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tThis paper 
onsiders the problem of modeling a 
lass of non-stationary time series usingpie
ewise autoregressive (AR) pro
esses. The number and lo
ations of the pie
ewise autore-gressive segments, as well as the orders of the respe
tive AR pro
esses, are assumed to beunknown. The minimum des
ription length prin
iple is applied to 
ompare various segmentedAR �ts to the data. The goal is to �nd the \best" 
ombination of the number of segments, thelengths of the segments, and the orders of the pie
ewise AR pro
esses. Su
h a \best" 
ombi-nation is impli
itly de�ned as the optimizer of an obje
tive fun
tion, and a geneti
 algorithmis implemented to solve this diÆ
ult optimization problem. Numeri
al results from simulationexperiments and real data analyses show that the pro
edure enjoys ex
ellent empiri
al proper-ties. The segmentation of multivariate time series is also 
onsidered. Assuming that the true�Ri
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underlying model is a segmented autoregression, this pro
edure is shown to be 
onsistent forestimating the lo
ation of the breaks.KEYWORDS: Non-stationarity, 
hange-points, minimum des
ription length prin
iple, geneti
algorithm. 1 INTRODUCTIONIn this paper we 
onsider the problem of modeling a non-stationary time series by segmenting theseries into blo
ks of di�erent autoregressive (AR) pro
esses. The number of break points, denotedby m, as well as their lo
ations and the orders of the respe
tive AR models are assumed to beunknown. We propose an automati
 pro
edure for obtaining su
h a partition.In order to des
ribe the setup, for j = 1; : : : ;m, denote the break point between the j-th and(j +1)-th AR pro
esses as �j, and set �0 = 1 and �m+1 = n+ 1. Then the j-th pie
e of the seriesis modeled as an AR pro
ess Yt = Xt;j ; �j�1 � t < �j ; (1)where fXt;jg is the AR(pj) pro
essXt;j = 
j + �j1Xt�1;j + : : : + �j;pjXt�pj ;j + �j"t; j := (
j ; �j1; : : : ; �j;pj ; �2j ) is the parameter ve
tor 
orresponding to this AR(pj) pro
ess, andthe noise sequen
e f"tg is iid with mean 0 and varian
e 1. Given an observed series fyigni=1,the obje
tive is to obtain a \best" �tting model from this 
lass of pie
ewise AR pro
esses. Thisis equivalent to �nding the \best" 
ombination of the number of pie
es m + 1, the break pointlo
ations �1; : : : ; �m, and the AR orders p1; : : : ; pm+1. We propose an automati
 pro
edure forobtaining su
h a partition. This proposed automati
 pie
ewise autoregressive modeling pro
edurewill be referred to as Auto-PARM. Note that on
e these parameters are spe
i�ed, maximum2



likelihood estimates of the AR parameters  j's for ea
h segment are easily 
omputed. Theprimary obje
tive of the methodology developed in this paper is to a
tually estimate stru
turalbreaks for a time series. Under this s
enario, it is assumed that some aspe
t of a time series
hanges at various times. Su
h 
hange might be a shift in the mean level of the pro
ess, a 
hangein varian
e, and/or a 
hange in the dependen
e stru
ture of the pro
ess. The sequen
e of timeseries between two 
hange-points is assumed to be modeled as a sequen
e of stationary pro
esses,ea
h of whi
h 
an be adequately modeled by an autoregressive pro
ess. Potential appli
ations ofthis setup 
an be found in so
ial s
ien
es in whi
h time series may be impa
ted by 
hanges ingovernment poli
ies and time series from signal pro
essing engineering, and manufa
turing whereprodu
tion pro
esses are often subje
t to unpredi
table 
hanges in the manufa
turing pro
ess.As a se
ondary obje
tive, our methodology 
an also be viewed as a pro
edure for approxi-mating lo
ally stationary time series by pie
ewise AR pro
esses. To see this, we note that thepie
ewise AR pro
ess 
onsidered in (1) is a spe
ial 
ase of the pie
ewise stationary pro
ess (seealso Adak 1998) ~Yt;n = m+1Xj=1 Xt;jI[�j�1=n;�j=n)(t=n);where fXt;jg; j = 1; : : : ;m + 1 is a sequen
e of stationary pro
ess. Under 
ertain 
onditions,Ombao, Raz, Von Sa
hs, and Malow (2001) argue that lo
ally stationary pro
esses (in the senseof Dahlhaus 1997) 
an be well approximated by pie
ewise stationary pro
esses. Roughly speaking,a pro
ess is lo
ally stationary if its time-varying spe
trum at time t and frequen
y ! is jA(t=n; !)j2,where A(u; !), u 2 [0; 1℄, ! 2 [�1=2; 1=2℄ is a 
ontinuous fun
tion in u. Sin
e AR pro
esses aredense in the 
lass of weakly stationary (purely non-deterministi
) pro
esses, the pie
ewise ARpro
ess is dense in the 
lass of lo
ally stationary pro
esses.The above problem of �nding a \best" 
ombination of m, �j's and pj's 
an be treated asa statisti
al model sele
tion problem, in whi
h 
andidate models may have di�erent numbers of3



parameters. To solve this sele
tion problem we apply the minimum des
ription length (MDL)prin
iple of Rissanen (1989) to de�ne a best �tting model (see Saito 1994 and Hansen and Yu2000 for a 
omprehensive review of MDL). The basi
 idea behind the MDL prin
iple is that, thebest �tting model is the one that enables the maximum 
ompression of the data. Su

esses inapplying MDL to a variety of pra
ti
al problems have been widely reported in the literature; see,for example, Lee (2000), Hansen and Yu (2001) and Jornsten and Yu (2003).As demonstrated below, the best �tted model derived by the MDL prin
iple is de�ned im-pli
itly as the optimizer of some 
riterion. Pra
ti
al optimization of this 
riterion is not a trivialtask, as the sear
h spa
e (
onsisting of m, �j's and pj's) is enormous. To ta
kle this problem,we use a geneti
 algorithm (GA) des
ribed for example by Holland (1975). Geneti
 algorithmsare be
oming a popular tool in statisti
al optimization appli
ations (e.g., Gaetan 2000; Pittman2002; Lee and Wong 2003), and seem parti
ularly well suited for our MDL optimization problemas 
an be seen in our numeri
al studies.Various versions of the above break point dete
tion problem have been 
onsidered in theliterature. For example, Bai and Perron (1998, 2003) examine the multiple 
hange-point modellingfor the 
ase of multiple linear regression, In
lan and Tiao (1994) and Chen and Gupta (1997)
onsider the problem of dete
ting multiple varian
e 
hange-points in a sequen
e of independentGaussian random variables, and Kim and Nelson (1999) provide a summary of various appli
ationsof the hidden Markov approa
h to e
onometri
s. Kitagawa and Akaike (1978) implemented an\on-line" pro
edure based on AIC to determine segments. To implement their method, supposethat an autoregressive model AR(p0) has been �tted to the dataset fy1; y2; : : : ; yn0g and that anew blo
k fyn0+1; : : : ; yn0+n1g of n1 observations be
omes available, whi
h 
an be modeled as anAR(p1) autoregressive model. Then, the time n0 is 
onsidered a breaking point when the AICvalue of the two independent pie
es is smaller than the AIC of the autoregressive that results4



when the dataset fy1; : : : ; yn0+n1g is modeled as a single autoregressive model of order p2. Ea
hpj; j = 0; 1; 2 is sele
ted among the values 0; 1; : : : ;K (K is a prede�ned value) that minimizesthe AIC 
riterion. The iteration is 
ontinued until no more data are available. Like K, n1 isa prede�ned value. Ombao et al. (2001) implement a segmentation pro
edure using the SLEXtransformation, a family of orthogonal transformations. For a parti
ular segmentation, a \
ost"fun
tion is 
omputed as the sum of the 
osts at all the blo
ks that de�ne the segmentation.The best segmentation is then de�ned as the one with minimum 
ost. Again, be
ause it is not
omputationally feasible to 
onsider all possible segmentations, they assume that the length of thesegments follow a dyadi
 stru
ture; i.e., an integer power of 2. Bayesian approa
hes have also beenstudied; e.g., see Lavielle (1998) and Punskaya et al. (2002). Both pro
edures 
hoose the �naloptimal segmentation as the one that maximizes the posterior distribution of the observed series.Numeri
al results suggest that both pro
edures enjoy ex
ellent empiri
al properties. However,theoreti
al results supporting these pro
edures are la
king.For most of the above mentioned pro
edures, in
luding Auto-PARM, the \best" segmentationis de�ned as the optimizer of an obje
tive fun
tion. Sequential type sear
hing algorithms areadopted by some of these pro
edures for lo
ating su
h a \best" segmentation; e.g., Kitagawa andAkaike (1978), In
lan and Tiao (1994) and Ombao et al. (2001). On one hand one would expe
tthat these sequential pro
edures, when 
omparing to our geneti
 algorithm approa
h, requireless 
omputational time to lo
ate a good approximation to the true optimizer. On the otherhand, sin
e the geneti
 algorithm approa
h examines a mu
h bigger portion of the sear
h spa
efor the optimization, one should also expe
t that the geneti
 algorithm approa
h provides betterapproximations to the true optimizer. A detailed 
omparison between the Auto-PARM pro
edureand the Auto-SLEX pro
edure of Ombao et al.(2001) is given in Se
tion 4 below.The rest of this paper is organized as follows. In Se
tion 2 we derive an expression for the MDL5



for a given pie
ewise AR model. In Se
tion 3 we give an overview of the geneti
 algorithm anddis
uss its implementation to the segmentation problem. In Se
tion 4 we study the performan
eof the GA via simulation and in Se
tion 5 the GA is applied to 2 test datasets that have been usedin the literature. The 
ase of a multivariate time series and an appli
ation is given in Se
tion 6.In Se
tion 7 we summarize our �ndings and dis
uss the relative merits of Auto-PARM and otherstru
tural break dete
tion pro
edures. Finally, some theoreti
al results supporting our pro
edureare provided in the Appendix.2 MODEL SELECTION USING MINIMUM DESCRIPTIONLENGTH2.1 Derivation of MDLThis se
tion applies the MDL prin
iple to sele
t a best �tting model from the pie
ewise AR model
lass de�ned by (1). Denote this whole 
lass of pie
ewise AR models as M and any model fromthis 
lass as F 2 M. In the 
urrent 
ontext the MDL prin
iple de�nes the \best" �tting modelfromM as the one that produ
es the shortest 
ode length that 
ompletely des
ribes the observeddata y = (y1; y2; : : : ; yn). Loosely speaking, the 
ode length of an obje
t is the amount of memoryspa
e that is required to store the obje
t. In the appli
ations of MDL, one 
lassi
al way to store yis to split y into two 
omponents: (i) a �tted model F̂ plus (ii) the portion of y that is unexplainedby F̂ . This latter 
omponent 
an be interpreted as the residuals, denoted by ê = y� ŷ, where ŷis the �tted ve
tor for y. If CLF (z) denotes the 
ode length of obje
t z using model F , one hasthe following de
omposition CLF (y) = CLF (F̂) + CLF(êjF̂);6



where CLF(F̂) denotes the 
ode length of the �tted model F̂ and CLF(êjF̂) is the 
ode lengthof the 
orresponding residuals (
onditional on the �tted model F̂). In short the MDL prin
iplesuggests that a best �tting pie
ewise AR model F̂ is the one that minimizes CLF(y).Now the task is to derive expressions for CLF(F̂) and CLF(êjF̂). We begin with CLF (F̂).Let nj := �j � �j�1 denote the number of observations in the j-th segment of F̂ . Sin
e F̂ is
omposed of m, �j's, pj's and  ̂j's, we further de
ompose CLF (F̂) intoCLF (F̂) = CLF(m) + CLF(�1; : : : ; �m) + CLF(p1; : : : ; pm+1) + CLF( ̂1) + : : :+ CLF ( ̂m+1)= CLF(m) + CLF(n1; : : : ; nm+1) + CLF(p1; : : : ; pm+1) + CLF( ̂1) + : : :+ CLF( ̂m+1):The last expression was obtained by the fa
t that 
omplete knowledge of (�1; : : : ; �m) implies
omplete knowledge of (n1; : : : ; nm+1), and vi
e versa. In general, to en
ode an integer I whosevalue is not bounded, approximately log2 I bits are needed. Thus CLF(m) = log2m andCLF (pj) = log2 pj . On the other hand, if the upper bound, say IU , of I is known, approxi-mately log2 IU bits are required. Sin
e all nj's are bounded by n, CLF (nj) = log2 n for all j. To
al
ulate CLF ( ̂j), we use the following result of Rissanen: a maximum likelihood estimate ofa real parameter 
omputed from N observations 
an be e�e
tively en
oded with 12 log2N bits.Sin
e ea
h of the pj + 2 parameters of  ̂j is 
omputed from nj observations,CLF ( ̂j) = pj + 22 log2 nj:Combining these results, we obtainCLF(F̂) = log2m+ (m+ 1) log2 n+ m+1Xj=1 log2 pj + m+1Xj=1 pj + 22 log2 nj: (3)Next we derive an expression for CLF(êjF̂); that is, the 
ode length for the residuals ê.From Shannon's 
lassi
al results in information theory, Rissanen demonstrates that the 
odelength of ê is given by the negative of the log likelihood of the �tted model F̂ . To pro
eed, let7



yj := (y�j�1 ; : : : ; y�j�1) be the ve
tor of observations for the j-th pie
e in (1). For simpli
ity, we
onsider that �j , the mean of the j-th pie
e in (1), is 0. Denote the 
ovarian
e matrix of yj asV�1j = 
ovfyjg, and let V̂j be an estimate for Vj. Even though the "j's are not assumed to beGaussian, inferen
e pro
edures will be based on a Gaussian likelihood. Su
h inferen
e pro
eduresare often referred to quasi-likelihood. Assumming the segments are independent, the Gaussianlikelihood of the pie
ewise pro
ess is given byL(m; �0; �1; : : : ; �m; p1; : : : ; pm+1; 1; : : : ; m+1;y) = m+1Yj=1 (2�)�nj2 jVjj 12 expf�12yTj Vjyjg;and hen
e the 
ode length of ê given the �tted model F̂ isCLF(êjF̂) � � log2 L(m; �0; �1; : : : ; �m;  ̂1; : : : ;  ̂m+1;y)= m+1Xj=1 fnj2 log(2�) � 12 log jV̂j j+ 12yTj V̂jyjg log2 e: (4)Combining (3) and (4) and using logarithm base e rather than base 2, we obtain the followingapproximation for CLF (y) bylogm+ (m+ 1) log n+ m+1Xj=1 log pj + m+1Xj=1 pj + 22 lognj+ m+1Xj=1 fnj2 log(2�)� 12 log jV̂j j+ 12yTj V̂jyjg: (5)Using the standard approximation to the likelihood for AR models, i.e., �2 log(likelihood) bynj log �̂2j , where �̂2j is the Y-W estimate of �2j (Bro
kwell and Davis 1991), we de�neMDL(m; �1; : : : ; �m; p1; : : : ; pm+1) = logm+ (m+ 1) log n+ m+1Xj=1 log pj+ m+1Xj=1 pj + 22 log nj + m+1Xj=1 nj2 log(2��̂2j ) (6)We propose sele
ting the best �tting model for y as the model F 2 M that minimizesMDL(m; �1; : : : ; �m; p1; : : : ; pm+1). 8



2.2 Consisten
yTo this point, we have not assumed the existen
e of a true model for the time series. However,to study theoreti
al properties of these estimates, an underlying model must be spe
i�ed. Herewe assume that there exist true values m0 and �0j , j = 1; : : : ;m0, su
h that 0 < �01 < �02 < � � � <�0m0 < 1. The observations y1; : : : ; yn are assumed to be a realization from the pie
ewise ARpro
ess de�ned in (1) with �i = [�0in℄, i = 1; 2; : : : ;m0, where [x℄ is the greatest integer that isless than or equal to x. In estimating the break points �1; : : : ; �m0 , it is ne
essary to require thatthe segments have a suÆ
ient number of observations to adequately estimate the spe
i�ed ARparameter values. Otherwise, the estimation is over-determined resulting in an in�nite value forthe likelihood. So, to ensure suÆ
ient separation of the breakpoints, 
hoose � > 0 small su
h that�� mini=1;:::;m0+1(�0i � �0i�1) and setAm = f(�1; : : : ; �m); 0 < �1 < �2 < : : : < �m < 1; �i � �i�1 � �; i = 1; 2; : : : ;m+ 1g;where �0 := 0 and �m+1 := 1. Setting � := (�1; : : : ; �m) and p = (p1; : : : ; pm+1), the parametersm, � and p are then estimated by minimizing MDL over m �M0, 0 � p � P0, and � 2 Am., i.e,m̂; �̂; p̂ = arg minm�M0;0�p�P0�2Am 2nMDL(m;�; p);where M0 and P0 are upper bounds for m and pj, respe
tively. In the appendix we prove thefollowing 
onsisten
y result.Proposition 1 For the model spe
i�ed in (1), when m0, the number of break points is known,then �̂j ! �0j , a.s., j = 1; 2; : : : ;m0.In Proposition 1, the true number of breaks m0 is assumed known. As the simulation studiesin Se
tion 4 show, for unknown m0, the estimator m̂0 obtained with our pro
edure seems to be9




onsistent, although we do not have a proof. Even in the independent 
ase, the 
onsisten
y of m̂0is known in only some spe
ial 
ases (e.g., Lee 1997 and Yao 1988).3 OPTIMIZATION USING GENETIC ALGORITHMSAs the sear
h spa
e is enormous, optimization of MDL(m; �1; : : : ; �m; p1; : : : ; pm+1) is a nontrivialtask. In this se
tion we propose using a geneti
 algorithm (GA) to e�e
tively ta
kle this problem.3.1 General Des
riptionThe basi
 idea of the 
anoni
al form of GAs 
an be des
ribed as follows. An initial set, orpopulation, of possible solutions to an optimization problem is obtained and represented in ve
torform. These ve
tors are often 
alled 
hromosomes and are free to \evolve" in the following way.Parent 
hromosomes are randomly 
hosen from the initial population and 
hromosomes havinglower (higher) values of the obje
tive 
riterion to be minimized (maximized) would have a higher
han
e of being 
hosen. Then o�spring are produ
ed by applying a 
rossover or a mutationoperation to the 
hosen parents. On
e a suÆ
ient number of su
h se
ond generation o�spring areprodu
ed, third generation o�spring are further produ
ed from these se
ond generation o�springin a similar fashion. This pro
ess 
ontinues for a number of generations. If one believes in Darwin'sTheory of Natural Sele
tion, the expe
tation is that obje
tive 
riterion values of the o�spring willgradually improve over generations and approa
h the optimal value.In a 
rossover operation, one 
hild 
hromosome is produ
ed from \mixing" two parent 
hro-mosomes. The aim is to allow the possibility that the 
hild re
eives di�erent best parts from itsparents. A typi
al \mixing" strategy is that every 
hild gene lo
ation has an equal 
han
e ofre
eiving either the 
orresponding father gene or the 
orresponding mother gene. This 
rossoveroperation is the distin
t feature that makes geneti
 algorithms di�erent from other optimization10



methods. For possible variants of the 
rossover operation, 
onsult Davis (1991).In a mutation operation one 
hild 
hromosome is produ
ed from one parent 
hromosome. The
hild is essentially the same as its parent ex
ept for a small number of genes where randomnessis introdu
ed to alter the types of genes. Su
h a mutation operation prevents the algorithm frombeing trapped in lo
al optima.In order to preserve the best 
hromosome of a 
urrent generation, an additional step, 
alledthe elitist step, may be performed. Here the worst 
hromosome of the next generation is repla
edwith the best 
hromosome of the 
urrent generation. In
lusion of this elitist step guarantees themonotoni
ity of the algorithm.There are many variations of the above 
anoni
al GA. For example, parallel implementations
an be applied to speed up the 
onvergen
e rate as well as to redu
e the 
han
e of 
onvergingto sub-optimal solutions (Forrest 1991; Alba and Troya 1999). In this paper we implementthe Island Model. Instead of running only one sear
h in one giant population, the island modelsimultaneously runs NI (Number-of-Islands) 
anoni
al GAs in NI di�erent sub-populations. Thekey feature is, periodi
ally, a number of individuals are migrated amongst the islands a

ording tosome migration poli
y. The migration 
an be implemented in numerous ways (Martin, Lienig andCohoon 2000; Alba and Troya 2002). In this paper, we adopt the following migration poli
y: afterevery Mi generations, the worst MN 
hromosomes from the j-th island are repla
ed by the bestMN 
hromosomes from the (j� 1)-th island, j = 1; : : : ; NI. For j = 1 the best MN 
hromosomesare migrated from the NI-th island. In our simulations we used NI = 40, Mi = 5, MN = 2 anda sub-population size of 40.
11



3.2 Implementation DetailsThis subse
tion provides details of our implementation of the GAs that is tailored to our pie
ewiseAR model �tting.Chromosome Representation: The performan
e of a geneti
 algorithm 
ertainly depends onhow a possible solution is represented as a 
hromosome, and for the 
urrent problem a 
hromosomeshould 
arry 
omplete information for any F 2 M. That is, the break points �j's as well asthe AR orders pj's. On
e these quantities are spe
i�ed, maximum likelihood estimates of othermodel parameters 
an be uniquely determined. Here we propose using the following 
hromosomerepresentation: a 
hromosome Æ = (Æ1; : : : ; Æn) is of length n with gene values Æt de�ned asÆt = 8>><>>: �1; if no break point at t,pj; if t = �j�1 and the AR order for the j-th pie
e is pj.Furthermore, the following \minimum span" 
onstraint is imposed on Æ: say if the AR orderof a 
ertain pie
e in F is p, then this pie
e is made to have at least mp observations. Thisprede�ned integer mp is 
hosen to guarantee that there are enough observations for obtainingquality estimates for the parameters of the AR(p) pro
ess. Also, in the pra
ti
al implementationof the algorithm, one needs to impose an upper bound P0 on the order pj's of the AR pro
esses.There seems to be no universal 
hoi
e for P0, as for 
ompli
ated series one needs a large P0 to
apture for example seasonality, while for small series P0 
annot be larger than the number ofobservations n. For all our numeri
al works we set P0 = 20, and the 
orresponding minimumspan mp's are listed in Table 1.Table 1: Values of mp used in the simulations.p 0-1 2 3 4 5 6 7-10 11-20mp 10 12 14 16 18 20 25 50Our empiri
al experien
e suggests that the above representation s
heme, together with theminimum span 
onstraint, is extremely e�e
tive for the purpose of using GAs to minimize12



MDL(m; �1; : : : ; �m; p1; : : : ; pm+1). It is most likely due to the fa
t that the lo
ation informa-tion of the break points and the order of the AR pro
esses are expli
itly represented.Initial Population Generation: Our implementation of the GA starts with an initial populationof 
hromosomes generated at random. For this pro
edure, the user value �B, the probability thatthe \j-th lo
ation" of the 
hromosome being generated be a break point is needed. A largevalue of �B makes the initial 
hromosomes to have a large number of break points, thus a smallvalue is preferred. We use �B = min(mp)=n = 10=n (in Se
tion 4 a sensitivity analysis for thisparameter is given). On
e a lo
ation is de
lared to be a break, an AR order is sele
ted from theuniform distribution with values 0, 1,: : :, P0. The following strategy was used to generate ea
hinitial 
hromosome. First, sele
t a value for p1 from f0; : : : ; P0g with equal probabilities and setÆ1 = p1; i.e., the �rst AR pie
e is of order p1. Then the next mp1 � 1 genes Æi's (i.e., Æ2 to Æmp1 )are set to �1, so that the above minimum span 
onstraint is imposed for this �rst pie
e. Nowfor the next gene Æmp1+1 in line. It will either be initialized as a break point (i.e., assigned anon-negative integer p2) with probability �B, or it will be assigned �1 with probability 1 � �B .If it is to be initialized as a break point, then we set Æmp1+1 = p2, where p2 is randomly drawnfrom f0; : : : ; P0g. This implies that the se
ond AR pro
ess is of order p2, and the next mp2 � 1Æi's will be assigned �1 so that the minimum span 
onstraint is guaranteed. On the other hand,if Æmp1+1 is to be assigned with �1, the initialization pro
ess will move to the next gene in lineand de
ide if this gene should be a break point gene or a \�1" gene. This pro
ess 
ontinues in asimilar fashion, and a random 
hromosome is generated when the pro
ess hits the last gene Æn.Crossover and Mutation: On
e a set of initial random 
hromosomes is generated, new 
hro-mosomes are generated by either a 
rossover or a mutation operation. In our implementation weset the probability for 
ondu
ting a 
rossover operation as �C = 1�min(mp)=n = (n� 10)=n.For the 
rossover operation, two parent 
hromosomes are 
hosen from the 
urrent population13



of 
hromosomes. These two parents are 
hosen with probabilities inversely proportional to theirranks sorted by their MDL values. In other words, 
hromosomes that have smaller MDL valueswill have higher 
han
es to be sele
ted. From these two parents, the gene values Æi's of the 
hild
hromosome will be inherited in the following manner. Firstly for t = 1, Æt will take on the
orresponding Æt value from either the �rst or the se
ond parent with equal probabilities. If thisvalue is �1, then the same gene{inheriting pro
ess will be repeated for the next gene in line (i.e.,Æt+1). If this value is not �1, then it is a non-negative integer pj denoting the AR order of the
urrent pie
e. In this 
ase the minimum span 
onstraint will be imposed (i.e., the next mpj � 1Æt's will be set to �1), and the same gene{inheriting pro
ess will be applied to the next availableÆt. For mutation one 
hild is reprodu
ed from one parent. Again, this pro
ess starts with t = 1,and every Æt (subje
t to the minimum span 
onstraint) 
an take on one of the following threepossible values: (i) with probability �P it will take the 
orresponding Æt value from the parent,(ii) with probability �N it will take the value �1, and (iii) with probability 1 � �P � �N , it willtake the a new randomly generated AR order pj. In this paper we set �P = 0:3 and �N = 0:3.De
laration of Convergen
e: Re
all that we adopt the Island Model in whi
h migration isallowed for every Mi = 5 generations. At the end of ea
h migration the overall best 
hromosome(i.e., the 
hromosome with smallest MDL) is noted. If this best 
hromosome does not 
hange for10 
onse
utive migrations, or the total number of migrations ex
eeds 20, this best 
hromosome istaken as the solution to this optimization problem.4 SIMULATION RESULTSFive sets of simulation experiments were 
ondu
ted to evaluate the pra
ti
al performan
es of Auto-PARM. The experimental setups of the �rst two simulations are taken from Ombao et al. (2001),14



for whi
h the authors use them to test their Auto-SLEX pro
edure. In the �rst simulation, thepie
es of the true pro
ess follow a dyadi
 stru
ture; i.e., the length of ea
h segment is a integerpower of 2. In the se
ond and fourth simulations the true pro
ess does not 
ontain any stru
turalbreaks, but its time-varying spe
trum 
hanges very slowly over time. In the third simulation thepro
ess 
ontains three pie
es, one of whi
h is an ARMA(1,1) pro
ess and another is a MA(1)pro
ess. In the last simulation the pro
ess has two distin
tive features: the pie
es do not followa dyadi
 stru
ture and the length of one of the pie
es is very short.For the results reported in this se
tion and in Se
tion 5, we obtained slightly better results byminimizing MDL based on the exa
t likelihood fun
tion evaluated at Yule-Walker estimates. Thatis, MDL as de�ned by (5) was used in all of the simulation results in this se
tion. Throughoutthe whole se
tion, results reported for Auto-SLEX were obtained using 
omputer 
ode providedby Dr. Hernando Ombao.4.1 Pie
ewise Stationary Pro
ess with Dyadi
 Stru
tureIn this simulation example, the target non-stationary series is generated with the following modelYt = 8>>>>>><>>>>>>: 0:9Yt�1 + "t; if 1 � t � 512,1:69Yt�1 � 0:81Yt�2 + "t; if 513 � t � 768,1:32Yt�1 � 0:81Yt�2 + "t; if 769 � t � 1024, (9)where "t � iid N(0; 1). The main feature of this model is that the lengths of the pie
es are apower of 2. This is in fa
t ideally suited for the Auto-SLEX pro
edure of Ombao et al. (2001). Atypi
al realization of this pro
ess is shown in Figure 1. For ! 2 [0; 0:5), let fj(!) be the spe
trumof the j-th pie
e, i.e.,fj(!) = �2j j1� �j1 expf�i2�!g � : : :� �jpj expf�i2�pj!gj2; (10)
15



then for t 2 [�j�1; �j), the time-varying spe
trum of the pro
ess Yt in (1) is f(t=n; !) = fj(!).The true spe
trum of the pro
ess in (9) is shown in the middle panel of Figure 2, where darkershades represent higher power.
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Figure 1: A realization from the pie
ewise stationary pro
ess in (9).We applied Auto-PARM to the realization in Figure 1 and obtained two break points lo
atedat �̂1 = 512 and �̂2 = 769, indi
ated by the dotted verti
al lines in the �gure. The Auto-PARM 
orre
tly identi�ed the AR orders (p̂1=1, p̂2=2 and p̂3=2) for this realization. From thissegmentation, the time varying spe
trum of this realization was estimated as f̂t=n(!) = f̂j(!),where f̂j(!) is obtained by repla
ing parameters in (10) with their 
orresponding estimates . Theestimated time varying spe
trum is displayed in the left panel of Figure 2. Our implementationof Auto-PARM, whi
h is written in Compaq Visual Fortran, took 2.34 se
onds on a 1.6 Ghz intelpentium M pro
essor to obtain the above estimates. The Auto-SLEX time varying spe
trum ofthis realization is shown in the panel on the right of Figure 2.Next, 200 realizations of the pro
ess in (9) were simulated and Auto-PARM was applied tosegment ea
h of these realizations. Table 2 lists the per
entages of the �tted number of segments.For 
omparative purposes, the 
orresponding values of the Auto-SLEX method are also listed.Noti
e that Auto-PARM gave the 
orre
t number of segments for 96% of the 200 realizations,16



Time

F
re

q
u
e
n
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Time
0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 2: True time-varying log-spe
trum of pro
ess in (9) and Auto-PARM and Auto-SLEX estimatesfrom the realization of Figure 1.while Auto-SLEX gave the 
orre
t segmentation for 73% of the realizations. Table 2 also reports,for ea
h m̂, the mean and standard deviation of �̂j := (�̂j � 1)=n, j = 2; : : : ; m̂, where �̂j is theAuto-PARM estimate of �j. For 
onvenien
e we will refer to �̂j as a relative break point.Table 3 lists the relative frequen
ies of the AR order p estimated by the Auto-PARM pro
edurefor the 96% of the realizations with 3 pie
es. Of the 200 realizations, 44% have two breaks andAR orders 1, 2 and 2, respe
tively. For these realizations, the means and the standard errors ofthe estimated parameters �1,: : :, �pj , �2j are shown in Table 4. From these tables one 
an seethat the pra
ti
al performan
e of Auto-PARM applied to the above pie
ewise stationary pro
essperforms extremely well, espe
ially for lo
ating the break points.Sensitivity AnalysisWe also 
onsidered the sensitivity of the GA to the probabilities of initialization (�B) and 
rossover17



Table 2: Summary of the estimated break points from both the Auto-SLEX and Auto-PARM pro
eduresfor the pro
ess (9). For Auto-PARM the means and standard errors of the relative break points are alsoreported. Number Auto-SLEX Auto-PARMof break points break pointssegments (%) ASE (%) mean std ASE2 2.5 0.396 0.0(0.019)3 73.0 0.121 96.0 0.500 0.007 0.049(0.027) 0.750 0.005 (0.030)4 11.0 0.146 4.0 0.496 0.004 0.140(0.040) 0.566 0.108 (0.036)0.752 0.0035 9.5 0.206 0.0(0.045)� 6 4.0 0.253 0.0(0.103)All 100.0 0.144 100.0 0.052(0.064) (0.035)Table 3: Relative frequen
ies of the AR order estimated by the Auto-PARM pro
edure for the realizationsof model (9). Order 0 1 2 3 4 5 6 � 7p1 0 99.0 1.0 0 0 0p2 0 0 67.7 16.7 9.9 3.6 0.5 1.5p3 0 0 60.4 22.9 5.7 6.8 2.1 2.1(�C). To assess the sensitivity, Auto-PARM was applied to the same realizations used in Table 2for ea
h 
ombination of values of �B 2 f0:01; 0:1g and �C = f0:90; 0:99g. The others parametervalues in the implementation of Auto-PARM are as des
ribed in Se
tion 3.The relative frequen
y of the number of break points estimated by Auto-PARM is shown inTable 5 (
olumns 4 and 5). For the repli
ates with 3 pie
es, the mean of the break points andstandard errors are shown in 
olumns 6 and 7, respe
tively. The frequen
y of the 
orre
t ARorder estimated by Auto-PARM for ea
h pie
e is shown in 
olumns 8, 9 and 10. The average ofthe MDL values and the standard error are shown in the last two 
olumns. The 
olumn labeled18



Table 4: Summary of parameter estimates obtained by Auto-PARM for the realizations that have 2 breaksand pie
es with orders 1, 2 and 2, respe
tively. For ea
h segment, the true parameters, the mean and thestandard errors (in parenthesis) are shown. ParameterSegment Model �1 �2 �2I AR(1) true 0.90 1.00mean 0.89 1.02(0.02) (0.07)II AR(2) true 1.69 -0.81 1.00mean 1.65 -0.78 1.12(0.05) (0.05) (0.19)III AR(2) true 1.32 -0.81 1.00mean 1.30 -0.79 1.07(0.04) (0.04) (0.13)time shows the average time in se
onds to implement Auto-PARM.Table 5: Sensitivity analysis (NI� popsize = 40 � 40). Summary of sensitivity analysis of �B and �C ofAuto-PARM based on 200 realizations of (9).Number of Auto-PARM AR orderbreaks (%) Break points p̂1 p̂2 p̂3�B �C time 2 3 mean std 1 2 2 MDL0.01 0.90 14.97 91.5 8.5 0.500 0.008 99.5 57.4 60.1 1520.450.749 0.0070.01 0.99 3.0 95.5 4.5 0.499 0.009 99.5 56.5 60.2 1520.560.750 0.0070.10 0.90 16.85 95.5 4.5 0.499 0.010 98.4 53.4 53.4 1519.410.750 0.0080.10 0.99 4.9 94.5 5.5 0.499 0.008 97.9 57.1 57.1 1519.220.750 0.007From Table 5, we see that distin
t values of �B and �C give 
omparable values of MDL.Noti
e that Auto-PARM runs the fastest for the values sele
ted for �B and �C in Se
tion 3, i.e.�B = min(mp)=n and �C = 1�min(mp)=n. As seen from this table, there is little impa
t on the
hoi
e of initial values for �B and �C in exe
uting Auto-PARM.
19



4.2 Slowly Varying AR(2) Pro
essThe true model 
onsidered in this se
ond simulation experiment does not possess a stru
turalbreak. Rather, the pro
ess has a slowly 
hanging spe
trum given by the following time-dependentAR(2) model Yt = atYt�1 � 0:81Yt�2 + "t; t = 1; 2; : : : ; 1024; (11)where at = 0:8f1 � 0:5 
os(�t=1024)g and "t � iid N(0; 1). A typi
al realization of this pro
ess isshown in Figure 3, while the spe
trum of this pro
ess is shown in the middle panel of Figure 5.
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Figure 3: Realization from the pro
ess in (11).For the realization in Figure 3, the Auto-PARM pro
edure segmented the pro
ess into threepie
es with break points lo
ated at �̂1 = 318 and �̂2 = 614 (verti
al dotted lines in this �gure).Also, ea
h of the three pie
es was modeled as an AR(2) pro
ess. The run time for this �ttingwas 1.79 se
onds. Based on the model found by Auto-PARM, the time-varying spe
trum ofthis realization was 
omputed and is shown in the left panel of Figure 4. Also, the Auto-SLEXtime-varying spe
trum of this realization is shown in the right panel of this �gure.Next we generated 200 realizations of the above pro
ess, and the 
orresponding Auto-PARMestimates were obtained. Sin
e there are no true stru
tural breaks in su
h realizations, we followOmbao et al. (2001) and use the average squared error as a numeri
al error measure of perfor-20
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Figure 4: Auto-PARM and Auto-SLEX estimates of log-spe
trum of pro
ess in (11) for the realizationfrom Figure 3.man
e. The ASE is de�ned byASE = fn(MJ=2 + 1)g�1 nXt=1 MJ=2Xk=0 flog f̂(t=n; !k)� log f(t=n; !k)g2;where f̂(�; �) is an estimate of the true time-dependent spe
trum f(�; �) of the pro
ess, J is apre-spe
i�ed s
ale satisfying J < L = log2(n) and MJ := n=2J (see equation (19) in Ombao etal. 2001). In this simulation we took J = 4.The number of segments, lo
ations of the break points and the ASEs of the Auto-PARMestimates are summarized in Table 6. Also listed in Table 6 are the ASE values of the Auto-SLEXpro
edure. From Table 6 the following two main observations 
an be made. First, for ea
h of thesimulated pro
esses, Auto-PARM produ
es either two or three segments that are of roughly thesame length, while the Auto-SLEX pro
edure tends to split the pro
ess into a larger number ofsegments. Se
ond, the ASE values of Auto-PARM are smaller than those from Auto-SLEX.In order to show a \
onsisten
y" like property of Auto-PARM, we 
omputed the average of21



Table 6: Break points and ASEs values from the Auto-PARM and the Auto-SLEX estimates 
omputedfrom 200 realizations of (11). Numbers inside parentheses are standard errors of the ASE values.Number Auto-SLEX Auto-PARMof break pointssegments (%) ASE (%) mean std ASE1 0.0 - 0.0 - - -2 40.5 0.191 37.5 0.496 0.055 0.129(0.019) (0.015)3 37.0 0.171 62.0 0.365 0.074 0.081(0.022) 0.662 0.079 (0.016)4 15.0 0.174 0.5 0.308 - 0.10(0.029) 0.538 - -0.875 -5 5.0 0.202(0.045)� 6 2.5 0.223(0.037)All 100.0 0.182 100.0 0.099(0.027) (0.028)all the time-varying spe
tra of the 200 Auto-PARM and Auto-SLEX estimates. The averagedAuto-PARM spe
trum is displayed in the left panel of Figure 5 and looks remarkably similar tothe true time varying spe
trum. Also the averaged Auto-SLEX spe
trum is shown in the rightpanel of this �gure. Lastly in Table 7 we summarize the Auto-PARM estimates of the AR ordersfor the above pro
ess. Noti
e that most of the segments were modeled as AR(2) pro
esses.Table 7: Relative frequen
ies of the AR order sele
ted by Auto-PARM for the realizations from thepro
ess (11). Order 0 1 2 3 4 � 52-segment realizationsp1 0 0 97.3 1.3 1.3 0p2 0 0 93.3 5.3 1.3 03-segment realizationsp1 0 0 100.0 0 0 0p2 0 0 94.4 4.8 0.8 0p3 0 0 91.1 8.1 0.8 0
22
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Figure 5: True time-varying log-spe
trum of pro
ess in (11) (
enter) and Auto-PARM and Auto-SLEXlog-spe
trum estimate (average of log-spe
trum estimates obtained from 200 realizations).4.3 Pie
ewise ARMA pro
essRe
all that the Auto-PARM pro
edure assumes the observed pro
ess is 
omposed of a series ofstationary AR pro
esses. This third simulation, designed to assess the performan
e of Auto-PARM when the AR assumption is violated, has data generating model given byYt = 8>>>>>><>>>>>>: �0:9Yt�1 + "t + 0:7"t�1; if 1 � t � 512,0:9Yt�1 + "t; if 513 � t � 768,"t � 0:7"t�1; if 769 � t � 1024, (12)where "t � iid N(0; 1). Noti
e that the �rst pie
e is an ARMA(1,1) pro
ess while the last pie
e isa MA(1) pro
ess. A typi
al realization of this pro
ess is shown in Figure 6.The Auto-PARM pro
edure was applied to the realization in Figure 6. Three pie
es wereobtained. The break points are at �̂1 = 513 and �̂2 = 769 (dotted verti
al lines in this �gure),23



Table 8: Summary of parameter estimates of slowly varying AR(2) pro
ess realizations segmented byAuto-PARM as two and three pie
es, where ea
h pie
e is an AR(2) pro
ess. For ea
h segment, the trueparameters, their mean and standard deviation (in parenthesis) are shown.Parameterj-th pie
e �1 �2 �22-pie
e realizations with AR(2) pie
es: 681 true -0.81 1.00mean 0.54 -0.79 1.05std (0.04) (0.03) (0.07)2 true -0.81 1.00mean 1.05 -0.79 1.05std (0.04) (0.03) (0.07)3-pie
e realizations with AR(2) pie
es: 1061 true -0.81 1.00mean 0.46 -0.80 1.03std (0.06) (0.03) (0.08)2 true -0.81 1.00mean 0.82 -0.81 1.01std (0.08) (0.04) (0.10)2 true -0.81 1.00mean 1.14 -0.80 1.06std (0.05) (0.04) 0.10
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Figure 6: A realization from the pie
ewise stationary pro
ess in (12).while the order of the AR pro
esses are 4, 1 and 2 respe
tively. The total run time for this �twas 1.53 se
onds. The time-varying spe
trum (not shown here) based on the model found byAuto-PARAM is reasonable 
lose to the true spe
trum (not shown here) even though two of thesegments are not AR pro
esses.To assess the large sample behavior of Auto-PARM, 200 realizations from (12) were generated,24



and the 
orresponding Auto-PARM estimates were obtained. An en
ouraging result is that forall 200 realizations, Auto-PARM always gave the 
orre
t number of stationary segments. Theestimates of the break point lo
ations are summarized in Table 9. In Table 10 we show the relativefrequen
y of the AR order pj sele
ted to model the pie
es of the realizations. As expe
ted, quiteoften large AR orders were sele
ted for the ARMA and MA segments.Table 9: Summary of Auto-PARM estimated break points obtained from 200 realizations from the pro
essin (12). Number relative break pointsof segments % mean std3 100.0 0.50 0.0050.75 0.003Table 10: Relative frequen
ies of the AR order sele
ted by Auto-PARM for the realizations from thepro
ess (12). Order 0 1 2 3 4 5 6 7 � 8p1 0 4.0 22.5 40.0 23.5 8.5 1.0 0.5 0p2 0 89.5 8.5 1.5 0.5 0 0 0 0p3 0 0.5 22.0 45.0 19.5 7.5 4.5 1.0 04.4 Time varying MA(2) pro
essLike the example in Se
tion 4.2, the true model 
onsidered in this last simulation experimentdoes not possess a stru
tural break. Rather, the pro
ess has a 
hanging spe
trum given by thefollowing time-dependent MA(2) modelYt = "t + at"t�1 + 0:5"t�2; t = 1; 2; : : : ; 1024; (13)where at = 1:122f1�1:781 sin(�t=2048)g and "t � iid N(0; 1). A typi
al realization of this pro
essis shown in Figure 7, while the spe
trum of this pro
ess is shown on the left panel of Figure 9.For the realization in Figure 7, the Auto-PARM pro
edure segmented it into four AR pie
esof orders 5, 3, 5, and 3, respe
tively with break points lo
ated at �̂1 = 109, �̂2 = 307, and �̂3 = 712(verti
al dotted lines in this �gure). The run time for this model �t was 3.76 se
onds. Based on25
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Figure 7: Realization from the pro
ess in (13).the model found by Auto-PARM, the time-varying spe
trum of this realization is shown in theleft panel of Figure 8. For 
omparison, the Auto-SLEX time-varying spe
trum estimate of thisrealization is shown in the right panel of this �gure.
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Figure 8: Auto-PARM and Auto-SLEX estimates of log-spe
trum of pro
ess in (13) for the realizationfrom Figure 7.Next we generated 200 realizations of the above pro
ess, and the 
orresponding Auto-PARM26



Table 11: Summary of the estimated break points from both the Auto-SLEX and Auto-PARM pro
eduresfor the pro
ess (13). For Auto-PARM the means and standard errors of the relative break points are alsoreported. Numbers inside parentheses are standard errors of the ASE values.Number Auto-SLEX Auto-PARMof break points break pointssegments (%) ASE (%) mean std ASE2 - - 3.0 0.374 0.040 0.307(0.023)3 3.5 0.187 89.0 0.238 0.072 0.211(0.027) 0.548 0.089 (0.029)4 6.5 0.157 8.0 0.156 0.045 0.182(0.017) 0.391 0.062 (0.021)0.667 0.0935 15.5 0.170(0.028)6 17.0 0.163(0.025)7 20.0 0.158(0.030)8 15.0 0.180(0.029)9 11.5 0.203(0.032)� 10 11.0 0.223(0.035)All 100.0 0.18 0.211(0.036) (0.034)estimates were obtained. The number of segments, lo
ations of the break points and the ASEs ofthe Auto-PARM estimates are summarized in Table 11.From this Table we observe that for most of the realizations Auto-PARM produ
es threesegments. We 
omputed the average of all the time-varying spe
tra of the 200 Auto-PARMestimates, the averaged spe
trum is displayed in the right panel of Figure 9 and the average of the200 Auto-SLEX estimates of the time-varying spe
tra is shown in the right panel of this �gure.The true spe
trum in Figure 9 is well estimated by Auto-PARM and Auto-SLEX. Remarkably,Auto-PARM estimates well the true spe
trum, in spite of the fa
t that it splits the realizationsin fewer pie
es than Auto-SLEX.In Table 12 we summarize the Auto-PARM estimates of the AR orders for the above pro
ess27
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Figure 9: Left: True time-varying log-spe
trum of pro
ess in (13) (
enter) and Auto-PARM and Auto-SLEX log-spe
trum estimate (average of log-spe
trum estimates obtained from 200 realizations.for those realizations with 3 pie
es. In general, the segments were modeled as AR pro
esses ofhigh order.Table 12: Relative frequen
ies of the AR order sele
ted by Auto-PARM for the realizations (with 3segments) from the pro
ess (13).Order 1 2 3 4 5p1 10.0 40.0 20.0 20.0p2 40.0 20.0 30.0p2 10.0 10.0 70.0 10.04.5 Short segmentsTo 
omplement the above simulation experiments, we assess in this subse
tion the performan
eof Auto-PARM with the following pro
ess 
ontaining a short segment,Yt =8>><>>: 0:75Yt�1 + "t; if 1 � t � 50,�0:50Yt�1 + "t; if 51 � t � 1024, (14)where "t � iid N(0; 1). A typi
al realization of this pro
ess is shown in Figure 10. For the28
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Figure 10: A realization from the pie
ewise stationary pro
ess in (14).realization in Figure 10, Auto-PARM gives a single break point at �̂1 = 51 whi
h is shown as theverti
al dotted line in Figure 10. Both pie
es are modeled as AR(1) pro
esses. The run time forthis realization was 2.70 se
onds.The Auto-PARM pro
edure was further applied to 200 realizations of this pro
ess. For all ofthese realizations Auto-PARM found one break point. The mean of the relative position estimatesof this 
hange point is 0.042 (true value is 0.049) with a standard error of 0.004. The minimum,median and maximum of the break points are 34, 51 and 70, respe
tively. In Table 13, the relativefrequen
y of the orders p1 and p2 of ea
h of the two pie
es sele
ted by Auto-PARM are shown.The Auto-PARM pro
edure segmented 
orre
tly 92.5% of the realizations (2 AR pie
es of orders1). This is ex
eptional performan
e for a pro
ess in whi
h the break o

urs near the beginning ofthe series.Table 13: Relative frequen
ies of the AR order sele
ted by Auto-PARM for the realizations from thepro
ess (14). Order 0 1 2 3 � 4p1 0.0 96.0 3.0 0.5 0.0p2 0.0 96.0 4.0 0.0 0.0
29



Table 14: Summary of parameter estimates of the realizations of the pro
ess in (14) segmented 
orre
tlyby Auto-PARM (92.5%) as two pie
es, where ea
h pie
e is an AR(1) pro
ess. For ea
h segment, the trueparameters, their mean and standard deviation (in parenthesis) are shown.1st pie
e 2nd pie
eparameter �1 �2 �1 �2true 0.75 1.00 -0.50 1.00mean 0.66 1.05 -0.50 1.00std (0.11) (0.23) (0.03) (0.04)4.6 Further remarks on estimated breaksAs seen in the simulations from Se
tions 4.1 and 4.5, when the true unknown pie
es are indeedAR pro
esses, Auto-PARM 
an dete
t 
hanges in order and in parameters. Let us 
onsider forexample the pro
ess in Se
tion 4.1 where the �rst pie
e is an AR pro
ess of order 1 and the se
ondpie
e is of order 2. In this 
ase, Auto-PARM dete
ted the 
hange of order reasonably well (seeTable 3). On the other hand, the se
ond and third pie
es of this pro
ess have the same order2 with di�erent parameter values. Also, the two pie
es of the pro
ess in Se
tion 4.5 have alsothe same order 1. Tables 3 and 13 show the Auto-PARM does a good job in dete
ting 
hange ofparameter values. The parameter estimates of both pro
esses, given in Tables 4 and 8 respe
tively,show how well Auto-PARM also performs for parameter estimation.The simulation in Se
tion 4.3 is an example of a pro
esses that is not a pie
e-wise ARpro
esses. In this 
ase, the �rst pie
e is an ARMA(1,1) pro
ess and the third pie
e is a MA(1)pro
ess. Auto-PARM approximates both the ARMA and MA pie
es with AR pro
esses perhapsof a large order. The fa
t that it did ex
eptionally well in dete
ting the breaks of this pro
ess(see Table 9) is not surprising, sin
e for general stationary pro
ess, its spe
tral density 
an bewell approximated by the spe
trum of an AR pro
ess under the assumption of 
ontinuity of thespe
tral density (see, for example, Theorem 4.4.3, Bro
kwell and Davis 1991). The Auto-PARMpro
edure 
an then be interpreted as a method for segmenting pie
ewise stationary pro
esses. Inthis example, the breaks Auto-PARM found are points where the spe
trum has \large" 
hanges.30



5 APPLICATIONS5.1 Seat Belt LegislationIn the hope of redu
ing the mean number of monthly \deaths and serious injuries", seat-beltlegislation was introdu
ed in UK on February 1983. Displayed in the left panel of Figure 11 is atime series fytg120t=1, beginning in January 1975, showing the monthly number of deaths and seriousinjuries. In order to remove the seasonal 
omponent of fytg, Bro
kwell and Davis (2002) 
onsiderthe di�eren
ed time series xt = yt � yt�12, and analyze fxtg with a regression model with errorsfollowing an ARMA model. The Auto-PARM pro
edure, when applied to the di�eren
ed series
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Figure 11: (a) Left panel. Monthly deaths and serious injuries on UK roads. (b) Right panel. Transformedseat belt legislation time series. The verti
al lines are �̂1 and �̂2, respe
tively. The dotted horizontal line isthe estimated mean of the i-th segment.fxtg, segmented the series into three pie
es with break points at �̂1 = 86 and �̂2 = 98. The �rsttwo pie
es are iid and the last pie
e is an AR pro
ess of order 1. On the right panel of Figure 11the di�eren
ed time series fxtg, along with the estimated means of ea
h pie
e, are shown. Fromthe Auto-PARM �t one 
an 
on
lude that there is a stru
tural 
hange in the time series fytg afterFebruary 1983, whi
h 
oin
ides with the time of introdu
tion of the seat belt legislation.
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5.2 Spee
h SignalThe Auto-PARM pro
edure was applied to analyze a human spee
h signal whi
h is the re
ordingof the word \greasy". This signal 
ontains 5762 observations and is shown at the top panel ofFigure 12. This non-stationary time series was also analyzed by the Auto-SLEX pro
edure ofOmbao et al. (2001). The Auto-PARM �t of this spee
h signal resulted in 15 segments. The total
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Figure 12: Top panel: Spee
h signal. Bottom panel: GA estimate of the time-varying log spe
trum.run time was 18.02 se
onds. The time-varying log spe
trum obtained with this �t is shown atthe bottom panel of Figure 12. From this �gure, one 
an see that the signal is roughly dividedin segments that 
orrespond to \G", \R", \EA", \S", and \Y". The information 
onveyed inthis �gure 
losely mat
hes that from Ombao et al. (2001). The spe
trum from those pie
es that
orrespond to \G" have high power at the lowest frequen
ies. The pie
es that 
orrespond to\R" show power at frequen
ies slightly above that for \G". The pie
es that 
orrespond to \EA"show the evolution of power from lower to higher frequen
ies. The pie
es that 
orrespond to \S"32



have high power at high frequen
ies. Noti
e that the Auto-PARM pro
edure breaks this spee
hsignal into a smaller number of pie
es than the Auto-SLEX pro
edure while still 
apturing theimportant features in the spe
trum.6 MULTIVARIATE TIME SERIESIn this se
tion we demonstrate how Auto-PARM 
an be extended to model multivariate timeseries. In Subse
tion 6.1 the MDL of a pie
ewise multivariate autoregressive pro
ess is obtainedand in Subse
tion 6.2 Auto-PARM is exempli�ed to a bivariate time series.6.1 MDLLet fYtg be a multivariate time series with r 
omponents, and assume that there are breakpoints �0 := 1 < �1 < : : : < �m < n + 1 for whi
h the j-th pie
e Yt = Xt;j, �j�1 � t < �j ;j = 1; 2; : : : ;m+ 1 is modeled by a multivariate AR(pj) pro
essXt;j = 
j +�j1Xt�1;j + : : :+�j;pjXt�pj ;j +�j 1=2j Zt; �j�1 � t < �j; (15)where the noise sequen
e fZtg is iid with mean 0 and 
ovarian
e matrix I. The (unknown) ARmatrix 
oeÆ
ients and 
ovarian
e matri
es are of dimension r � r. Let M be the set of possiblesolutions for all the possible values of m; �1; : : : ; �m; p1; : : : ; pm. Let y1; : : : ;yn be a realization offYtg. Parameter estimates in model (15) 
an be obtained using Whittle's algorithm (e.g., seeBro
kwell and Davis 1991). From (6), we haveMDL(m; �1; : : : ; �m; p1; : : : ; pm+1) = logm+ (m+ 1) log n+ m+1Xj=1 log pj+m+1Xj=1 3r + 2pjr2 + r24 log nj � m+1Xj=1 logL(�̂j;1; : : : ; �̂j;pj ; �̂j );where L(�̂j;1; : : : ; �̂j;pj ; �̂j ) is the likelihood of the j-th pie
e evaluated at the parameter estimates.As in the univariate 
ase, the best segmentation of the realization y1; : : : ;yn of fYtg is de�ned33



as the minimizer of MDL(m; �1; : : : ; �m; p1; : : : ; pm+1). A similar GA 
an be developed for thepra
ti
al minimization of MDL(m; �1; : : : ; �m; p1; : : : ; pm+1).6.2 EEG analysisFigure 13 displays two ele
troen
ephalograms (EEGs) ea
h of length n = 32768 re
orded froma female patient who was diagnosed with left temporal lobe epilepsy. This data set is 
ourtesyof Dr. Beth Malow (formerly from the Department of Neurology at the University of Mi
higan).The top panel is the EEG from the left temporal lobe (T3 
hannel) while the bottom panel is the
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Figure 13: (Bivariate EEG) Ele
troen
ephalograms of length n = 32768 at 
hannels T3 (top) and P3(bottom) from a patient diagnosed with left temporal lobe epilepsy (
ourtesy of Dr. Beth Malow, formerlyfrom the Deptarment of Neurology at the University of Mi
higan).EEG from the left parietal lobe (P3 
hannel). Ea
h EEG was re
orded for a total of 5 minutesand 28 se
onds with a sampling rate of 100 Hz. Of primary interest is the estimation of thepower spe
tra of both EEGs and the 
oheren
e between them. One way of solving this problemis by segmenting the time series into stationary AR pie
es (e.g., Gers
h 1970; Jansen, Hasman,34



Lenten, and Visser 1979; Ombao et al. 2001; Melkonian, Blumenthal and Meares 2003). Themultivariate Auto-PARM pro
edure des
ribed above was applied to this bivariate time series,and the break point lo
ations and the AR orders of the resulting �t are shown in Table 15. Noti
ethat the multivariate implementation of Auto-PARM estimated the starting time for seizure forthis epilepti
 episode at t = 185:8 se
onds, in extremely 
lose agreement with the neurologist'sestimate of 185 se
onds. In Figure 14, the estimated spe
trums for the 
hannel T3 (top panel) and
hannel P3 (bottom panel) based on the Auto-PARM �t in Table 15 are displayed. The estimatesare 
lose to those obtained in Ombao et al. (2001) and similar 
on
lusions 
an be drawn. Forexample, prior to seizure, power was 
on
entrated at lower frequen
ies. During seizure, powerwas spread to all frequen
ies, while towards the end of seizure, the 
on
entration of power slowlyrestored to lower frequen
ies.Table 15: GA segmentation of the bivariate time series from Figure 13. �̂j is given in se
onds.j0 1 2 3 4 5 6 7 8 9 10 11�̂j 1 185.8 189.6 206.1 220.9 233.0 249.0 261.6 274.6 306.0 308.4 325.8p̂j 17 14 5 8 7 3 3 4 10 4 1 1In Figure 15, the Auto-PARM estimate of the 
oheren
e between the T3 and P3 time series
hannels is shown. Again, this estimate is 
lose to the estimate obtained in Ombao et al. (2001).7 CONCLUSIONSIn this paper we provided a pro
edure to analyze a non-stationary time series by breaking it inpie
es that are modeled as autoregressive pro
esses. The best segmentation is obtained by mini-mizing a MDL 
riterion of the set of possible solutions via the geneti
 algorithm (our pro
eduredoes not make any restri
tive assumptions on this set). The order of the autoregressive pro
essand the estimates of the parameters of this pro
ess is a byprodu
t of this pro
edure. As seen35
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Figure 14: Estimate of the Time-varying log spe
tra of the EEGs from Figure 13. Top: T3 
hannel.Bottom: P3 
hannel.
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Figure 15: Estimated 
oheren
e between the EEGs shown in Figure 13.in the simulation experiments, the rate in whi
h this pro
edure segments 
orre
tly a pie
e-wisestationary pro
ess is high. Also, the \quality" of the estimated time-varying spe
trum obtainedwith the results of our method is quite good.
36



APPENDIX: TECHNICAL DETAILSIn this Appendix we show the 
onsisten
y of �̂j=n; j = 1; : : : ;m, when m, the number of breaksis known. Throughout this se
tion we denote the true value of a parameter with a \0" super-s
ript (ex
ept for �2j ). Preliminary results are given in Propositions A.2{A.4 and 
onsisten
y isestablished in Proposition A.5.Set � := (�1; : : : ; �m) and p = (p1; : : : ; pm+1). Sin
e m is assumed known, for our asymptoti
results noti
e that (6) 
an be rewritten in the 
ompa
t form2MDL(�; p)=n = 2(m+ 1)n log(n) + m+1Xj=1 pj + 2n lognj + m+1Xj=1 njn log(�̂2j ) + o(1):Proposition A.2 Suppose fXtg is a stationary ergodi
 pro
ess with EjXtj < 1, then, withprobability 1, the pro
ess Sn(s) = 1n [ns℄Xt=1 Xt;
onverges to the pro
ess sEX1 on the spa
e D[0; 1℄.Proof. The argument relies on repeated appli
ation of the ergodi
 theorem. Let Q [0;1℄ be the setof rational numbers in [0,1℄. For r 2 Q [0;1℄ ,1n [nr℄Xt=1 Xt ! rEX1; a.s. (A.1)If Br is the set of !'s for whi
h (A.1) holds, setB = \r2Q[0;1℄ Br;and note P (B) = 1. Moreover, for ! 2 B and any s 2 [0; 1℄, 
hoose r1; r2 2 Q [0;1℄ , su
h thatr1 � s � r2. Hen
e, j 1n [ns℄Xt=1 Xt � 1n [nr1℄Xt=1 Xtj � 1n [nr2℄Xt=[nr1℄ jXtj ! (r2 � r1)EjX1j:37



By making jr2 � r1j arbitrarily small, it follows from the ergodi
 theorem that1n [ns℄Xt=1 Xt ! sEX1:To establish 
onvergen
e on D[0; 1℄, it suÆ
es to show for ! 2 B1n [ns℄Xt=1 Xt ! sEX1; uniformly on [0,1℄:Given � > 0, 
hoose r1; : : : ; rm 2 Q [0;1℄ su
h that 0 = r0 < r1 < � � � < rm = 1, with ri � ri�1 < �.Then for any s 2 [0; 1℄, ri�1 < s � ri andj 1n [ns℄Xt=1 Xt � sEX1j � j 1n [ns℄Xt=1 Xt � 1n [nri�1℄Xt=1 Xtj+ j 1n [nri�1℄Xt=1 Xt � ri�1EX1j+ jri�1EX1 � sEX1j:The �rst term is bounded by1n [nri℄Xt=[nri�1℄ jXtj ! (ri � ri�1)EjX1j < �EjX1j:Choose n so large that this term is less than �EjX1j for i = 1; : : : ;m. It follows thatsups j 1n [ns℄Xt=1 Xt � sEX1j < �EjX1j+ �+ �EjX1j;for n large. �Proposition A.3 Suppose fXtg is the AR(p0) pro
essXt = �0 + �1Xt�1 + : : :+ �t�p0Xt�p0 + �"t; "t � IID N(0,1):For r; s 2 [0,1℄ (r < s) and p=0,1,: : : P0, let �̂(r; s; p) be the Y-W estimate of the AR(p) parameterve
tor �(p) based on �tting an AR(p) to the data X[rn℄+1; : : : ;X[sn℄. Then with probability 1,�̂(r; s; p)! �(p); �̂2(r; s; p)! �2(p):Proof. Sin
e fXtg is a stationary ergodi
 pro
ess, fjXtjg, fXt�iXt�jg and fjXt�iXt�j jg arestationary ergodi
 pro
esses. By Proposition A.2, the partial sum pro
esses for ea
h of thesepro
esses 
onverge to their respe
tive limit a.s., let B be the probability 1 set on whi
h thesepartial sum pro
esses 
onverge. Now �̂(r; s; p) and �̂2(r; s; p) are 
ontinuous fun
tions of thesepro
esses. The result follows. � 38



Proposition A.4 Let fYtg be the pro
ess de�ned in (1) with �0j = 0. For r,s 2 [0,1℄ (r < s) andp=0,1,: : : P0, let �̂Y (r; s; p) be the Y-W estimates in �tting an AR(p) model to Y[rn℄+1; : : : ; Y[sn℄.Then with probability 1,̂�Y (r; s; p)! ��Y (r; s; p); �̂2Y (r; s; p)! ��2Y (r; s; p);where ��Y (r; s; p) and ��2Y (r; s; p) are de�ned below in the proof.Proof. Let B�k be the probability 1 set on whi
h1n [ns℄Xt=1 Xt;k; 1n [ns℄Xt=1 jXt;kj; 1n [ns℄Xt=1 Xt�i;kXt�j;k; and 1n [ns℄Xt=1 jXt�i;kXt�j;kj; (i; j = 1; : : : ; P0),
onverge, k = 1; 2; : : : ;m+ 1, and set B� = m+1\k=1 B�k:Let r; s 2 [0; 1℄, r < s, then r 2 [�0i�1; �0i ) and s 2 (�0i�1+k; �0i+k℄, k � 0. Assuming that the meanof the pro
ess fYtg is zero, we have
̂Y (h) := 1[sn℄� [rn℄ [sn℄�hXt=[rn℄+1Yt+hYt= n[sn℄� [rn℄ 8<: 1n [�0in℄�hXt=[rn℄+1Xt+h;iXt;i + 1n [�0i+1n℄�hXt=[�0i n℄+1Xt+h;i+1Xt;i+1+ � � �+ 1n [sn℄�hXt=[�0i�1+kn℄+1Xt+h;i+kXt;i+k + o(1)9>=>; :Let 
i(h) := 
ovfXt+h;i;Xt;ig. For ! 2 B�, if follows from Proposition A.3 that
̂Y (h)! �0i � rs� r 
i(h) + �0i+1 � �is� r 
i+1(h) + � � �+ s� �0i�1+ks� r 
i+k(h);= ai
i(h) + : : : + ai+k
i+k(h):Then �̂Y (r; s; p) = �̂�1Y (p)
̂Y (p)! 0�i+kXj=i aj�j(p)1A�1 i+kXj=i aj
j(p) =: ��Y (r; s; p);where �j(p) = f
j(i1 � i2)gpi1;i2=1 and 
j(p) = [
j(1); : : : ; 
j(p)℄T . This establishes the desired
onvergen
e for �̂Y (r; s; p). Note that if k = 0, ��Y (r; s; p) = �i(p). The proof of the 
onvergen
efor �̂2Y (r; s; p) is similar. � 39



Proposition A.5 For the pie
ewise pro
ess in (1), 
hoose � > 0 small su
h that�� mini=1;:::;m+1(�0i � �0i�1)and set A� = f� 2 [0; 1℄m; 0 = �0 < �1 < �2 < : : : < �m < �m+1 = 1;�i � �i�1 � �; i = 1; 2; : : : ;m+ 1g;where m = m0. If �̂; p̂ = arg min�2A�0�p�P0 2nMDL(�; p);then �̂! �0 a.s.Proof Let B� be the event des
ribed in the proof of Proposition A.4. We will show that for ea
h! 2 B�, �̂ ! �0. For ! 2 B�, suppose �̂ 6! �0. Sin
e the sequen
es are bounded, there exist asubsequen
e fn0kg su
h that �̂ ! �� and p̂j ! p�j on the subsequen
e. Note that �� 2 A� sin
e�̂ 2 A� for all n. It follows that2nMDL(�̂; p̂)! m+1Xj=1 (��j � ��j�1) log ��2Y (��j�1; ��j ; p�j):If �0i � ��j�1 < ��j � �0i+1, then��2Y (��j�1; ��j ; p�j ) = �2i+1(p�j) � �2i+1; (A.9)with equality if and only if p�j � pi+1. If �0i�1 � ��j�1 < �0i < � � � < �0i+k < ��j � �0i+k+1, then��2Y (��j�1; ��j ; p�j ) � �0i � ��j�1��j � ��j�1�2i + �0i+1 � �0i��j � ��j�1�2i+1 + � � �+ ��j � �0i+k��j � ��j�1�2i+k+1:By the 
on
avity of the log fun
tion,(��j � ��j�1) log ��2Y (��j�1; ��j ; p�j) � (��j � ��j�1)"�0i � ��j�1��j � ��j�1 log �2i + �0i+1 � �0i��j � ��j�1 log �2i+1+ � � �+ ��j � �0i+k��j � ��j�1 log �2i+k+1#= (�0i � ��j�1) log �2i + (�0i+1 � �0i ) log �2i+1+ � � �+ (��j � �0i+k) log �2i+k+1:40



It follows thatlimn!1 2nMDL(�̂; p̂) > m+1Xi=1 (�0i � �0i�1) log �2i = limn!1 2nMDL(�0; p0) � limn!1 2nMDL(�̂; p̂); (A.10)a 
ontradi
tion. Hen
e �̂! � for all ! 2 B�. �Noti
e that with probability 1, p̂j 
an not underestimate p0j . To see this, let p�j as in the proofof Proposition (A.5), if for some j, p�j < p0j , then the 
ontradi
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