represented.

Initial Population Generation: Our implementation of the GA starts with an initial population
of chromosomes generated at random. For this procedure, the user value 7g, the probability that
the “j-th location” of the chromosome being generated be a break point is needed. A large
value of g makes the initial chromosomes to have a large number of break points, thus a small
value is preferred. We use mp = min(m,)/n = 10/n (in Section 4 a sensitivity analysis for this
parameter is given). Once a location is declared to be a break, an AR order is selected from the
uniform distribution with values 0, 1,..., Py. The following strategy was used to generate each
initial chromosome. First, select a value for p; from {0,..., Py} with equal probabilities and set
61 = p1; i.e., the first AR piece is of order p;. Then the next m,, — 1 genes d;’s (i.e., 02 t0 dp,, )
are set to —1, so that the above minimum span constraint is imposed for this first piece. Now
for the next gene dm, +1 in line. It will either be initialized as a break point (i.e., assigned a
non-negative integer po) with probability mp, or it will be assigned —1 with probability 1 — 7.
If it is to be initialized as a break point, then we set d,,, 11 = p2, where py is randomly drawn
from {0,..., Pp}. This implies that the second AR process is of order py, and the next mp, — 1
d;’s will be assigned —1 so that the minimum span constraint is guaranteed. On the other hand,
if 6mp1+1 is to be assigned with —1, the initialization process will move to the next gene in line

and decide if this gene should be a break point gene or a °

‘—1” gene. This process continues in a

similar fashion, and a random chromosome is generated when the process hits the last gene §,,.
Crossover and Mutation: Once a set of initial random chromosomes is generated, new chro-

mosomes are generated by either a crossover or a mutation operation. In our implementation we

set the probability for conducting a crossover operation as m¢ = 1 — min(my)/n = (n — 10)/n.

For the crossover operation, two parent chromosomes are chosen from the current population

13



of chromosomes. These two parents are chosen with probabilities inversely proportional to their
ranks sorted by their MDL values. In other words, chromosomes that have smaller MDL values
will have higher chances to be selected. From these two parents, the gene values d;’s of the child
chromosome will be inherited in the following manner. Firstly for ¢ = 1, §; will take on the
corresponding §; value from either the first or the second parent with equal probabilities. If this
value is —1, then the same gene inheriting process will be repeated for the next gene in line (i.e.,
d¢41). If this value is not —1, then it is a non-negative integer p; denoting the AR order of the
current piece. In this case the minimum span constraint will be imposed (i.e., the next m,, — 1
0;’s will be set to —1), and the same gene—inheriting process will be applied to the next available
0y

For mutation one child is reproduced from one parent. Again, this process starts with ¢t = 1,
and every d; (subject to the minimum span constraint) can take on one of the following three
possible values: (i) with probability 7p it will take the corresponding d; value from the parent,
(ii) with probability 7y it will take the value —1, and (iii) with probability 1 — wp — mp, it will
take the a new randomly generated AR order p;. In this paper we set 7p = 0.3 and wy = 0.3.

Declaration of Convergence: Recall that we adopt the Island Model in which migration is
allowed for every M; = 5 generations. At the end of each migration the overall best chromosome
(i.e., the chromosome with smallest MDL) is noted. If this best chromosome does not change for
10 consecutive migrations, or the total number of migrations exceeds 20, this best chromosome is

taken as the solution to this optimization problem.

4 SIMULATION RESULTS

Five sets of simulation experiments were conducted to evaluate the practical performances of Auto-

PARM. The experimental setups of the first two simulations are taken from Ombao et al. (2001),
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for which the authors use them to test their Auto-SLEX procedure. In the first simulation, the
pieces of the true process follow a dyadic structure; i.e., the length of each segment is a integer
power of 2. In the second and fourth simulations the true process does not contain any structural
breaks, but its time-varying spectrum changes very slowly over time. In the third simulation the
process contains three pieces, one of which is an ARMA(1,1) process and another is a MA(1)
process. In the last simulation the process has two distinctive features: the pieces do not follow
a dyadic structure and the length of one of the pieces is very short.

For the results reported in this section and in Section 5, we obtained slightly better results by
minimizing MDL based on the exact likelihood function evaluated at Yule-Walker estimates. That
is, MDL as defined by (5) was used in all of the simulation results in this section. Throughout
the whole section, results reported for Auto-SLEX were obtained using computer code provided

by Dr. Hernando Ombao.

4.1 Piecewise Stationary Process with Dyadic Structure

In this simulation example, the target non-stationary series is generated with the following model

(

0.9Y; 1 + ¢4, if 1 <t<512,

Yi=14 1.69Y,_1 — 0.81Y, o +¢;, if 513 <t < 768, (9)

| 132V, 1 — 0.81Y; 5+, i 769 < ¢ <1024,

where g, ~ iid N(0,1). The main feature of this model is that the lengths of the pieces are a
power of 2. This is in fact ideally suited for the Auto-SLEX procedure of Ombao et al. (2001). A
typical realization of this process is shown in Figure 1. For w € [0,0.5), let f;(w) be the spectrum

of the j-th piece, i.e.,

filw) = 0]2-\1 — ¢jrexp{—i2nw} — ... — Bip; exp{7i27rpjw}|2, (10)
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then for ¢ € [1;_1, 7;), the time-varying spectrum of the process Y; in (1) is f(t/n,w) = f;(w).
The true spectrum of the process in (9) is shown in the middle panel of Figure 2, where darker

shades represent higher power.

T T T T T T
1 200 400 600 800 1000

Figure 1: A realization from the piecewise stationary process in (9).

We applied Auto-PARM to the realization in Figure 1 and obtained two break points located
at 71 = 512 and 7o = 769, indicated by the dotted vertical lines in the figure. The Auto-
PARM correctly identified the AR orders (p1=1, po=2 and p3=2) for this realization. From this
segmentation, the time varying spectrum of this realization was estimated as ft/n(w) = fj(w),
where fj (w) is obtained by replacing parameters in (10) with their corresponding estimates . The
estimated time varying spectrum is displayed in the left panel of Figure 2. Our implementation
of Auto-PARM, which is written in Compaq Visual Fortran, took 2.34 seconds on a 1.6 Ghz intel
pentium M processor to obtain the above estimates. The Auto-SLEX time varying spectrum of
this realization is shown in the panel on the right of Figure 2.

Next, 200 realizations of the process in (9) were simulated and Auto-PARM was applied to
segment each of these realizations. Table 2 lists the percentages of the fitted number of segments.
For comparative purposes, the corresponding values of the Auto-SLEX method are also listed.

Notice that Auto-PARM gave the correct number of segments for 96% of the 200 realizations,

16



0 | |
o o
< <
o o
™| ™
Pl o
c

)

=]

o

)

L N N
o o
— | |
o o
o | Q|
o o
00 02 04 06 08 10 00 02 04 06 08 10

Time Time

Figure 2: True time-varying log-spectrum of process in (9) and Auto-PARM and Auto-SLEX estimates
from the realization of Figure 1.

while Auto-SLEX gave the correct segmentation for 73% of the realizations. Table 2 also reports,
for each n, the mean and standard deviation of 5\]- = (75 — 1)/n, j = 2,...,m, where 7; is the
Auto-PARM estimate of 7;. For convenience we will refer to j\j as a relative break point.

Table 3 lists the relative frequencies of the AR order p estimated by the Auto-PARM procedure
for the 96% of the realizations with 3 pieces. Of the 200 realizations, 44% have two breaks and
AR orders 1, 2 and 2, respectively. For these realizations, the means and the standard errors of
the estimated parameters ¢1,..., ¢p,, 032- are shown in Table 4. From these tables one can see

that the practical performance of Auto-PARM applied to the above piecewise stationary process

performs extremely well, especially for locating the break points.

Sensitivity Analysis

We also considered the sensitivity of the GA to the probabilities of initialization (75) and crossover
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Table 2: Summary of the estimated break points from both the Auto-SLEX and Auto-PARM procedures
for the process (9). For Auto-PARM the means and standard errors of the relative break points are also
reported.

Number Auto-SLEX Auto-PARM
of break points break points
segments (%) ASE (%) mean  std ASE
2 2.5 0.396 0.0
(0.019)
3 73.0 0.121 96.0 0.500 0.007 0.049
(0.027) 0.750  0.005 (0.030)
4 11.0 0.146 4.0 0.496 0.004 0.140
(0.040) 0.566 0.108 (0.036)
0.752  0.003
5 9.5 0.206 0.0
(0.045)
>6 4.0 0.253 0.0
(0.103)
All 100.0 0.144  100.0 0.052
(0.064) (0.035)

Table 3: Relative frequencies of the AR order estimated by the Auto-PARM procedure for the realizations
of model (9).

Order 0 1 2 3 4 5 6 >7
pt 0 99.0 1.0 0 0 0
py 0 0 67.7 167 99 36 05 1.5
pg O 0 60.4 229 57 6.8 21 2.1

(mc). To assess the sensitivity, Auto-PARM was applied to the same realizations used in Table 2
for each combination of values of 7p € {0.01,0.1} and n¢c = {0.90,0.99}. The others parameter
values in the implementation of Auto-PARM are as described in Section 3.

The relative frequency of the number of break points estimated by Auto-PARM is shown in
Table 5 (columns 4 and 5). For the replicates with 3 pieces, the mean of the break points and
standard errors are shown in columns 6 and 7, respectively. The frequency of the correct AR
order estimated by Auto-PARM for each piece is shown in columns 8, 9 and 10. The average of

the MDL values and the standard error are shown in the last two columns. The column labeled
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Table 4: Summary of parameter estimates obtained by Auto-PARM for the realizations that have 2 breaks
and pieces with orders 1, 2 and 2, respectively. For each segment, the true parameters, the mean and the
standard errors (in parenthesis) are shown.

Parameter
Segment Model P1 103 o?
I AR(1) true 0.90 1.00
mean  0.89 1.02
(0.02) (0.07)

IT AR(2) true 1.69 -0.81  1.00
mean  1.65 -0.78 1.12

(0.05) (0.05) (0.19)

I AR(2) true 132 -0.81  1.00
mean  1.30 -0.79 1.07

(0.04) (0.04) (0.13)

time shows the average time in seconds to implement Auto-PARM.

Table 5: Sensitivity analysis (NIx popsize = 40 x 40). Summary of sensitivity analysis of 7g and 7¢ of
Auto-PARM based on 200 realizations of (9).

Number of Auto-PARM AR order
breaks (%) Break points  p Po Ps3
™™  TC time 2 3 mean std 1 2 2 MDL
0.01 090 1497 915 85 0.500 0.008 99.5 574 60.1 1520.45
0.749 0.007
0.01  0.99 3.0 95.5 4.5 0.499 0.009 99.5 56.5 60.2 1520.56
0.750 0.007
0.10 0.90 16.85 955 4.5 0.499 0.010 984 534 53.4 1519.41
0.750 0.008
0.10 099 49 945 55 0.499 0.008 979 57.1 57.1 1519.22
0.750 0.007

From Table 5, we see that distinct values of 7 and w¢ give comparable values of MDL.
Notice that Auto-PARM runs the fastest for the values selected for 7z and m¢ in Section 3, i.e.
np = min(my)/n and 7c =1 — min(m,)/n. As seen from this table, there is little impact on the

choice of initial values for 7z and 7¢ in executing Auto-PARM.
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4.2 Slowly Varying AR(2) Process

The true model considered in this second simulation experiment does not possess a structural
break. Rather, the process has a slowly changing spectrum given by the following time-dependent
AR(2) model

Vi=a Y, 1 —081Y; o +e, t=12,...,1024, (11)

where a; = 0.8{1 — 0.5 cos(nt/1024)} and e; ~ iid N(0,1). A typical realization of this process is

shown in Figure 3, while the spectrum of this process is shown in the middle panel of Figure 5.

T T T T T
1 200 400 600 800 1000

Figure 3: Realization from the process in (11).

For the realization in Figure 3, the Auto-PARM procedure segmented the process into three
pieces with break points located at 71 = 318 and 75 = 614 (vertical dotted lines in this figure).
Also, each of the three pieces was modeled as an AR(2) process. The run time for this fitting
was 1.79 seconds. Based on the model found by Auto-PARM, the time-varying spectrum of
this realization was computed and is shown in the left panel of Figure 4. Also, the Auto-SLEX
time-varying spectrum of this realization is shown in the right panel of this figure.

Next we generated 200 realizations of the above process, and the corresponding Auto-PARM
estimates were obtained. Since there are no true structural breaks in such realizations, we follow

Ombao et al. (2001) and use the average squared error as a numerical error measure of perfor-
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Figure 4: Auto-PARM and Auto-SLEX estimates of log-spectrum of process in (11) for the realization
from Figure 3.

mance. The ASE is defined by

n Mj/2

ASE = {n(M;/2+ 1)} 'Y Y {log f(t/n,wy) — log f(t/n. wi)},

t=1 k=0

where f(, -) is an estimate of the true time-dependent spectrum f(-,-) of the process, J is a
pre-specified scale satisfying J < L = logy(n) and M; := n/2’ (see equation (19) in Ombao et
al. 2001). In this simulation we took J = 4.

The number of segments, locations of the break points and the ASEs of the Auto-PARM
estimates are summarized in Table 6. Also listed in Table 6 are the ASE values of the Auto-SLEX
procedure. From Table 6 the following two main observations can be made. First, for each of the
simulated processes, Auto-PARM produces either two or three segments that are of roughly the
same length, while the Auto-SLEX procedure tends to split the process into a larger number of
segments. Second, the ASE values of Auto-PARM are smaller than those from Auto-SLEX.

In order to show a “consistency” like property of Auto-PARM, we computed the average of
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Table 6: Break points and ASEs values from the Auto-PARM and the Auto-SLEX estimates computed
from 200 realizations of (11). Numbers inside parentheses are standard errors of the ASE values.

Number Auto-SLEX Auto-PARM
of break points
segments (%) ASE (%) mean  std ASE
1 0.0 - 0.0 - - -
2 40.5  0.191 37.5  0.496 0.055 0.129
(0.019) (0.015)
3 37.0  0.171 62.0 0.365 0.074 0.081
(0.022) 0.662 0.079 (0.016)
4 15.0 0.174 0.5 0.308 - 0.10
(0.029) 0.538 - -
0.875 -
) 5.0 0.202
(0.045)
> 6 2.5 0.223
(0.037)
All 100.0  0.182 100.0 0.099
(0.027) (0.028)

all the time-varying spectra of the 200 Auto-PARM and Auto-SLEX estimates. The averaged
Auto-PARM spectrum is displayed in the left panel of Figure 5 and looks remarkably similar to
the true time varying spectrum. Also the averaged Auto-SLEX spectrum is shown in the right
panel of this figure. Lastly in Table 7 we summarize the Auto-PARM estimates of the AR orders
for the above process. Notice that most of the segments were modeled as AR(2) processes.

Table 7: Relative frequencies of the AR order selected by Auto-PARM for the realizations from the
process (11).

Order 0 1 2 3 4 >5
2-segment realizations

pr 0 0 973 13 13 O
p2 0 0 933 53 13 0
3-segment realizations
p1 0 0 100.0 O 0 0
po 0 0 944 48 08 0
ps 0 0 911 &1 0.8 0
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Figure 5: True time-varying log-spectrum of process in (11) (center) and Auto-PARM and Auto-SLEX
log-spectrum estimate (average of log-spectrum estimates obtained from 200 realizations).

4.3 Piecewise ARMA process

Recall that the Auto-PARM procedure assumes the observed process is composed of a series of
stationary AR processes. This third simulation, designed to assess the performance of Auto-

PARM when the AR assumption is violated, has data generating model given by

(

—0.9Y, 1 + e +0.7e,, if1<t<512,

Y;

A

0.9Y,_1 + &, if 513 < t < 768, (12)

ey — 0.7e4_ 1, if 769 <t < 1024,
\
where &; ~ iid N(0, 1). Notice that the first piece is an ARMA(1,1) process while the last piece is
a MA(1) process. A typical realization of this process is shown in Figure 6.

The Auto-PARM procedure was applied to the realization in Figure 6. Three pieces were

obtained. The break points are at 71 = 513 and 79 = 769 (dotted vertical lines in this figure),
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Table 8: Summary of parameter estimates of slowly varying AR(2) process realizations segmented by
Auto-PARM as two and three pieces, where each piece is an AR(2) process. For each segment, the true
parameters, their mean and standard deviation (in parenthesis) are shown.

Parameter
j-th piece o1 103 o?
2-piece realizations with AR(2) pieces: 68
1 true -0.81 1.00

mean 0.54  -0.79 1.05

std ~ (0.04) (0.03) (0.07)
2 true -0.81 1.00
mean  1.05 -0.79 1.05

std  (0.04) (0.03) (0.07)

3-piece realizations with AR(2) pieces: 106
1 true -0.81 1.00
mean 046  -0.80 1.03

std ~ (0.06) (0.03) (0.08)

2 true -0.81 1.00
mean (.82 -0.81 1.01

std  (0.08) (0.04) (0.10)

2 true -0.81 1.00
mean 1.14 -0.80 1.06

std ~ (0.05) (0.04)  0.10

T T T T T T
1 200 400 600 800 1000

Figure 6: A realization from the piecewise stationary process in (12).

while the order of the AR processes are 4, 1 and 2 respectively. The total run time for this fit
was 1.53 seconds. The time-varying spectrum (not shown here) based on the model found by
Auto-PARAM is reasonable close to the true spectrum (not shown here) even though two of the
segments are not AR processes.

To assess the large sample behavior of Auto-PARM, 200 realizations from (12) were generated,
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and the corresponding Auto-PARM estimates were obtained. An encouraging result is that for
all 200 realizations, Auto-PARM always gave the correct number of stationary segments. The
estimates of the break point locations are summarized in Table 9. In Table 10 we show the relative
frequency of the AR order p; selected to model the pieces of the realizations. As expected, quite

often large AR orders were selected for the ARMA and MA segments.

Table 9: Summary of Auto-PARM estimated break points obtained from 200 realizations from the process
in (12).

Number relative break points
of segments % mean std
3 100.0 0.50 0.005
0.75 0.003

Table 10: Relative frequencies of the AR order selected by Auto-PARM for the realizations from the
process (12).

0 1 2 3 4 S 6 7T 28
pr 0 4.0 225 400 235 85 1.0 05 O
0
0

89.5 85 1.5 0.5 0 0 0 0
0.5 220 450 195 75 45 1.0 O

4.4 Time varying MA(2) process

Like the example in Section 4.2, the true model considered in this last simulation experiment
does not possess a structural break. Rather, the process has a changing spectrum given by the

following time-dependent MA(2) model

Y;g =&+ ai€p_1 + 0.5615,2, t= 1, 2, ey 1024, (13)

where a; = 1.122{1 —1.781 sin(nt/2048)} and ; ~ iid N(0,1). A typical realization of this process

is shown in Figure 7, while the spectrum of this process is shown on the left panel of Figure 9.
For the realization in Figure 7, the Auto-PARM procedure segmented it into four AR pieces

of orders 5, 3, 5, and 3, respectively with break points located at 71 = 109, 79 = 307, and 75 = 712

(vertical dotted lines in this figure). The run time for this model fit was 3.76 seconds. Based on
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Figure 7: Realization from the process in (13).
the model found by Auto-PARM, the time-varying spectrum of this realization is shown in the
left panel of Figure 8. For comparison, the Auto-SLEX time-varying spectrum estimate of this
realization is shown in the right panel of this figure.

Auto-PARM Auto-SLEX

Frequency

Time Time

Figure 8: Auto-PARM and Auto-SLEX estimates of log-spectrum of process in (13) for the realization
from Figure 7.

Next we generated 200 realizations of the above process, and the corresponding Auto-PARM
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Table 11: Summary of the estimated break points from both the Auto-SLEX and Auto-PARM procedures
for the process (13). For Auto-PARM the means and standard errors of the relative break points are also
reported. Numbers inside parentheses are standard errors of the ASE values.

Number Auto-SLEX Auto-PARM
of break points break points
segments (%) ASE (%) mean std ASE
2 - - 3.0 0374 0.040 0.307
(0.023)
3 3.5 0.187 89.0 0.238 0.072 0.211
(0.027) 0.548 0.089 (0.029)
4 6.5 0.157 8.0 0.156 0.045 0.182
(0.017) 0.391 0.062 (0.021)
0.667 0.093
5 15.5 0.170
(0.028)
6 17.0 0.163
(0.025)
7 20.0 0.158
(0.030)
8 15.0 0.180
(0.029)
9 11.5 0.203
(0.032)
> 10 11.0 0.223
(0.035)
All 100.0 0.18 0.211
(0.036) (0.034)

estimates were obtained. The number of segments, locations of the break points and the ASEs of
the Auto-PARM estimates are summarized in Table 11.

From this Table we observe that for most of the realizations Auto-PARM produces three
segments. We computed the average of all the time-varying spectra of the 200 Auto-PARM
estimates, the averaged spectrum is displayed in the right panel of Figure 9 and the average of the
200 Auto-SLEX estimates of the time-varying spectra is shown in the right panel of this figure.

The true spectrum in Figure 9 is well estimated by Auto-PARM and Auto-SLEX. Remarkably,
Auto-PARM estimates well the true spectrum, in spite of the fact that it splits the realizations
in fewer pieces than Auto-SLEX.

In Table 12 we summarize the Auto-PARM estimates of the AR orders for the above process

27



Auto-PARM True log spectrum Auto-SLEX

05

04

m,
> o
[&]
[ o
[«5)
=
o
[
C o |
o
—
o
(=%
o
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
Time Time Time

Figure 9: Left: True time-varying log-spectrum of process in (13) (center) and Auto-PARM and Auto-
SLEX log-spectrum estimate (average of log-spectrum estimates obtained from 200 realizations.

for those realizations with 3 pieces. In general, the segments were modeled as AR processes of

high order.

Table 12: Relative frequencies of the AR order selected by Auto-PARM for the realizations (with 3
segments) from the process (13).
Order 1 2 3 4 5
p1 10.0 40.0 20.0 20.0
D2 40.0 20.0 30.0
D2 10.0 10.0 70.0 10.0

4.5 Short segments

To complement the above simulation experiments, we assess in this subsection the performance

of Auto-PARM with the following process containing a short segment,

0.75Y,_1 + &, if 1 < ¢ <50,
Y, = (14)
—0.50Y;_1 + &4, if51 <t < 1024,

where ¢; ~ iid N(0,1). A typical realization of this process is shown in Figure 10. For the
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Figure 10: A realization from the piecewise stationary process in (14).

realization in Figure 10, Auto-PARM gives a single break point at 71 = 51 which is shown as the
vertical dotted line in Figure 10. Both pieces are modeled as AR(1) processes. The run time for
this realization was 2.70 seconds.

The Auto-PARM procedure was further applied to 200 realizations of this process. For all of
these realizations Auto-PARM found one break point. The mean of the relative position estimates
of this change point is 0.042 (true value is 0.049) with a standard error of 0.004. The minimum,
median and maximum of the break points are 34, 51 and 70, respectively. In Table 13, the relative
frequency of the orders p; and py of each of the two pieces selected by Auto-PARM are shown.
The Auto-PARM procedure segmented correctly 92.5% of the realizations (2 AR pieces of orders
1). This is exceptional performance for a process in which the break occurs near the beginning of
the series.

Table 13: Relative frequencies of the AR order selected by Auto-PARM for the realizations from the
process (14).

Order 0 1 2 3 >4
pit 0.0 96.0 3.0 0.5 0.0
pe 0.0 96.0 4.0 0.0 0.0
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Table 14: Summary of parameter estimates of the realizations of the process in (14) segmented correctly
by Auto-PARM (92.5%) as two pieces, where each piece is an AR(1) process. For each segment, the true
parameters, their mean and standard deviation (in parenthesis) are shown.

1st piece 2nd piece
parameter ¢ o? ¢ o?
true 0.75 1.00  -0.50 1.00

mean 0.66 1.05 -0.50 1.00
std (0.11) (0.23) (0.03) (0.04)

4.6 Further remarks on estimated breaks

As seen in the simulations from Sections 4.1 and 4.5, when the true unknown pieces are indeed
AR processes, Auto-PARM can detect changes in order and in parameters. Let us consider for
example the process in Section 4.1 where the first piece is an AR process of order 1 and the second
piece is of order 2. In this case, Auto-PARM detected the change of order reasonably well (see
Table 3). On the other hand, the second and third pieces of this process have the same order
2 with different parameter values. Also, the two pieces of the process in Section 4.5 have also
the same order 1. Tables 3 and 13 show the Auto-PARM does a good job in detecting change of
parameter values. The parameter estimates of both processes, given in Tables 4 and 8 respectively,
show how well Auto-PARM also performs for parameter estimation.

The simulation in Section 4.3 is an example of a processes that is not a piece-wise AR
processes. In this case, the first piece is an ARMA(1,1) process and the third piece is a MA(1)
process. Auto-PARM approximates both the ARMA and MA pieces with AR processes perhaps
of a large order. The fact that it did exceptionally well in detecting the breaks of this process
(see Table 9) is not surprising, since for general stationary process, its spectral density can be
well approximated by the spectrum of an AR process under the assumption of continuity of the
spectral density (see, for example, Theorem 4.4.3, Brockwell and Davis 1991). The Auto-PARM
procedure can then be interpreted as a method for segmenting piecewise stationary processes. In

this example, the breaks Auto-PARM found are points where the spectrum has “large” changes.
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5 APPLICATIONS

5.1 Seat Belt Legislation

In the hope of reducing the mean number of monthly “deaths and serious injuries”, seat-belt
legislation was introduced in UK on February 1983. Displayed in the left panel of Figure 11 is a
time series {y;}:2), beginning in January 1975, showing the monthly number of deaths and serious
injuries. In order to remove the seasonal component of {y;}, Brockwell and Davis (2002) consider
the differenced time series xy = y; — y;—12, and analyze {z;} with a regression model with errors

following an ARMA model. The Auto-PARM procedure, when applied to the differenced series

18 20 2i2
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Figure 11: (a) Left panel. Monthly deaths and serious injuries on UK roads. (b) Right panel. Transformed
seat belt legislation time series. The vertical lines are 77 and 7o, respectively. The dotted horizontal line is
the estimated mean of the i-th segment.

{z.}, segmented the series into three pieces with break points at 71 = 86 and 79 = 98. The first
two pieces are iid and the last piece is an AR process of order 1. On the right panel of Figure 11
the differenced time series {x;}, along with the estimated means of each piece, are shown. From
the Auto-PARM fit one can conclude that there is a structural change in the time series {y;} after

February 1983, which coincides with the time of introduction of the seat belt legislation.

31



5.2 Speech Signal

The Auto-PARM procedure was applied to analyze a human speech signal which is the recording
of the word “greasy”. This signal contains 5762 observations and is shown at the top panel of
Figure 12. This non-stationary time series was also analyzed by the Auto-SLEX procedure of

Ombao et al. (2001). The Auto-PARM fit of this speech signal resulted in 15 segments. The total
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Figure 12: Top panel: Speech signal. Bottom panel: GA estimate of the time-varying log spectrum.

run time was 18.02 seconds. The time-varying log spectrum obtained with this fit is shown at
the bottom panel of Figure 12. From this figure, one can see that the signal is roughly divided
in segments that correspond to “G”, “R”, “EA”, “S”, and “Y”. The information conveyed in
this figure closely matches that from Ombao et al. (2001). The spectrum from those pieces that
correspond to “G” have high power at the lowest frequencies. The pieces that correspond to
“R” show power at frequencies slightly above that for “G”. The pieces that correspond to “EA”

show the evolution of power from lower to higher frequencies. The pieces that correspond to “S”
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have high power at high frequencies. Notice that the Auto-PARM procedure breaks this speech
signal into a smaller number of pieces than the Auto-SLEX procedure while still capturing the

important features in the spectrum.

6 MULTIVARIATE TIME SERIES

In this section we demonstrate how Auto-PARM can be extended to model multivariate time
series. In Subsection 6.1 the MDL of a piecewise multivariate autoregressive process is obtained

and in Subsection 6.2 Auto-PARM is exemplified to a bivariate time series.

6.1 MDL

Let {Y;} be a multivariate time series with r components, and assume that there are break
points 79 := 1 < 71 < ... < 7y < n+ 1 for which the j-th piece Y; = X;;, 7,1 <t < 75,

j=1,2,...,m+1is modeled by a multivariate AR(p;) process

1/2

Xij =7+ CnXpaj+ ...+ P Xy i+ %,77Z, 70 <1<, (15)

where the noise sequence {Z;} is iid with mean 0 and covariance matrix I. The (unknown) AR
matrix coefficients and covariance matrices are of dimension r x r. Let M be the set of possible
solutions for all the possible values of m,7,...,7m,p1,...,Pm- Let y1,...,y, be a realization of
{Y,}. Parameter estimates in model (15) can be obtained using Whittle’s algorithm (e.g., see

Brockwell and Davis 1991). From (6), we have

m—+1
MDL(m, 71, .. T, P1s -« - s Pm+1) = logm + (m + 1) logn + Z logp;+
7=1
m—+1 m+1

3r 4 2pjr? +r? X 2 g
Z i logn; — Z log L(®j1,..., 95, %),
j=1

Jj=1

where L(®;1,...,®;,., %) is the likelihood of the j-th piece evaluated at the parameter estimates.

As in the univariate case, the best segmentation of the realization y,...,y, of {Y,;} is defined
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as the minimizer of MDL(m, T1,..., T, P1,-- - s Pms1)- A similar GA can be developed for the

practical minimization of MDL(m, 71,. .., Ty P1, -+ s Pm+1)-

6.2 EEG analysis

Figure 13 displays two electroencephalograms (EEGs) each of length n = 32768 recorded from
a female patient who was diagnosed with left temporal lobe epilepsy. This data set is courtesy
of Dr. Beth Malow (formerly from the Department of Neurology at the University of Michigan).

The top panel is the EEG from the left temporal lobe (T3 channel) while the bottom panel is the
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Figure 13: (Bivariate EEG) Electroencephalograms of length n = 32768 at channels T3 (top) and P3
(bottom) from a patient diagnosed with left temporal lobe epilepsy (courtesy of Dr. Beth Malow, formerly
from the Deptarment of Neurology at the University of Michigan).

EEG from the left parietal lobe (P3 channel). Each EEG was recorded for a total of 5 minutes
and 28 seconds with a sampling rate of 100 Hz. Of primary interest is the estimation of the
power spectra of both EEGs and the coherence between them. One way of solving this problem

is by segmenting the time series into stationary AR pieces (e.g., Gersch 1970; Jansen, Hasman,
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Lenten, and Visser 1979; Ombao et al. 2001; Melkonian, Blumenthal and Meares 2003). The
multivariate Auto-PARM procedure described above was applied to this bivariate time series,
and the break point locations and the AR orders of the resulting fit are shown in Table 15. Notice
that the multivariate implementation of Auto-PARM estimated the starting time for seizure for
this epileptic episode at ¢ = 185.8 seconds, in extremely close agreement with the neurologist’s
estimate of 185 seconds. In Figure 14, the estimated spectrums for the channel T3 (top panel) and
channel P3 (bottom panel) based on the Auto-PARM fit in Table 15 are displayed. The estimates
are close to those obtained in Ombao et al. (2001) and similar conclusions can be drawn. For
example, prior to seizure, power was concentrated at lower frequencies. During seizure, power
was spread to all frequencies, while towards the end of seizure, the concentration of power slowly

restored to lower frequencies.

Table 15: GA segmentation of the bivariate time series from Figure 13. 7; is given in seconds.

J
0 1 2 3 4 ) 6 7 8 9 10 11
7, 1 185.8 189.6 206.1 220.9 233.0 249.0 261.6 274.6 306.0 308.4 325.8
p; 17 14 ) 8 7 3 3 4 10 4 1 1

In Figure 15, the Auto-PARM estimate of the coherence between the T3 and P3 time series

channels is shown. Again, this estimate is close to the estimate obtained in Ombao et al. (2001).

7 CONCLUSIONS

In this paper we provided a procedure to analyze a non-stationary time series by breaking it in
pieces that are modeled as autoregressive processes. The best segmentation is obtained by mini-
mizing a MDL criterion of the set of possible solutions via the genetic algorithm (our procedure
does not make any restrictive assumptions on this set). The order of the autoregressive process

and the estimates of the parameters of this process is a byproduct of this procedure. As seen
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Figure 14: Estimate of the Time-varying log spectra of the EEGs from Figure 13. Top: T3 channel.
Bottom: P3 channel.
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Figure 15: Estimated coherence between the EEGs shown in Figure 13.

in the simulation experiments, the rate in which this procedure segments correctly a piece-wise
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stationary process is high. Also, the “quality” of the estimated time-varying spectrum obtained

with the results of our method is quite good.



APPENDIX: TECHNICAL DETAILS

In this Appendix we show the consistency of 7;/n,j = 1,...,m, when m, the number of breaks
is known. Throughout this section we denote the true value of a parameter with a “0” super-
script (except for 0]2) Preliminary results are given in Propositions A.2 A.4 and consistency is
established in Proposition A.5.

Set A= (A1,...,Ap) and p = (p1,...,Pm+1). Since m is assumed known, for our asymptotic
results notice that (6) can be rewritten in the compact form
m+1 m+1

pj+2 n;j .9
1 -1 ; —1 - 1).
og(n) + jE_l - logm; + jE_l - og(a;) + o(1)

IMDL(A, p) fn — 2D

Proposition A.2 Suppose {X;} is a stationary ergodic process with F|X;| < oo, then, with
probability 1, the process

[ns

]
1
Sn(S) = E Z Xta
t=1

converges to the process sSEXy on the space D|0,1].

Proof. The argument relies on repeated application of the ergodic theorem. Let (1 be the set

of rational numbers in [0,1]. For r € Qg 1,

[nr]

Z X, - rEXy, as. (A.1)
t=1

1

n

If B, is the set of w’s for which (A.1) holds, set

B= () B,

7€Q0,1

and note P(B) = 1. Moreover, for w € B and any s € [0,1], choose ri,19 € Qo,17> such that

r1 < s < ry. Hence,

[ns] [nr1] [nra]

1 1 1

- > X - - d X< ~ > Xy = (ra = 1) E|Xy .
t=1 t=1 t=[nr1]
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By making |re — 7| arbitrarily small, it follows from the ergodic theorem that

[ns)]
Z X, = sEX;.
t=1

1

n
To establish convergence on DI0, 1], it suffices to show for w € B

[ns]

1
— ZXt — sEXy, uniformly on [0,1].
[
Given € > 0, choose r1,...,rm € Q) such that 0 =79 <rqy <--- <7y, =1, withr; — 1y <e

Then for any s € [0,1], 7,1 < s < r; and

[ns] [nri_1] [nri_1]

[ns]
1 1 1
H;_I:thEXﬂ < |Et§_1:XtE ;_1: Xi| + |~ ;—1 X, —ri 1 EXy| + |ri 1EX| — sEX,|.

The first term is bounded by

[nr;)
1
~ > X = (ri i) EIXy| < eE| Xy
t:[nri,l}

Choose n so large that this term is less than e#|X;| for i = 1,... m. It follows that

[ns]
sup = Y Xy — sEX)| < eB|X| + €+ eB| Xy,
s A

for n large. O
Proposition A.3 Suppose {X;} is the AR(py) process
Xt = d)[] + d)lthl + ...+ qﬁt,poXt,po + OE¢, Et ~ 1ID N(O,I)

Forr,s € [0,1] (r < s) and p=0,1,... Py, let ¢A>(r, s,p) be the Y-W estimate of the AR(p) parameter
vector ¢(p) based on fitting an AR (p) to the data X,y 41, .., X[sn)- Then with probability 1,

¢(r,s,p) = ¢(p), 0°(r,s,p) = o”(p).

Proof. Since {X;} is a stationary ergodic process, {|X;|}, {X;—;X;—;} and {|X;_;X;_;|} are
stationary ergodic processes. By Proposition A.2, the partial sum processes for each of these
processes converge to their respective limit a.s., let B be the probability 1 set on which these
partial sum processes converge. Now q@(r,s,p) and 6%(r,s,p) are continuous functions of these

processes. The result follows. [
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Proposition A.4 Let {Y;} be the process defined in (1) with ¢o; = 0. For r,s € [0,1] (r < s) and
p=0,1,... Py, let ¢y (r,s,p) be the Y-W estimates in fitting an AR(p) model to Y,piq1;-- -, Yisn-
Then with probability 1,

qASY(T7S7p) _>¢§/(T7S7p)7 a’%(r7s7p) %0;2(7”78719)7

where ¢%(r, s,p) and o3 (r,s,p) are defined below in the proof.

Proof. Let B be the probability 1 set on which

[ns] [ns] [ns} [ns]

1 1 .
=~ Xig —Z|th| th ik Xijp and =% Xy ik Xo il (5 =1,..., P),
t=1 t=1
converge, k=1,2,...,m+ 1, and set
m—+1

= () B;.
k=1

Let r,s € [0,1], 7 < 5, then 7 € [A\Y |, A\0) and s € (A)_

0
7 1+k7>‘

irr), £ > 0. Assuming that the mean

of the process {Y;} is zero, we have

[sn]—

= e 3 i
t [rn]+1
" 1 (An]—h (A0, n]—h
= m E Z Xt+h,iXt,’i + E Z Xt+h,i+1Xt,i+1
t=[rn]+1 = ATnl41
[sn]—h
Tt Z XitnivkXtivr +o0(1)

l= [Az 1+Ic }+1
Let ;(h) := cov{X1p i, X1} For w e B*, if follows from Proposition A.3 that
A — . A?H i A? 14k

L () e+
sS—7T S—7T sS—7T

Yi+k (h)7

=ai(h) + ... + aiypYitr(h).

Then
A = itk itk
$v (r.s,p) =Ty (D)Ay(0) = | D_a;Ti0) | Y a;v;(p) = ¢3(r,s,p),
J=i J=i

where Tj(p) = {v;(i1 —i2)}} ;,—; and v;(p) = [v;(1),...,7; (p)]”. This establishes the desired
convergence for éy(r, s,p). Note that if K =0, ¢3-(r,s,p) = ¢i(p). The proof of the convergence
for 62 (r, s,p) is similar. O
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Proposition A.5 For the piecewise process in (1), choose € > 0 small such that

€< min A =20 )
=1,....,m+1

3000y

and set

Ac={Ae[0,1]™0=X <A1 < Ag <...< Ay < Appy1 = 1,

Ai — A1 > €1 = 1,2,...,m—|—1},
where m = mY. If
A\,p = arg min —MDL()\ p),

AEAe
0<p< Py

then A — A0 a.s.

Proof Let B* be the event described in the proof of Proposition A.4. We will show that for each
w € B*, A= A0 For w e B*, suppose A # AV, Since the sequences are bounded, there exist a
subsequence {n}} such that A — M* and pj — p; on the subsequence. Note that \* € A, since

) € A, for all n. Tt follows that

2 m+1
SMDL(ALA) = 30 = X1 log o201, X5 95).
j=1
If AV < )\;71 < )\; < )\?H, then
0—;(/2(>‘* 1 )‘Jap]) - Uz+1(p]) > Uz+17 (Ag)
with equality if and only ifp;f > piy1. If )\?71 < )\;ffl < )\? << >‘z+k < )\ < >‘z+k+17 then
A0 — A=\ Aj— )
%2 i j—1 2 i+1 i 92 i+k 2
oy (Aj 1> ]ap]) 2oy Oi Ty e Cimn T ﬁ i+k+1-
)\j — >‘j7 )\ )\j )\ A
By the concavity of the log function,
* * * * * )\? B )\ >\Z+1 A?
(>‘j — A )IOgUY (>\ 1ﬂ>‘]7p]) (>‘j - jfl) 7*10g0 +ﬁ10g01+1
AT = Ay A=A
AT = A0
+k
+eeet Wloggz‘2+k+l
J

= ()‘? - A; )loga + (>‘z+1 A?) log 01‘2+1

o (A - A k) 108 07 g
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It follows that

9 . m+1 9 9 R
lim =MDL(A,p) > Y (A] — A} ;)logo} = lim =MDL(A°,p") > lim =MDL(},5), (A.10)

n—oc n, — n—oc n, n—oo n,
1=
a contradiction. Hence A — X for all w € B*. [
Notice that with probability 1, p; can not underestimate pg. To see this, let p} as in the proof

of Proposition (A.5), if for some j, p; < pg-, then the contradiction in (A.10) is obtained again

due to (A.9).
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