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underlying model is a segmented autoregression, this proedure is shown to be onsistent forestimating the loation of the breaks.KEYWORDS: Non-stationarity, hange-points, minimum desription length priniple, genetialgorithm. 1 INTRODUCTIONIn this paper we onsider the problem of modeling a non-stationary time series by segmenting theseries into bloks of di�erent autoregressive (AR) proesses. The number of break points, denotedby m, as well as their loations and the orders of the respetive AR models are assumed to beunknown. We propose an automati proedure for obtaining suh a partition.In order to desribe the setup, for j = 1; : : : ;m, denote the break point between the j-th and(j +1)-th AR proesses as �j, and set �0 = 1 and �m+1 = n+ 1. Then the j-th piee of the seriesis modeled as an AR proess Yt = Xt;j ; �j�1 � t < �j ; (1)where fXt;jg is the AR(pj) proessXt;j = j + �j1Xt�1;j + : : : + �j;pjXt�pj ;j + �j"t; j := (j ; �j1; : : : ; �j;pj ; �2j ) is the parameter vetor orresponding to this AR(pj) proess, andthe noise sequene f"tg is iid with mean 0 and variane 1. Given an observed series fyigni=1,the objetive is to obtain a \best" �tting model from this lass of pieewise AR proesses. Thisis equivalent to �nding the \best" ombination of the number of piees m + 1, the break pointloations �1; : : : ; �m, and the AR orders p1; : : : ; pm+1. We propose an automati proedure forobtaining suh a partition. This proposed automati pieewise autoregressive modeling proedurewill be referred to as Auto-PARM. Note that one these parameters are spei�ed, maximum2



likelihood estimates of the AR parameters  j's for eah segment are easily omputed. Theprimary objetive of the methodology developed in this paper is to atually estimate struturalbreaks for a time series. Under this senario, it is assumed that some aspet of a time serieshanges at various times. Suh hange might be a shift in the mean level of the proess, a hangein variane, and/or a hange in the dependene struture of the proess. The sequene of timeseries between two hange-points is assumed to be modeled as a sequene of stationary proesses,eah of whih an be adequately modeled by an autoregressive proess. Potential appliations ofthis setup an be found in soial sienes in whih time series may be impated by hanges ingovernment poliies and time series from signal proessing engineering, and manufaturing whereprodution proesses are often subjet to unpreditable hanges in the manufaturing proess.As a seondary objetive, our methodology an also be viewed as a proedure for approxi-mating loally stationary time series by pieewise AR proesses. To see this, we note that thepieewise AR proess onsidered in (1) is a speial ase of the pieewise stationary proess (seealso Adak 1998) ~Yt;n = m+1Xj=1 Xt;jI[�j�1=n;�j=n)(t=n);where fXt;jg; j = 1; : : : ;m + 1 is a sequene of stationary proess. Under ertain onditions,Ombao, Raz, Von Sahs, and Malow (2001) argue that loally stationary proesses (in the senseof Dahlhaus 1997) an be well approximated by pieewise stationary proesses. Roughly speaking,a proess is loally stationary if its time-varying spetrum at time t and frequeny ! is jA(t=n; !)j2,where A(u; !), u 2 [0; 1℄, ! 2 [�1=2; 1=2℄ is a ontinuous funtion in u. Sine AR proesses aredense in the lass of weakly stationary (purely non-deterministi) proesses, the pieewise ARproess is dense in the lass of loally stationary proesses.The above problem of �nding a \best" ombination of m, �j's and pj's an be treated asa statistial model seletion problem, in whih andidate models may have di�erent numbers of3



parameters. To solve this seletion problem we apply the minimum desription length (MDL)priniple of Rissanen (1989) to de�ne a best �tting model (see Saito 1994 and Hansen and Yu2000 for a omprehensive review of MDL). The basi idea behind the MDL priniple is that, thebest �tting model is the one that enables the maximum ompression of the data. Suesses inapplying MDL to a variety of pratial problems have been widely reported in the literature; see,for example, Lee (2000), Hansen and Yu (2001) and Jornsten and Yu (2003).As demonstrated below, the best �tted model derived by the MDL priniple is de�ned im-pliitly as the optimizer of some riterion. Pratial optimization of this riterion is not a trivialtask, as the searh spae (onsisting of m, �j's and pj's) is enormous. To takle this problem,we use a geneti algorithm (GA) desribed for example by Holland (1975). Geneti algorithmsare beoming a popular tool in statistial optimization appliations (e.g., Gaetan 2000; Pittman2002; Lee and Wong 2003), and seem partiularly well suited for our MDL optimization problemas an be seen in our numerial studies.Various versions of the above break point detetion problem have been onsidered in theliterature. For example, Bai and Perron (1998, 2003) examine the multiple hange-point modellingfor the ase of multiple linear regression, Inlan and Tiao (1994) and Chen and Gupta (1997)onsider the problem of deteting multiple variane hange-points in a sequene of independentGaussian random variables, and Kim and Nelson (1999) provide a summary of various appliationsof the hidden Markov approah to eonometris. Kitagawa and Akaike (1978) implemented an\on-line" proedure based on AIC to determine segments. To implement their method, supposethat an autoregressive model AR(p0) has been �tted to the dataset fy1; y2; : : : ; yn0g and that anew blok fyn0+1; : : : ; yn0+n1g of n1 observations beomes available, whih an be modeled as anAR(p1) autoregressive model. Then, the time n0 is onsidered a breaking point when the AICvalue of the two independent piees is smaller than the AIC of the autoregressive that results4



when the dataset fy1; : : : ; yn0+n1g is modeled as a single autoregressive model of order p2. Eahpj; j = 0; 1; 2 is seleted among the values 0; 1; : : : ;K (K is a prede�ned value) that minimizesthe AIC riterion. The iteration is ontinued until no more data are available. Like K, n1 isa prede�ned value. Ombao et al. (2001) implement a segmentation proedure using the SLEXtransformation, a family of orthogonal transformations. For a partiular segmentation, a \ost"funtion is omputed as the sum of the osts at all the bloks that de�ne the segmentation.The best segmentation is then de�ned as the one with minimum ost. Again, beause it is notomputationally feasible to onsider all possible segmentations, they assume that the length of thesegments follow a dyadi struture; i.e., an integer power of 2. Bayesian approahes have also beenstudied; e.g., see Lavielle (1998) and Punskaya et al. (2002). Both proedures hoose the �naloptimal segmentation as the one that maximizes the posterior distribution of the observed series.Numerial results suggest that both proedures enjoy exellent empirial properties. However,theoretial results supporting these proedures are laking.For most of the above mentioned proedures, inluding Auto-PARM, the \best" segmentationis de�ned as the optimizer of an objetive funtion. Sequential type searhing algorithms areadopted by some of these proedures for loating suh a \best" segmentation; e.g., Kitagawa andAkaike (1978), Inlan and Tiao (1994) and Ombao et al. (2001). On one hand one would expetthat these sequential proedures, when omparing to our geneti algorithm approah, requireless omputational time to loate a good approximation to the true optimizer. On the otherhand, sine the geneti algorithm approah examines a muh bigger portion of the searh spaefor the optimization, one should also expet that the geneti algorithm approah provides betterapproximations to the true optimizer. A detailed omparison between the Auto-PARM proedureand the Auto-SLEX proedure of Ombao et al.(2001) is given in Setion 4 below.The rest of this paper is organized as follows. In Setion 2 we derive an expression for the MDL5



for a given pieewise AR model. In Setion 3 we give an overview of the geneti algorithm anddisuss its implementation to the segmentation problem. In Setion 4 we study the performaneof the GA via simulation and in Setion 5 the GA is applied to 2 test datasets that have been usedin the literature. The ase of a multivariate time series and an appliation is given in Setion 6.In Setion 7 we summarize our �ndings and disuss the relative merits of Auto-PARM and otherstrutural break detetion proedures. Finally, some theoretial results supporting our proedureare provided in the Appendix.2 MODEL SELECTION USING MINIMUM DESCRIPTIONLENGTH2.1 Derivation of MDLThis setion applies the MDL priniple to selet a best �tting model from the pieewise AR modellass de�ned by (1). Denote this whole lass of pieewise AR models as M and any model fromthis lass as F 2 M. In the urrent ontext the MDL priniple de�nes the \best" �tting modelfromM as the one that produes the shortest ode length that ompletely desribes the observeddata y = (y1; y2; : : : ; yn). Loosely speaking, the ode length of an objet is the amount of memoryspae that is required to store the objet. In the appliations of MDL, one lassial way to store yis to split y into two omponents: (i) a �tted model F̂ plus (ii) the portion of y that is unexplainedby F̂ . This latter omponent an be interpreted as the residuals, denoted by ê = y� ŷ, where ŷis the �tted vetor for y. If CLF (z) denotes the ode length of objet z using model F , one hasthe following deomposition CLF (y) = CLF (F̂) + CLF(êjF̂);6



where CLF(F̂) denotes the ode length of the �tted model F̂ and CLF(êjF̂) is the ode lengthof the orresponding residuals (onditional on the �tted model F̂). In short the MDL priniplesuggests that a best �tting pieewise AR model F̂ is the one that minimizes CLF(y).Now the task is to derive expressions for CLF(F̂) and CLF(êjF̂). We begin with CLF (F̂).Let nj := �j � �j�1 denote the number of observations in the j-th segment of F̂ . Sine F̂ isomposed of m, �j's, pj's and  ̂j's, we further deompose CLF (F̂) intoCLF (F̂) = CLF(m) + CLF(�1; : : : ; �m) + CLF(p1; : : : ; pm+1) + CLF( ̂1) + : : :+ CLF ( ̂m+1)= CLF(m) + CLF(n1; : : : ; nm+1) + CLF(p1; : : : ; pm+1) + CLF( ̂1) + : : :+ CLF( ̂m+1):The last expression was obtained by the fat that omplete knowledge of (�1; : : : ; �m) impliesomplete knowledge of (n1; : : : ; nm+1), and vie versa. In general, to enode an integer I whosevalue is not bounded, approximately log2 I bits are needed. Thus CLF(m) = log2m andCLF (pj) = log2 pj . On the other hand, if the upper bound, say IU , of I is known, approxi-mately log2 IU bits are required. Sine all nj's are bounded by n, CLF (nj) = log2 n for all j. Toalulate CLF ( ̂j), we use the following result of Rissanen: a maximum likelihood estimate ofa real parameter omputed from N observations an be e�etively enoded with 12 log2N bits.Sine eah of the pj + 2 parameters of  ̂j is omputed from nj observations,CLF ( ̂j) = pj + 22 log2 nj:Combining these results, we obtainCLF(F̂) = log2m+ (m+ 1) log2 n+ m+1Xj=1 log2 pj + m+1Xj=1 pj + 22 log2 nj: (3)Next we derive an expression for CLF(êjF̂); that is, the ode length for the residuals ê.From Shannon's lassial results in information theory, Rissanen demonstrates that the odelength of ê is given by the negative of the log likelihood of the �tted model F̂ . To proeed, let7



yj := (y�j�1 ; : : : ; y�j�1) be the vetor of observations for the j-th piee in (1). For simpliity, weonsider that �j , the mean of the j-th piee in (1), is 0. Denote the ovariane matrix of yj asV�1j = ovfyjg, and let V̂j be an estimate for Vj. Even though the "j's are not assumed to beGaussian, inferene proedures will be based on a Gaussian likelihood. Suh inferene proeduresare often referred to quasi-likelihood. Assumming the segments are independent, the Gaussianlikelihood of the pieewise proess is given byL(m; �0; �1; : : : ; �m; p1; : : : ; pm+1; 1; : : : ; m+1;y) = m+1Yj=1 (2�)�nj2 jVjj 12 expf�12yTj Vjyjg;and hene the ode length of ê given the �tted model F̂ isCLF(êjF̂) � � log2 L(m; �0; �1; : : : ; �m;  ̂1; : : : ;  ̂m+1;y)= m+1Xj=1 fnj2 log(2�) � 12 log jV̂j j+ 12yTj V̂jyjg log2 e: (4)Combining (3) and (4) and using logarithm base e rather than base 2, we obtain the followingapproximation for CLF (y) bylogm+ (m+ 1) log n+ m+1Xj=1 log pj + m+1Xj=1 pj + 22 lognj+ m+1Xj=1 fnj2 log(2�)� 12 log jV̂j j+ 12yTj V̂jyjg: (5)Using the standard approximation to the likelihood for AR models, i.e., �2 log(likelihood) bynj log �̂2j , where �̂2j is the Y-W estimate of �2j (Brokwell and Davis 1991), we de�neMDL(m; �1; : : : ; �m; p1; : : : ; pm+1) = logm+ (m+ 1) log n+ m+1Xj=1 log pj+ m+1Xj=1 pj + 22 log nj + m+1Xj=1 nj2 log(2��̂2j ) (6)We propose seleting the best �tting model for y as the model F 2 M that minimizesMDL(m; �1; : : : ; �m; p1; : : : ; pm+1). 8



2.2 ConsistenyTo this point, we have not assumed the existene of a true model for the time series. However,to study theoretial properties of these estimates, an underlying model must be spei�ed. Herewe assume that there exist true values m0 and �0j , j = 1; : : : ;m0, suh that 0 < �01 < �02 < � � � <�0m0 < 1. The observations y1; : : : ; yn are assumed to be a realization from the pieewise ARproess de�ned in (1) with �i = [�0in℄, i = 1; 2; : : : ;m0, where [x℄ is the greatest integer that isless than or equal to x. In estimating the break points �1; : : : ; �m0 , it is neessary to require thatthe segments have a suÆient number of observations to adequately estimate the spei�ed ARparameter values. Otherwise, the estimation is over-determined resulting in an in�nite value forthe likelihood. So, to ensure suÆient separation of the breakpoints, hoose � > 0 small suh that�� mini=1;:::;m0+1(�0i � �0i�1) and setAm = f(�1; : : : ; �m); 0 < �1 < �2 < : : : < �m < 1; �i � �i�1 � �; i = 1; 2; : : : ;m+ 1g;where �0 := 0 and �m+1 := 1. Setting � := (�1; : : : ; �m) and p = (p1; : : : ; pm+1), the parametersm, � and p are then estimated by minimizing MDL over m �M0, 0 � p � P0, and � 2 Am., i.e,m̂; �̂; p̂ = arg minm�M0;0�p�P0�2Am 2nMDL(m;�; p);where M0 and P0 are upper bounds for m and pj, respetively. In the appendix we prove thefollowing onsisteny result.Proposition 1 For the model spei�ed in (1), when m0, the number of break points is known,then �̂j ! �0j , a.s., j = 1; 2; : : : ;m0.In Proposition 1, the true number of breaks m0 is assumed known. As the simulation studiesin Setion 4 show, for unknown m0, the estimator m̂0 obtained with our proedure seems to be9



onsistent, although we do not have a proof. Even in the independent ase, the onsisteny of m̂0is known in only some speial ases (e.g., Lee 1997 and Yao 1988).3 OPTIMIZATION USING GENETIC ALGORITHMSAs the searh spae is enormous, optimization of MDL(m; �1; : : : ; �m; p1; : : : ; pm+1) is a nontrivialtask. In this setion we propose using a geneti algorithm (GA) to e�etively takle this problem.3.1 General DesriptionThe basi idea of the anonial form of GAs an be desribed as follows. An initial set, orpopulation, of possible solutions to an optimization problem is obtained and represented in vetorform. These vetors are often alled hromosomes and are free to \evolve" in the following way.Parent hromosomes are randomly hosen from the initial population and hromosomes havinglower (higher) values of the objetive riterion to be minimized (maximized) would have a higherhane of being hosen. Then o�spring are produed by applying a rossover or a mutationoperation to the hosen parents. One a suÆient number of suh seond generation o�spring areprodued, third generation o�spring are further produed from these seond generation o�springin a similar fashion. This proess ontinues for a number of generations. If one believes in Darwin'sTheory of Natural Seletion, the expetation is that objetive riterion values of the o�spring willgradually improve over generations and approah the optimal value.In a rossover operation, one hild hromosome is produed from \mixing" two parent hro-mosomes. The aim is to allow the possibility that the hild reeives di�erent best parts from itsparents. A typial \mixing" strategy is that every hild gene loation has an equal hane ofreeiving either the orresponding father gene or the orresponding mother gene. This rossoveroperation is the distint feature that makes geneti algorithms di�erent from other optimization10



methods. For possible variants of the rossover operation, onsult Davis (1991).In a mutation operation one hild hromosome is produed from one parent hromosome. Thehild is essentially the same as its parent exept for a small number of genes where randomnessis introdued to alter the types of genes. Suh a mutation operation prevents the algorithm frombeing trapped in loal optima.In order to preserve the best hromosome of a urrent generation, an additional step, alledthe elitist step, may be performed. Here the worst hromosome of the next generation is replaedwith the best hromosome of the urrent generation. Inlusion of this elitist step guarantees themonotoniity of the algorithm.There are many variations of the above anonial GA. For example, parallel implementationsan be applied to speed up the onvergene rate as well as to redue the hane of onvergingto sub-optimal solutions (Forrest 1991; Alba and Troya 1999). In this paper we implementthe Island Model. Instead of running only one searh in one giant population, the island modelsimultaneously runs NI (Number-of-Islands) anonial GAs in NI di�erent sub-populations. Thekey feature is, periodially, a number of individuals are migrated amongst the islands aording tosome migration poliy. The migration an be implemented in numerous ways (Martin, Lienig andCohoon 2000; Alba and Troya 2002). In this paper, we adopt the following migration poliy: afterevery Mi generations, the worst MN hromosomes from the j-th island are replaed by the bestMN hromosomes from the (j� 1)-th island, j = 1; : : : ; NI. For j = 1 the best MN hromosomesare migrated from the NI-th island. In our simulations we used NI = 40, Mi = 5, MN = 2 anda sub-population size of 40.
11



3.2 Implementation DetailsThis subsetion provides details of our implementation of the GAs that is tailored to our pieewiseAR model �tting.Chromosome Representation: The performane of a geneti algorithm ertainly depends onhow a possible solution is represented as a hromosome, and for the urrent problem a hromosomeshould arry omplete information for any F 2 M. That is, the break points �j's as well asthe AR orders pj's. One these quantities are spei�ed, maximum likelihood estimates of othermodel parameters an be uniquely determined. Here we propose using the following hromosomerepresentation: a hromosome Æ = (Æ1; : : : ; Æn) is of length n with gene values Æt de�ned asÆt = 8>><>>: �1; if no break point at t,pj; if t = �j�1 and the AR order for the j-th piee is pj.Furthermore, the following \minimum span" onstraint is imposed on Æ: say if the AR orderof a ertain piee in F is p, then this piee is made to have at least mp observations. Thisprede�ned integer mp is hosen to guarantee that there are enough observations for obtainingquality estimates for the parameters of the AR(p) proess. Also, in the pratial implementationof the algorithm, one needs to impose an upper bound P0 on the order pj's of the AR proesses.There seems to be no universal hoie for P0, as for ompliated series one needs a large P0 toapture for example seasonality, while for small series P0 annot be larger than the number ofobservations n. For all our numerial works we set P0 = 20, and the orresponding minimumspan mp's are listed in Table 1.Table 1: Values of mp used in the simulations.p 0-1 2 3 4 5 6 7-10 11-20mp 10 12 14 16 18 20 25 50Our empirial experiene suggests that the above representation sheme, together with theminimum span onstraint, is extremely e�etive for the purpose of using GAs to minimize12



MDL(m; �1; : : : ; �m; p1; : : : ; pm+1). It is most likely due to the fat that the loation informa-tion of the break points and the order of the AR proesses are expliitly represented.Initial Population Generation: Our implementation of the GA starts with an initial populationof hromosomes generated at random. For this proedure, the user value �B, the probability thatthe \j-th loation" of the hromosome being generated be a break point is needed. A largevalue of �B makes the initial hromosomes to have a large number of break points, thus a smallvalue is preferred. We use �B = min(mp)=n = 10=n (in Setion 4 a sensitivity analysis for thisparameter is given). One a loation is delared to be a break, an AR order is seleted from theuniform distribution with values 0, 1,: : :, P0. The following strategy was used to generate eahinitial hromosome. First, selet a value for p1 from f0; : : : ; P0g with equal probabilities and setÆ1 = p1; i.e., the �rst AR piee is of order p1. Then the next mp1 � 1 genes Æi's (i.e., Æ2 to Æmp1 )are set to �1, so that the above minimum span onstraint is imposed for this �rst piee. Nowfor the next gene Æmp1+1 in line. It will either be initialized as a break point (i.e., assigned anon-negative integer p2) with probability �B, or it will be assigned �1 with probability 1 � �B .If it is to be initialized as a break point, then we set Æmp1+1 = p2, where p2 is randomly drawnfrom f0; : : : ; P0g. This implies that the seond AR proess is of order p2, and the next mp2 � 1Æi's will be assigned �1 so that the minimum span onstraint is guaranteed. On the other hand,if Æmp1+1 is to be assigned with �1, the initialization proess will move to the next gene in lineand deide if this gene should be a break point gene or a \�1" gene. This proess ontinues in asimilar fashion, and a random hromosome is generated when the proess hits the last gene Æn.Crossover and Mutation: One a set of initial random hromosomes is generated, new hro-mosomes are generated by either a rossover or a mutation operation. In our implementation weset the probability for onduting a rossover operation as �C = 1�min(mp)=n = (n� 10)=n.For the rossover operation, two parent hromosomes are hosen from the urrent population13



of hromosomes. These two parents are hosen with probabilities inversely proportional to theirranks sorted by their MDL values. In other words, hromosomes that have smaller MDL valueswill have higher hanes to be seleted. From these two parents, the gene values Æi's of the hildhromosome will be inherited in the following manner. Firstly for t = 1, Æt will take on theorresponding Æt value from either the �rst or the seond parent with equal probabilities. If thisvalue is �1, then the same gene{inheriting proess will be repeated for the next gene in line (i.e.,Æt+1). If this value is not �1, then it is a non-negative integer pj denoting the AR order of theurrent piee. In this ase the minimum span onstraint will be imposed (i.e., the next mpj � 1Æt's will be set to �1), and the same gene{inheriting proess will be applied to the next availableÆt. For mutation one hild is reprodued from one parent. Again, this proess starts with t = 1,and every Æt (subjet to the minimum span onstraint) an take on one of the following threepossible values: (i) with probability �P it will take the orresponding Æt value from the parent,(ii) with probability �N it will take the value �1, and (iii) with probability 1 � �P � �N , it willtake the a new randomly generated AR order pj. In this paper we set �P = 0:3 and �N = 0:3.Delaration of Convergene: Reall that we adopt the Island Model in whih migration isallowed for every Mi = 5 generations. At the end of eah migration the overall best hromosome(i.e., the hromosome with smallest MDL) is noted. If this best hromosome does not hange for10 onseutive migrations, or the total number of migrations exeeds 20, this best hromosome istaken as the solution to this optimization problem.4 SIMULATION RESULTSFive sets of simulation experiments were onduted to evaluate the pratial performanes of Auto-PARM. The experimental setups of the �rst two simulations are taken from Ombao et al. (2001),14



for whih the authors use them to test their Auto-SLEX proedure. In the �rst simulation, thepiees of the true proess follow a dyadi struture; i.e., the length of eah segment is a integerpower of 2. In the seond and fourth simulations the true proess does not ontain any struturalbreaks, but its time-varying spetrum hanges very slowly over time. In the third simulation theproess ontains three piees, one of whih is an ARMA(1,1) proess and another is a MA(1)proess. In the last simulation the proess has two distintive features: the piees do not followa dyadi struture and the length of one of the piees is very short.For the results reported in this setion and in Setion 5, we obtained slightly better results byminimizing MDL based on the exat likelihood funtion evaluated at Yule-Walker estimates. Thatis, MDL as de�ned by (5) was used in all of the simulation results in this setion. Throughoutthe whole setion, results reported for Auto-SLEX were obtained using omputer ode providedby Dr. Hernando Ombao.4.1 Pieewise Stationary Proess with Dyadi StrutureIn this simulation example, the target non-stationary series is generated with the following modelYt = 8>>>>>><>>>>>>: 0:9Yt�1 + "t; if 1 � t � 512,1:69Yt�1 � 0:81Yt�2 + "t; if 513 � t � 768,1:32Yt�1 � 0:81Yt�2 + "t; if 769 � t � 1024, (9)where "t � iid N(0; 1). The main feature of this model is that the lengths of the piees are apower of 2. This is in fat ideally suited for the Auto-SLEX proedure of Ombao et al. (2001). Atypial realization of this proess is shown in Figure 1. For ! 2 [0; 0:5), let fj(!) be the spetrumof the j-th piee, i.e.,fj(!) = �2j j1� �j1 expf�i2�!g � : : :� �jpj expf�i2�pj!gj2; (10)
15



then for t 2 [�j�1; �j), the time-varying spetrum of the proess Yt in (1) is f(t=n; !) = fj(!).The true spetrum of the proess in (9) is shown in the middle panel of Figure 2, where darkershades represent higher power.
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Figure 1: A realization from the pieewise stationary proess in (9).We applied Auto-PARM to the realization in Figure 1 and obtained two break points loatedat �̂1 = 512 and �̂2 = 769, indiated by the dotted vertial lines in the �gure. The Auto-PARM orretly identi�ed the AR orders (p̂1=1, p̂2=2 and p̂3=2) for this realization. From thissegmentation, the time varying spetrum of this realization was estimated as f̂t=n(!) = f̂j(!),where f̂j(!) is obtained by replaing parameters in (10) with their orresponding estimates . Theestimated time varying spetrum is displayed in the left panel of Figure 2. Our implementationof Auto-PARM, whih is written in Compaq Visual Fortran, took 2.34 seonds on a 1.6 Ghz intelpentium M proessor to obtain the above estimates. The Auto-SLEX time varying spetrum ofthis realization is shown in the panel on the right of Figure 2.Next, 200 realizations of the proess in (9) were simulated and Auto-PARM was applied tosegment eah of these realizations. Table 2 lists the perentages of the �tted number of segments.For omparative purposes, the orresponding values of the Auto-SLEX method are also listed.Notie that Auto-PARM gave the orret number of segments for 96% of the 200 realizations,16
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Figure 2: True time-varying log-spetrum of proess in (9) and Auto-PARM and Auto-SLEX estimatesfrom the realization of Figure 1.while Auto-SLEX gave the orret segmentation for 73% of the realizations. Table 2 also reports,for eah m̂, the mean and standard deviation of �̂j := (�̂j � 1)=n, j = 2; : : : ; m̂, where �̂j is theAuto-PARM estimate of �j. For onveniene we will refer to �̂j as a relative break point.Table 3 lists the relative frequenies of the AR order p estimated by the Auto-PARM proedurefor the 96% of the realizations with 3 piees. Of the 200 realizations, 44% have two breaks andAR orders 1, 2 and 2, respetively. For these realizations, the means and the standard errors ofthe estimated parameters �1,: : :, �pj , �2j are shown in Table 4. From these tables one an seethat the pratial performane of Auto-PARM applied to the above pieewise stationary proessperforms extremely well, espeially for loating the break points.Sensitivity AnalysisWe also onsidered the sensitivity of the GA to the probabilities of initialization (�B) and rossover17



Table 2: Summary of the estimated break points from both the Auto-SLEX and Auto-PARM proeduresfor the proess (9). For Auto-PARM the means and standard errors of the relative break points are alsoreported. Number Auto-SLEX Auto-PARMof break points break pointssegments (%) ASE (%) mean std ASE2 2.5 0.396 0.0(0.019)3 73.0 0.121 96.0 0.500 0.007 0.049(0.027) 0.750 0.005 (0.030)4 11.0 0.146 4.0 0.496 0.004 0.140(0.040) 0.566 0.108 (0.036)0.752 0.0035 9.5 0.206 0.0(0.045)� 6 4.0 0.253 0.0(0.103)All 100.0 0.144 100.0 0.052(0.064) (0.035)Table 3: Relative frequenies of the AR order estimated by the Auto-PARM proedure for the realizationsof model (9). Order 0 1 2 3 4 5 6 � 7p1 0 99.0 1.0 0 0 0p2 0 0 67.7 16.7 9.9 3.6 0.5 1.5p3 0 0 60.4 22.9 5.7 6.8 2.1 2.1(�C). To assess the sensitivity, Auto-PARM was applied to the same realizations used in Table 2for eah ombination of values of �B 2 f0:01; 0:1g and �C = f0:90; 0:99g. The others parametervalues in the implementation of Auto-PARM are as desribed in Setion 3.The relative frequeny of the number of break points estimated by Auto-PARM is shown inTable 5 (olumns 4 and 5). For the repliates with 3 piees, the mean of the break points andstandard errors are shown in olumns 6 and 7, respetively. The frequeny of the orret ARorder estimated by Auto-PARM for eah piee is shown in olumns 8, 9 and 10. The average ofthe MDL values and the standard error are shown in the last two olumns. The olumn labeled18



Table 4: Summary of parameter estimates obtained by Auto-PARM for the realizations that have 2 breaksand piees with orders 1, 2 and 2, respetively. For eah segment, the true parameters, the mean and thestandard errors (in parenthesis) are shown. ParameterSegment Model �1 �2 �2I AR(1) true 0.90 1.00mean 0.89 1.02(0.02) (0.07)II AR(2) true 1.69 -0.81 1.00mean 1.65 -0.78 1.12(0.05) (0.05) (0.19)III AR(2) true 1.32 -0.81 1.00mean 1.30 -0.79 1.07(0.04) (0.04) (0.13)time shows the average time in seonds to implement Auto-PARM.Table 5: Sensitivity analysis (NI� popsize = 40 � 40). Summary of sensitivity analysis of �B and �C ofAuto-PARM based on 200 realizations of (9).Number of Auto-PARM AR orderbreaks (%) Break points p̂1 p̂2 p̂3�B �C time 2 3 mean std 1 2 2 MDL0.01 0.90 14.97 91.5 8.5 0.500 0.008 99.5 57.4 60.1 1520.450.749 0.0070.01 0.99 3.0 95.5 4.5 0.499 0.009 99.5 56.5 60.2 1520.560.750 0.0070.10 0.90 16.85 95.5 4.5 0.499 0.010 98.4 53.4 53.4 1519.410.750 0.0080.10 0.99 4.9 94.5 5.5 0.499 0.008 97.9 57.1 57.1 1519.220.750 0.007From Table 5, we see that distint values of �B and �C give omparable values of MDL.Notie that Auto-PARM runs the fastest for the values seleted for �B and �C in Setion 3, i.e.�B = min(mp)=n and �C = 1�min(mp)=n. As seen from this table, there is little impat on thehoie of initial values for �B and �C in exeuting Auto-PARM.
19



4.2 Slowly Varying AR(2) ProessThe true model onsidered in this seond simulation experiment does not possess a struturalbreak. Rather, the proess has a slowly hanging spetrum given by the following time-dependentAR(2) model Yt = atYt�1 � 0:81Yt�2 + "t; t = 1; 2; : : : ; 1024; (11)where at = 0:8f1 � 0:5 os(�t=1024)g and "t � iid N(0; 1). A typial realization of this proess isshown in Figure 3, while the spetrum of this proess is shown in the middle panel of Figure 5.
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Figure 3: Realization from the proess in (11).For the realization in Figure 3, the Auto-PARM proedure segmented the proess into threepiees with break points loated at �̂1 = 318 and �̂2 = 614 (vertial dotted lines in this �gure).Also, eah of the three piees was modeled as an AR(2) proess. The run time for this �ttingwas 1.79 seonds. Based on the model found by Auto-PARM, the time-varying spetrum ofthis realization was omputed and is shown in the left panel of Figure 4. Also, the Auto-SLEXtime-varying spetrum of this realization is shown in the right panel of this �gure.Next we generated 200 realizations of the above proess, and the orresponding Auto-PARMestimates were obtained. Sine there are no true strutural breaks in suh realizations, we followOmbao et al. (2001) and use the average squared error as a numerial error measure of perfor-20
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Figure 4: Auto-PARM and Auto-SLEX estimates of log-spetrum of proess in (11) for the realizationfrom Figure 3.mane. The ASE is de�ned byASE = fn(MJ=2 + 1)g�1 nXt=1 MJ=2Xk=0 flog f̂(t=n; !k)� log f(t=n; !k)g2;where f̂(�; �) is an estimate of the true time-dependent spetrum f(�; �) of the proess, J is apre-spei�ed sale satisfying J < L = log2(n) and MJ := n=2J (see equation (19) in Ombao etal. 2001). In this simulation we took J = 4.The number of segments, loations of the break points and the ASEs of the Auto-PARMestimates are summarized in Table 6. Also listed in Table 6 are the ASE values of the Auto-SLEXproedure. From Table 6 the following two main observations an be made. First, for eah of thesimulated proesses, Auto-PARM produes either two or three segments that are of roughly thesame length, while the Auto-SLEX proedure tends to split the proess into a larger number ofsegments. Seond, the ASE values of Auto-PARM are smaller than those from Auto-SLEX.In order to show a \onsisteny" like property of Auto-PARM, we omputed the average of21



Table 6: Break points and ASEs values from the Auto-PARM and the Auto-SLEX estimates omputedfrom 200 realizations of (11). Numbers inside parentheses are standard errors of the ASE values.Number Auto-SLEX Auto-PARMof break pointssegments (%) ASE (%) mean std ASE1 0.0 - 0.0 - - -2 40.5 0.191 37.5 0.496 0.055 0.129(0.019) (0.015)3 37.0 0.171 62.0 0.365 0.074 0.081(0.022) 0.662 0.079 (0.016)4 15.0 0.174 0.5 0.308 - 0.10(0.029) 0.538 - -0.875 -5 5.0 0.202(0.045)� 6 2.5 0.223(0.037)All 100.0 0.182 100.0 0.099(0.027) (0.028)all the time-varying spetra of the 200 Auto-PARM and Auto-SLEX estimates. The averagedAuto-PARM spetrum is displayed in the left panel of Figure 5 and looks remarkably similar tothe true time varying spetrum. Also the averaged Auto-SLEX spetrum is shown in the rightpanel of this �gure. Lastly in Table 7 we summarize the Auto-PARM estimates of the AR ordersfor the above proess. Notie that most of the segments were modeled as AR(2) proesses.Table 7: Relative frequenies of the AR order seleted by Auto-PARM for the realizations from theproess (11). Order 0 1 2 3 4 � 52-segment realizationsp1 0 0 97.3 1.3 1.3 0p2 0 0 93.3 5.3 1.3 03-segment realizationsp1 0 0 100.0 0 0 0p2 0 0 94.4 4.8 0.8 0p3 0 0 91.1 8.1 0.8 0
22
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Figure 5: True time-varying log-spetrum of proess in (11) (enter) and Auto-PARM and Auto-SLEXlog-spetrum estimate (average of log-spetrum estimates obtained from 200 realizations).4.3 Pieewise ARMA proessReall that the Auto-PARM proedure assumes the observed proess is omposed of a series ofstationary AR proesses. This third simulation, designed to assess the performane of Auto-PARM when the AR assumption is violated, has data generating model given byYt = 8>>>>>><>>>>>>: �0:9Yt�1 + "t + 0:7"t�1; if 1 � t � 512,0:9Yt�1 + "t; if 513 � t � 768,"t � 0:7"t�1; if 769 � t � 1024, (12)where "t � iid N(0; 1). Notie that the �rst piee is an ARMA(1,1) proess while the last piee isa MA(1) proess. A typial realization of this proess is shown in Figure 6.The Auto-PARM proedure was applied to the realization in Figure 6. Three piees wereobtained. The break points are at �̂1 = 513 and �̂2 = 769 (dotted vertial lines in this �gure),23



Table 8: Summary of parameter estimates of slowly varying AR(2) proess realizations segmented byAuto-PARM as two and three piees, where eah piee is an AR(2) proess. For eah segment, the trueparameters, their mean and standard deviation (in parenthesis) are shown.Parameterj-th piee �1 �2 �22-piee realizations with AR(2) piees: 681 true -0.81 1.00mean 0.54 -0.79 1.05std (0.04) (0.03) (0.07)2 true -0.81 1.00mean 1.05 -0.79 1.05std (0.04) (0.03) (0.07)3-piee realizations with AR(2) piees: 1061 true -0.81 1.00mean 0.46 -0.80 1.03std (0.06) (0.03) (0.08)2 true -0.81 1.00mean 0.82 -0.81 1.01std (0.08) (0.04) (0.10)2 true -0.81 1.00mean 1.14 -0.80 1.06std (0.05) (0.04) 0.10
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Figure 6: A realization from the pieewise stationary proess in (12).while the order of the AR proesses are 4, 1 and 2 respetively. The total run time for this �twas 1.53 seonds. The time-varying spetrum (not shown here) based on the model found byAuto-PARAM is reasonable lose to the true spetrum (not shown here) even though two of thesegments are not AR proesses.To assess the large sample behavior of Auto-PARM, 200 realizations from (12) were generated,24



and the orresponding Auto-PARM estimates were obtained. An enouraging result is that forall 200 realizations, Auto-PARM always gave the orret number of stationary segments. Theestimates of the break point loations are summarized in Table 9. In Table 10 we show the relativefrequeny of the AR order pj seleted to model the piees of the realizations. As expeted, quiteoften large AR orders were seleted for the ARMA and MA segments.Table 9: Summary of Auto-PARM estimated break points obtained from 200 realizations from the proessin (12). Number relative break pointsof segments % mean std3 100.0 0.50 0.0050.75 0.003Table 10: Relative frequenies of the AR order seleted by Auto-PARM for the realizations from theproess (12). Order 0 1 2 3 4 5 6 7 � 8p1 0 4.0 22.5 40.0 23.5 8.5 1.0 0.5 0p2 0 89.5 8.5 1.5 0.5 0 0 0 0p3 0 0.5 22.0 45.0 19.5 7.5 4.5 1.0 04.4 Time varying MA(2) proessLike the example in Setion 4.2, the true model onsidered in this last simulation experimentdoes not possess a strutural break. Rather, the proess has a hanging spetrum given by thefollowing time-dependent MA(2) modelYt = "t + at"t�1 + 0:5"t�2; t = 1; 2; : : : ; 1024; (13)where at = 1:122f1�1:781 sin(�t=2048)g and "t � iid N(0; 1). A typial realization of this proessis shown in Figure 7, while the spetrum of this proess is shown on the left panel of Figure 9.For the realization in Figure 7, the Auto-PARM proedure segmented it into four AR pieesof orders 5, 3, 5, and 3, respetively with break points loated at �̂1 = 109, �̂2 = 307, and �̂3 = 712(vertial dotted lines in this �gure). The run time for this model �t was 3.76 seonds. Based on25



1 200 400 600 800 1000

-2
0

2
4

Figure 7: Realization from the proess in (13).the model found by Auto-PARM, the time-varying spetrum of this realization is shown in theleft panel of Figure 8. For omparison, the Auto-SLEX time-varying spetrum estimate of thisrealization is shown in the right panel of this �gure.
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Figure 8: Auto-PARM and Auto-SLEX estimates of log-spetrum of proess in (13) for the realizationfrom Figure 7.Next we generated 200 realizations of the above proess, and the orresponding Auto-PARM26



Table 11: Summary of the estimated break points from both the Auto-SLEX and Auto-PARM proeduresfor the proess (13). For Auto-PARM the means and standard errors of the relative break points are alsoreported. Numbers inside parentheses are standard errors of the ASE values.Number Auto-SLEX Auto-PARMof break points break pointssegments (%) ASE (%) mean std ASE2 - - 3.0 0.374 0.040 0.307(0.023)3 3.5 0.187 89.0 0.238 0.072 0.211(0.027) 0.548 0.089 (0.029)4 6.5 0.157 8.0 0.156 0.045 0.182(0.017) 0.391 0.062 (0.021)0.667 0.0935 15.5 0.170(0.028)6 17.0 0.163(0.025)7 20.0 0.158(0.030)8 15.0 0.180(0.029)9 11.5 0.203(0.032)� 10 11.0 0.223(0.035)All 100.0 0.18 0.211(0.036) (0.034)estimates were obtained. The number of segments, loations of the break points and the ASEs ofthe Auto-PARM estimates are summarized in Table 11.From this Table we observe that for most of the realizations Auto-PARM produes threesegments. We omputed the average of all the time-varying spetra of the 200 Auto-PARMestimates, the averaged spetrum is displayed in the right panel of Figure 9 and the average of the200 Auto-SLEX estimates of the time-varying spetra is shown in the right panel of this �gure.The true spetrum in Figure 9 is well estimated by Auto-PARM and Auto-SLEX. Remarkably,Auto-PARM estimates well the true spetrum, in spite of the fat that it splits the realizationsin fewer piees than Auto-SLEX.In Table 12 we summarize the Auto-PARM estimates of the AR orders for the above proess27
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Figure 9: Left: True time-varying log-spetrum of proess in (13) (enter) and Auto-PARM and Auto-SLEX log-spetrum estimate (average of log-spetrum estimates obtained from 200 realizations.for those realizations with 3 piees. In general, the segments were modeled as AR proesses ofhigh order.Table 12: Relative frequenies of the AR order seleted by Auto-PARM for the realizations (with 3segments) from the proess (13).Order 1 2 3 4 5p1 10.0 40.0 20.0 20.0p2 40.0 20.0 30.0p2 10.0 10.0 70.0 10.04.5 Short segmentsTo omplement the above simulation experiments, we assess in this subsetion the performaneof Auto-PARM with the following proess ontaining a short segment,Yt =8>><>>: 0:75Yt�1 + "t; if 1 � t � 50,�0:50Yt�1 + "t; if 51 � t � 1024, (14)where "t � iid N(0; 1). A typial realization of this proess is shown in Figure 10. For the28



1 200 400 600 800 1000

-4
-2

0
2

Figure 10: A realization from the pieewise stationary proess in (14).realization in Figure 10, Auto-PARM gives a single break point at �̂1 = 51 whih is shown as thevertial dotted line in Figure 10. Both piees are modeled as AR(1) proesses. The run time forthis realization was 2.70 seonds.The Auto-PARM proedure was further applied to 200 realizations of this proess. For all ofthese realizations Auto-PARM found one break point. The mean of the relative position estimatesof this hange point is 0.042 (true value is 0.049) with a standard error of 0.004. The minimum,median and maximum of the break points are 34, 51 and 70, respetively. In Table 13, the relativefrequeny of the orders p1 and p2 of eah of the two piees seleted by Auto-PARM are shown.The Auto-PARM proedure segmented orretly 92.5% of the realizations (2 AR piees of orders1). This is exeptional performane for a proess in whih the break ours near the beginning ofthe series.Table 13: Relative frequenies of the AR order seleted by Auto-PARM for the realizations from theproess (14). Order 0 1 2 3 � 4p1 0.0 96.0 3.0 0.5 0.0p2 0.0 96.0 4.0 0.0 0.0
29



Table 14: Summary of parameter estimates of the realizations of the proess in (14) segmented orretlyby Auto-PARM (92.5%) as two piees, where eah piee is an AR(1) proess. For eah segment, the trueparameters, their mean and standard deviation (in parenthesis) are shown.1st piee 2nd pieeparameter �1 �2 �1 �2true 0.75 1.00 -0.50 1.00mean 0.66 1.05 -0.50 1.00std (0.11) (0.23) (0.03) (0.04)4.6 Further remarks on estimated breaksAs seen in the simulations from Setions 4.1 and 4.5, when the true unknown piees are indeedAR proesses, Auto-PARM an detet hanges in order and in parameters. Let us onsider forexample the proess in Setion 4.1 where the �rst piee is an AR proess of order 1 and the seondpiee is of order 2. In this ase, Auto-PARM deteted the hange of order reasonably well (seeTable 3). On the other hand, the seond and third piees of this proess have the same order2 with di�erent parameter values. Also, the two piees of the proess in Setion 4.5 have alsothe same order 1. Tables 3 and 13 show the Auto-PARM does a good job in deteting hange ofparameter values. The parameter estimates of both proesses, given in Tables 4 and 8 respetively,show how well Auto-PARM also performs for parameter estimation.The simulation in Setion 4.3 is an example of a proesses that is not a piee-wise ARproesses. In this ase, the �rst piee is an ARMA(1,1) proess and the third piee is a MA(1)proess. Auto-PARM approximates both the ARMA and MA piees with AR proesses perhapsof a large order. The fat that it did exeptionally well in deteting the breaks of this proess(see Table 9) is not surprising, sine for general stationary proess, its spetral density an bewell approximated by the spetrum of an AR proess under the assumption of ontinuity of thespetral density (see, for example, Theorem 4.4.3, Brokwell and Davis 1991). The Auto-PARMproedure an then be interpreted as a method for segmenting pieewise stationary proesses. Inthis example, the breaks Auto-PARM found are points where the spetrum has \large" hanges.30



5 APPLICATIONS5.1 Seat Belt LegislationIn the hope of reduing the mean number of monthly \deaths and serious injuries", seat-beltlegislation was introdued in UK on February 1983. Displayed in the left panel of Figure 11 is atime series fytg120t=1, beginning in January 1975, showing the monthly number of deaths and seriousinjuries. In order to remove the seasonal omponent of fytg, Brokwell and Davis (2002) onsiderthe di�erened time series xt = yt � yt�12, and analyze fxtg with a regression model with errorsfollowing an ARMA model. The Auto-PARM proedure, when applied to the di�erened series
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Figure 11: (a) Left panel. Monthly deaths and serious injuries on UK roads. (b) Right panel. Transformedseat belt legislation time series. The vertial lines are �̂1 and �̂2, respetively. The dotted horizontal line isthe estimated mean of the i-th segment.fxtg, segmented the series into three piees with break points at �̂1 = 86 and �̂2 = 98. The �rsttwo piees are iid and the last piee is an AR proess of order 1. On the right panel of Figure 11the di�erened time series fxtg, along with the estimated means of eah piee, are shown. Fromthe Auto-PARM �t one an onlude that there is a strutural hange in the time series fytg afterFebruary 1983, whih oinides with the time of introdution of the seat belt legislation.
31



5.2 Speeh SignalThe Auto-PARM proedure was applied to analyze a human speeh signal whih is the reordingof the word \greasy". This signal ontains 5762 observations and is shown at the top panel ofFigure 12. This non-stationary time series was also analyzed by the Auto-SLEX proedure ofOmbao et al. (2001). The Auto-PARM �t of this speeh signal resulted in 15 segments. The total
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Figure 12: Top panel: Speeh signal. Bottom panel: GA estimate of the time-varying log spetrum.run time was 18.02 seonds. The time-varying log spetrum obtained with this �t is shown atthe bottom panel of Figure 12. From this �gure, one an see that the signal is roughly dividedin segments that orrespond to \G", \R", \EA", \S", and \Y". The information onveyed inthis �gure losely mathes that from Ombao et al. (2001). The spetrum from those piees thatorrespond to \G" have high power at the lowest frequenies. The piees that orrespond to\R" show power at frequenies slightly above that for \G". The piees that orrespond to \EA"show the evolution of power from lower to higher frequenies. The piees that orrespond to \S"32



have high power at high frequenies. Notie that the Auto-PARM proedure breaks this speehsignal into a smaller number of piees than the Auto-SLEX proedure while still apturing theimportant features in the spetrum.6 MULTIVARIATE TIME SERIESIn this setion we demonstrate how Auto-PARM an be extended to model multivariate timeseries. In Subsetion 6.1 the MDL of a pieewise multivariate autoregressive proess is obtainedand in Subsetion 6.2 Auto-PARM is exempli�ed to a bivariate time series.6.1 MDLLet fYtg be a multivariate time series with r omponents, and assume that there are breakpoints �0 := 1 < �1 < : : : < �m < n + 1 for whih the j-th piee Yt = Xt;j, �j�1 � t < �j ;j = 1; 2; : : : ;m+ 1 is modeled by a multivariate AR(pj) proessXt;j = j +�j1Xt�1;j + : : :+�j;pjXt�pj ;j +�j 1=2j Zt; �j�1 � t < �j; (15)where the noise sequene fZtg is iid with mean 0 and ovariane matrix I. The (unknown) ARmatrix oeÆients and ovariane matries are of dimension r � r. Let M be the set of possiblesolutions for all the possible values of m; �1; : : : ; �m; p1; : : : ; pm. Let y1; : : : ;yn be a realization offYtg. Parameter estimates in model (15) an be obtained using Whittle's algorithm (e.g., seeBrokwell and Davis 1991). From (6), we haveMDL(m; �1; : : : ; �m; p1; : : : ; pm+1) = logm+ (m+ 1) log n+ m+1Xj=1 log pj+m+1Xj=1 3r + 2pjr2 + r24 log nj � m+1Xj=1 logL(�̂j;1; : : : ; �̂j;pj ; �̂j );where L(�̂j;1; : : : ; �̂j;pj ; �̂j ) is the likelihood of the j-th piee evaluated at the parameter estimates.As in the univariate ase, the best segmentation of the realization y1; : : : ;yn of fYtg is de�ned33



as the minimizer of MDL(m; �1; : : : ; �m; p1; : : : ; pm+1). A similar GA an be developed for thepratial minimization of MDL(m; �1; : : : ; �m; p1; : : : ; pm+1).6.2 EEG analysisFigure 13 displays two eletroenephalograms (EEGs) eah of length n = 32768 reorded froma female patient who was diagnosed with left temporal lobe epilepsy. This data set is ourtesyof Dr. Beth Malow (formerly from the Department of Neurology at the University of Mihigan).The top panel is the EEG from the left temporal lobe (T3 hannel) while the bottom panel is the
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Figure 13: (Bivariate EEG) Eletroenephalograms of length n = 32768 at hannels T3 (top) and P3(bottom) from a patient diagnosed with left temporal lobe epilepsy (ourtesy of Dr. Beth Malow, formerlyfrom the Deptarment of Neurology at the University of Mihigan).EEG from the left parietal lobe (P3 hannel). Eah EEG was reorded for a total of 5 minutesand 28 seonds with a sampling rate of 100 Hz. Of primary interest is the estimation of thepower spetra of both EEGs and the oherene between them. One way of solving this problemis by segmenting the time series into stationary AR piees (e.g., Gersh 1970; Jansen, Hasman,34



Lenten, and Visser 1979; Ombao et al. 2001; Melkonian, Blumenthal and Meares 2003). Themultivariate Auto-PARM proedure desribed above was applied to this bivariate time series,and the break point loations and the AR orders of the resulting �t are shown in Table 15. Notiethat the multivariate implementation of Auto-PARM estimated the starting time for seizure forthis epilepti episode at t = 185:8 seonds, in extremely lose agreement with the neurologist'sestimate of 185 seonds. In Figure 14, the estimated spetrums for the hannel T3 (top panel) andhannel P3 (bottom panel) based on the Auto-PARM �t in Table 15 are displayed. The estimatesare lose to those obtained in Ombao et al. (2001) and similar onlusions an be drawn. Forexample, prior to seizure, power was onentrated at lower frequenies. During seizure, powerwas spread to all frequenies, while towards the end of seizure, the onentration of power slowlyrestored to lower frequenies.Table 15: GA segmentation of the bivariate time series from Figure 13. �̂j is given in seonds.j0 1 2 3 4 5 6 7 8 9 10 11�̂j 1 185.8 189.6 206.1 220.9 233.0 249.0 261.6 274.6 306.0 308.4 325.8p̂j 17 14 5 8 7 3 3 4 10 4 1 1In Figure 15, the Auto-PARM estimate of the oherene between the T3 and P3 time serieshannels is shown. Again, this estimate is lose to the estimate obtained in Ombao et al. (2001).7 CONCLUSIONSIn this paper we provided a proedure to analyze a non-stationary time series by breaking it inpiees that are modeled as autoregressive proesses. The best segmentation is obtained by mini-mizing a MDL riterion of the set of possible solutions via the geneti algorithm (our proeduredoes not make any restritive assumptions on this set). The order of the autoregressive proessand the estimates of the parameters of this proess is a byprodut of this proedure. As seen35
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Figure 14: Estimate of the Time-varying log spetra of the EEGs from Figure 13. Top: T3 hannel.Bottom: P3 hannel.

Time in seconds

Fre
qu

en
cy 

(He
rtz

)

1 50 100 150 200 250 300

0
10

20
30

40
50

Figure 15: Estimated oherene between the EEGs shown in Figure 13.in the simulation experiments, the rate in whih this proedure segments orretly a piee-wisestationary proess is high. Also, the \quality" of the estimated time-varying spetrum obtainedwith the results of our method is quite good.
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APPENDIX: TECHNICAL DETAILSIn this Appendix we show the onsisteny of �̂j=n; j = 1; : : : ;m, when m, the number of breaksis known. Throughout this setion we denote the true value of a parameter with a \0" super-sript (exept for �2j ). Preliminary results are given in Propositions A.2{A.4 and onsisteny isestablished in Proposition A.5.Set � := (�1; : : : ; �m) and p = (p1; : : : ; pm+1). Sine m is assumed known, for our asymptotiresults notie that (6) an be rewritten in the ompat form2MDL(�; p)=n = 2(m+ 1)n log(n) + m+1Xj=1 pj + 2n lognj + m+1Xj=1 njn log(�̂2j ) + o(1):Proposition A.2 Suppose fXtg is a stationary ergodi proess with EjXtj < 1, then, withprobability 1, the proess Sn(s) = 1n [ns℄Xt=1 Xt;onverges to the proess sEX1 on the spae D[0; 1℄.Proof. The argument relies on repeated appliation of the ergodi theorem. Let Q [0;1℄ be the setof rational numbers in [0,1℄. For r 2 Q [0;1℄ ,1n [nr℄Xt=1 Xt ! rEX1; a.s. (A.1)If Br is the set of !'s for whih (A.1) holds, setB = \r2Q[0;1℄ Br;and note P (B) = 1. Moreover, for ! 2 B and any s 2 [0; 1℄, hoose r1; r2 2 Q [0;1℄ , suh thatr1 � s � r2. Hene, j 1n [ns℄Xt=1 Xt � 1n [nr1℄Xt=1 Xtj � 1n [nr2℄Xt=[nr1℄ jXtj ! (r2 � r1)EjX1j:37



By making jr2 � r1j arbitrarily small, it follows from the ergodi theorem that1n [ns℄Xt=1 Xt ! sEX1:To establish onvergene on D[0; 1℄, it suÆes to show for ! 2 B1n [ns℄Xt=1 Xt ! sEX1; uniformly on [0,1℄:Given � > 0, hoose r1; : : : ; rm 2 Q [0;1℄ suh that 0 = r0 < r1 < � � � < rm = 1, with ri � ri�1 < �.Then for any s 2 [0; 1℄, ri�1 < s � ri andj 1n [ns℄Xt=1 Xt � sEX1j � j 1n [ns℄Xt=1 Xt � 1n [nri�1℄Xt=1 Xtj+ j 1n [nri�1℄Xt=1 Xt � ri�1EX1j+ jri�1EX1 � sEX1j:The �rst term is bounded by1n [nri℄Xt=[nri�1℄ jXtj ! (ri � ri�1)EjX1j < �EjX1j:Choose n so large that this term is less than �EjX1j for i = 1; : : : ;m. It follows thatsups j 1n [ns℄Xt=1 Xt � sEX1j < �EjX1j+ �+ �EjX1j;for n large. �Proposition A.3 Suppose fXtg is the AR(p0) proessXt = �0 + �1Xt�1 + : : :+ �t�p0Xt�p0 + �"t; "t � IID N(0,1):For r; s 2 [0,1℄ (r < s) and p=0,1,: : : P0, let �̂(r; s; p) be the Y-W estimate of the AR(p) parametervetor �(p) based on �tting an AR(p) to the data X[rn℄+1; : : : ;X[sn℄. Then with probability 1,�̂(r; s; p)! �(p); �̂2(r; s; p)! �2(p):Proof. Sine fXtg is a stationary ergodi proess, fjXtjg, fXt�iXt�jg and fjXt�iXt�j jg arestationary ergodi proesses. By Proposition A.2, the partial sum proesses for eah of theseproesses onverge to their respetive limit a.s., let B be the probability 1 set on whih thesepartial sum proesses onverge. Now �̂(r; s; p) and �̂2(r; s; p) are ontinuous funtions of theseproesses. The result follows. � 38



Proposition A.4 Let fYtg be the proess de�ned in (1) with �0j = 0. For r,s 2 [0,1℄ (r < s) andp=0,1,: : : P0, let �̂Y (r; s; p) be the Y-W estimates in �tting an AR(p) model to Y[rn℄+1; : : : ; Y[sn℄.Then with probability 1,̂�Y (r; s; p)! ��Y (r; s; p); �̂2Y (r; s; p)! ��2Y (r; s; p);where ��Y (r; s; p) and ��2Y (r; s; p) are de�ned below in the proof.Proof. Let B�k be the probability 1 set on whih1n [ns℄Xt=1 Xt;k; 1n [ns℄Xt=1 jXt;kj; 1n [ns℄Xt=1 Xt�i;kXt�j;k; and 1n [ns℄Xt=1 jXt�i;kXt�j;kj; (i; j = 1; : : : ; P0),onverge, k = 1; 2; : : : ;m+ 1, and set B� = m+1\k=1 B�k:Let r; s 2 [0; 1℄, r < s, then r 2 [�0i�1; �0i ) and s 2 (�0i�1+k; �0i+k℄, k � 0. Assuming that the meanof the proess fYtg is zero, we havêY (h) := 1[sn℄� [rn℄ [sn℄�hXt=[rn℄+1Yt+hYt= n[sn℄� [rn℄ 8<: 1n [�0in℄�hXt=[rn℄+1Xt+h;iXt;i + 1n [�0i+1n℄�hXt=[�0i n℄+1Xt+h;i+1Xt;i+1+ � � �+ 1n [sn℄�hXt=[�0i�1+kn℄+1Xt+h;i+kXt;i+k + o(1)9>=>; :Let i(h) := ovfXt+h;i;Xt;ig. For ! 2 B�, if follows from Proposition A.3 that̂Y (h)! �0i � rs� r i(h) + �0i+1 � �is� r i+1(h) + � � �+ s� �0i�1+ks� r i+k(h);= aii(h) + : : : + ai+ki+k(h):Then �̂Y (r; s; p) = �̂�1Y (p)̂Y (p)! 0�i+kXj=i aj�j(p)1A�1 i+kXj=i ajj(p) =: ��Y (r; s; p);where �j(p) = fj(i1 � i2)gpi1;i2=1 and j(p) = [j(1); : : : ; j(p)℄T . This establishes the desiredonvergene for �̂Y (r; s; p). Note that if k = 0, ��Y (r; s; p) = �i(p). The proof of the onvergenefor �̂2Y (r; s; p) is similar. � 39



Proposition A.5 For the pieewise proess in (1), hoose � > 0 small suh that�� mini=1;:::;m+1(�0i � �0i�1)and set A� = f� 2 [0; 1℄m; 0 = �0 < �1 < �2 < : : : < �m < �m+1 = 1;�i � �i�1 � �; i = 1; 2; : : : ;m+ 1g;where m = m0. If �̂; p̂ = arg min�2A�0�p�P0 2nMDL(�; p);then �̂! �0 a.s.Proof Let B� be the event desribed in the proof of Proposition A.4. We will show that for eah! 2 B�, �̂ ! �0. For ! 2 B�, suppose �̂ 6! �0. Sine the sequenes are bounded, there exist asubsequene fn0kg suh that �̂ ! �� and p̂j ! p�j on the subsequene. Note that �� 2 A� sine�̂ 2 A� for all n. It follows that2nMDL(�̂; p̂)! m+1Xj=1 (��j � ��j�1) log ��2Y (��j�1; ��j ; p�j):If �0i � ��j�1 < ��j � �0i+1, then��2Y (��j�1; ��j ; p�j ) = �2i+1(p�j) � �2i+1; (A.9)with equality if and only if p�j � pi+1. If �0i�1 � ��j�1 < �0i < � � � < �0i+k < ��j � �0i+k+1, then��2Y (��j�1; ��j ; p�j ) � �0i � ��j�1��j � ��j�1�2i + �0i+1 � �0i��j � ��j�1�2i+1 + � � �+ ��j � �0i+k��j � ��j�1�2i+k+1:By the onavity of the log funtion,(��j � ��j�1) log ��2Y (��j�1; ��j ; p�j) � (��j � ��j�1)"�0i � ��j�1��j � ��j�1 log �2i + �0i+1 � �0i��j � ��j�1 log �2i+1+ � � �+ ��j � �0i+k��j � ��j�1 log �2i+k+1#= (�0i � ��j�1) log �2i + (�0i+1 � �0i ) log �2i+1+ � � �+ (��j � �0i+k) log �2i+k+1:40
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