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EXTREME VALUE THEORY FOR SPACE-TIME PROCESSES WITH
HEAVY-TAILED DISTRIBUTIONS

RICHARD A. DAVIS AND THOMAS MIKOSCH

Abstract. Many real-life time series often exhibit clusters of outlying observations that cannot
be adequately modeled by a Gaussian distribution. Heavy-tailed distributions such as the Pareto
distribution have proved useful in modeling a wide range of bursty phenomena that occur in areas as
diverse as finance, insurance, telecommunications, meteorology, and hydrology. Regular variation
provides a convenient and unified background for studying multivariate extremes when heavy tails
are present. In this paper, we study the extreme value behavior of the space-time process given by

Xt(s) =

∞∑
i=0

ψi(s)Zt−i(s) , s ∈ [0, 1]d ,

where (Zt)t∈Z is an iid sequence of random fields on [0, 1]d with values in the Skorokhod space
D([0, 1]d) of càdlàg functions on [0, 1]d equipped with the J1−topology. The coefficients ψi are

deterministic real-valued fields on D([0, 1]d). The indices s and t refer to the observation of the
process at location s at time t. For example, Xt(s), t = 1, 2, . . . , could represent the time series of
annual maxima of ozone levels at location s. The problem of interest is determining the probability
that the maximum ozone level over the entire region [0, 1]2 does not exceed a given standard level
f ∈ D([0, 1]2) in n years. By establishing a limit theory for point processes based on (Xt(s)),
t = 1 . . . , n, we are able to provide approximations for probabilities of extremal events. This theory
builds on earlier results of de Haan and Lin [11] and Hult and Lindskog [13] for regular variation

on D([0, 1]d) and Davis and Resnick [7] for extremes of linear processes with heavy-tailed noise.

1. Introduction

Building on the recent theory developed by de Haan and Lin [11] and Hult and Lindskog [13] for
random functions with values in the space of càdlàg functions, we study the asymptotic theory for
point processes and extremes of filtered processes of the form

Xt(s) =
∞∑

i=0

ψi(s) Zt−i(s) , s ∈ [0, 1]d .(1.1)

Here (Zt)t∈Z is an iid sequence of random fields on [0, 1]d with values in the Skorokhod space
D = D([0, 1]d) of càdlàg functions equipped with the J1-topology; see Bickel and Wichura [2] for
definitions and properties related to this topology. The ψi’s are deterministic real-valued fields
on D.

The indices s and t refer to a measurement taken at location s at time t. For example, Xt(s),
t = 1, 2, . . . , could represent the time series of annual maxima of ozone levels at location s. One of
the problems of interest is determining the probability that the maximum ozone level over the entire
region [0, 1]2 does not exceed a given standard level f ∈ D([0, 1]2) in n years. Another example,
mentioned in de Haan and Lin [11], concerns the probability that the water level Xt(s) on day t
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at location s ∈ [0, 1] along the Dutch coast will not breach the dykes. Here f(s) is a function that
represents the height of the dykes at location s. Then the probability of interest is

P

(
max

t=1,...,n
Xt(s) ≤ f(s) for all s ∈ [0, 1]

)
.

A third example is the windspeed Xt(s) along a building at time t and location s on the face of a
building.

xy

z
xy

z

xy

z

xy

z

Figure 1.1. An autoregressive random field Xt = 0.9Xt−1 + Zt, t = 0, 1, 2, 3, (top left to bottom
right) with a regularly varying Lévy random field with index α = 1, see Section 4.2.

Serial dependence enters in the model (Xt) through the linear filter with weights ψj , j = 1, 2, . . ..
For example, at each fixed location s we have a linear time series model (Xt(s))t∈Z. If Zt is a
second order stationary random field with mean 0 and covariance function γZ(s), then the serial
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Figure 1.2. An autoregressive random field Xt = −0.8Xt−1 + Zt, t = 0, 1, 2, 3, (top left to bottom
right) with a regularly varying Lévy random field with index α = 4, see Section 4.2.

autocorrelation of Xt at location s is given by

Cor(Xt(s), Xt+h(s)) =
∞∑

i=0

ψi(s)ψi+h(s)/
∞∑

i=0

ψ2
i (s) ,

provided
∑

j ψ2
j (s) < ∞. The spatial dependence among these linear time series is governed by the

spatial dependence in the noise (Zt). In particular, the spatial covariance function at fixed time t
is given by

Cov(Xt(s1), Xt(s2)) =

( ∞∑

i=0

ψi(s1)ψi(s2)

)
γZ(s2 − s1).
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If the linear filter weights ψj(s) are space-invariant, i.e., ψj(s) = ψj for all j and s, then (Xt(s) is
stationary in both space and time with a multiplicative covariance function given by

Cov(Xt(s1), Xt+h(s2)) =

( ∞∑

i=0

ψiψi+h

)
γZ(s2 − s1).

Realizations from two autoregressive (AR) spatial processes are displayed in Figures 1.1 and 1.2.
The AR(1) process is given by Xt = φXt−1 + Zt which corresponds to the linear process in (1.1)
with coefficients ψj(s) = φj . The realizations in the figures correspond to t = 0, 1, 2, 3 with φ = .9
(Figure 1.1), φ = −.8 (Figure 1.2) and noise (Zt) which is a regularly varying Lévy random field with
α = 4 (see Section 4.2). The process defined by (1.1) allows for modeling of both the dependence
in time and space in a flexible way. While one can introduce serial dependence of random fields in
more complicated ways, we will restrict attention to the linear case in this paper.

Many real-life time series often exhibit clusters of outlying observations that cannot be adequately
modeled by a Gaussian distribution. Heavy-tailed distributions such as the Pareto distribution
have proved useful in modeling a wide range of bursty phenomena that occur in finance, insurance,
telecommunications, meteorology, hydrology; see Embrechts et al. [8] and the collection of papers
[9] for specific examples and references. The theory of regular variation provides a convenient and
unified background for studying multivariate extremes when heavy tails are present; see Resnick
[22] for the basic theory and Basrak et al. [1], de Haan and Lin [11], Hult and Lindskog [13] for some
recent developments. The novelty of the papers by de Haan and Lin [11] and Hult and Lindskog
[13] is the precise formulation of regular variation for random functions with values in C[0, 1] and
D[0, 1]. This serves as a starting point for what we consider in this paper.

This paper is organized as follows. In Section 2, we introduce the notion of a regularly varying
random field with values in D and we quote some preliminary results that will be frequently used
in the sequel. In Section 3, we apply the notion of regular variation on D to max-stable fields. The
section culminates with a representation of a max-stable random field in terms of a homogeneous
Poisson process and iid random fields. This representation was proposed by Schlather [25] as one
possibility for simulating max-stable random fields. De Haan and Pereira [12] formulate one and
two dimensional families of parametric models for spatial extremes that are based on a similar
representation for stationary random fields. These parameters can be used to describe a form
of dependence between the random field at any two locations. In Section 4, we continue with
some examples of regularly varying random fields. These include regularly varying Lévy and sαs
random fields. In Section 5 we deal with the regular variation on D of the linear process Xt and
study some of its consequences. In Section 5.2 we establish convergence for the sequence of point
processes based on the points Xt, properly normalized, towards a compound Poisson process. This
may be viewed as an extension of the seminal result by Davis and Resnick [7] for linear processes.
Applications of these results to problems in extreme value theory, including the calculation of the
probability of exceedances of high thresholds by the Xt’s and the extremal index of the sequence
(|Xt|∞), are given in Section 5.3.

2. Preliminaries on regular variation on D

2.1. Definition and properties of regularly varying random fields. In this section we intro-
duce the essential ingredients about regular variation on D that will be required for the results in
Section 5. We closely follow the discussion in de Haan and Lin [11], Hult and Lindskog [13] and Hult
et al. [15]. Denote by D = D([0, 1]d,R) the space of càdlàg functions x : [0, 1]d → R equipped with a
metric d0 which is equivalent to the J1-metric and such that it makes D a complete separable linear
metric space; see Bickel and Wichura [2] and Billingsley [3]. We denote by SD the “unit sphere”
{x ∈ D : |x|∞ = 1} with |x|∞ = sups∈[0,1]d |x(s)|, equipped with the relativized topology of D.
Define D0 = (0,∞]× SD, where (0,∞] is equipped with the metric ρ(x, y) = |1/x− 1/y| making it
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complete and separable. For any element x ∈ D0, we write x = (|x|∞, x̃), where x̃ = x/|x|∞. Then
D0, equipped with the metric max{ρ(x, y), d0(x̃, ỹ)}, is a complete separable metric space. The
topological spaces D\{0}, equipped with the relativized topology of D, and (0,∞)× SD, equipped
with the relativized topology of D0, are homeomorphic; the function T given by T (x) = (|x|∞, x̃)
is a homeomorphism. Hence

B(D0) ∩ [(0,∞)× SD] = B(T (D\{0})),
i.e., the sets of the Borel σ-field B(D0) that are of interest to us can be identified with the usual Borel
sets on D (viewed in spherical coordinates) that do not contain the zero function. For notational
convenience we will throughout the paper identify D with the product space [0,∞) × SD so that
expressions like D0\D (= {∞}×SD) make sense. We denote by B(D0)∩D the Borel sets B ∈ B(D0)
such that B ∩ [{∞}×SD] = ∅. Notice that a bounded set B of D0 is a set bounded away from zero,
i.e., there exists δ > 0 such that |x|∞ > δ for all x ∈ B.

In addition, we will make use of the space C = C([0, 1]d) of continuous functions on [0, 1]d

equipped with the uniform topology. Completely analogously to D0, SD, etc., we will use the
notation C0, SC, etc.

Regular variation on Rd (for random vectors) is typically formulated in terms of vague conver-
gence on B(Rd

0), where Rd
0 = Rd\{0}) and R = R∪{−∞,∞}; see Resnick [21, 22]. The topology on

Rd
0 is chosen so that B(Rd

0) and B(Rd) coincide on Rd\{0}. Moreover, B ⊂ Rd
0 is relatively compact

(or bounded) if and only if B ∩ Rd is bounded away from 0 (i.e., 0 /∈ B ∩ Rd) in Rd.
The vector X with values in Rd is regularly varying with index α > 0 and spectral measure σ on

the Borel σ-field of the unit sphere Sd−1 = {x ∈ Rd : |x| = 1} if there exists a sequence of constants
an →∞ such that

nP (|X| > t an , X̃ ∈ ·) w→ t−α σ(·) , t > 0 ,

where w→ denotes weak convergence and, as before, x̃ = x/|x| for x 6= 0. It is always possible to
choose (an) such that P (|X| > an) ∼ n−1, and then σ is a probability measure. Equivalently, X is
regularly varying if there exists a sequence an →∞ (which can be chosen as above) and a non-null
Radon measure µ on B(Rd

0) such that µ(Rd\Rd) = 0 and

nP (a−1
n X ∈ ·) v→ µ(·) ,

where v→ denotes vague convergence on the Borel σ-field B(Rd
0).

Regular variation on D is naturally expressed in terms of ŵ-convergence of boundedly finite
measures on D0; for details on ŵ-convergence and its relationship with vague and weak conver-
gence we refer to Appendix A2.6 in Daley and Vere-Jones [6], cf. also Kallenberg [16] and Resnick
[21, 22]. A boundedly finite measure assigns finite mass to bounded sets. A sequence of bound-
edly finite measures (mn) on a complete separable metric space E converges to the measure m in
the ŵ-topology, mn

ŵ→ m, if mn(B) → m(B) for every bounded Borel set B with m(∂B) = 0.

Equivalently, mn
ŵ→ m refers to

mn(f) =
∫

E
fdmn →

∫

E
fdm = m(f)(2.1)

for all bounded continuous functions f on E which vanish outside a bounded set. If the state space E
is locally compact (Rd

0 is locally compact while D0 is not), then a boundedly finite measure is called
a Radon measure, and ŵ-convergence coincides with vague convergence and we write mn

v→ m.
Finally we notice that if mn

ŵ→ m and mn(E) → m(E) < ∞, then mn
w→ m.

We say that the random field X with values in D (and its distribution) are regularly varying with
index α > 0 and spectral measure σ on SD, if there exists a sequence of constants an → ∞ such
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that

nP (|X|∞ > t an , X̃ ∈ ·) w→ t−α σ(·) , t > 0 ,(2.2)

where w→ denotes weak convergence on the Borel σ-field B(SD). One can always choose (an) such
that P (|X|∞ > an) ∼ n−1, and then σ is a probability measure on SD. The convergence in (2.2) is
equivalent to

nP (a−1
n X ∈ ·) ŵ→ m(·) ,(2.3)

where ŵ→ denotes ŵ-convergence on the Borel σ-field B(D0) and m is a finitely bounded measure
with the property that m(D0\D) = 0; see Hult and Lindskog [13] for a proof of the equivalence
between (2.3) and (2.2).

We will often make use of the following useful result by Hult and Lindskog [13] proved for d = 1.
The proof for d > 1 is analogous and therefore omitted. The result characterizes a regularly varying
random field in terms of the finite-dimensional distributions and the modulus of continuity. Write,
for an x ∈ D, δ > 0 and a set A ⊂ [0, 1]d,

w′′(x, δ) = sup
s1≤s≤s2 ,|s2−s1|≤δ

min(|x(s)− x(s1)|, |x(s)− x(s2)|) ,

w(x,A) = sup
s1,s2∈A

|x(s1)− x(s2)| .

Lemma 2.1. The random field X with values in D is regularly varying if and only if there exist
a sequence (an) satisfying nP (|X|∞ > an) → 1 and a collection of Radon measures ms1,...,sk

,
si ∈ [0, 1]d, i = 1, . . . , k, k ≥ 1, not all of them being the null measure, with ms1,...,sk

(Rk\Rk) = 0,
such that the following conditions hold:

(1) The following relation holds:

nP (a−1
n (X(s1), . . . , X(sk)) ∈ ·) v→ ms1,...,sk

(·) ,(2.4)

for all si ∈ [0, 1]d, i = 1, . . . , k, k ≥ 1, where v→ refers to vague convergence on the Borel
σ-field B(Rk

0).
(2) For any ε, η > 0 there exist δ ∈ (0, 0.5) and n0 such that for n ≥ n0,

nP (w′′(X, δ) > anε) ≤ η ,(2.5)

nP (w(X, [0, 1]d\[δ, 1− δ]d) > anε) ≤ η .(2.6)

The measures ms1,...,sk
, si ∈ [0, 1]d, i = 1, . . . , k, k ≥ 1, determine the limiting measure m in the

definition of regular variation of X.

2.2. Regular variation, point process convergence and convergence of maxima. Next we
connect regular variation on D with the weak convergence of the point processes

Nn =
n∑

i=1

εa−1
n Xi

, n ≥ 1 ,

and the maxima a−1
n maxi=1,...,n Xi, where the Xi’s are iid copies of a regularly varying random

field X with values in D and εx is Dirac measure at x.

Lemma 2.2. Let X, X1, X2, . . . be an iid sequence of D-valued random fields. In items (2) and (3)
we assume in addition that X has non-negative sample paths.

(1) The field X is regularly varying with index α > 0 and limiting measure m as in (2.3) if and
only if Nn

d→ N in Mp(D0), the space of point measures with state space D0 equipped with
the ŵ-topology, where N is a Poisson random measure with mean measure m (PRM(m)).
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(2) If the relation

a−1
n max

t=1,...,n
Xt

d→ Z(2.7)

holds in D for some non-degenerate random field Z then X is regularly varying on D for
some positive α.

(3) Conversely, assume that X is regularly varying with index α > 0. Then (2.7) holds for some
Z in the sense of the finite-dimensional distributions. Moreover, if a C-valued version of Z
exists then the convergence of the finite-dimensional distributions in (2.7) can be extended
to convergence in D.

Proof. (1) This result follows by an adaptation of Proposition 3.21 in Resnick [22]. While this
proposition applies to weak convergence of point processes with a locally compact state space, our
state-space D0 is not locally compact. However, the proof (which only involves Laplace functionals
of the underlying point processes) remains valid if one changes from vague convergence used in [22]
to ŵ-convergence as described above; see Daley and Vere-Jones [6], Chapter 9 and Appendix A2.6.
The proof of (1) in the case d = 1 and for non-negative càdlàg X on [0, 1] can also be found in
Theorem 2.4 of de Haan and Lin [11]. (The proof is given under the assumption that α = 1 which
does not restrict generality.)
(2) and (3) The proof follows by an adaptation of the proof in Theorem 2.4 in [11] who consider the
case of non-negative X on [0, 1]. The extension to d > 1 does not provide additional difficulties. ¤

A consequence of Lemma 2.2 (and indeed of finite-dimensional extreme value theory, see Resnick
[22], Section 5.4) is that regular variation of X on D with index α implies that for any choice of
si ∈ [0, 1]d, i = 1, . . . , k, k ≥ 1,

a−1
n

(
max

t=1,...,n
Xt(si)

)

i=1,...,k

d→ (Z(si))i=1,...,k .(2.8)

The distribution of (Z(si))i=1,...,k is a multivariate extreme value distribution with Fréchet marginals
with index α and exponent measure ms1,...,sk

which is described in part (1) of Lemma 2.1. By part

(1) of the lemma it also follows that the point process convergence Nn
d→ N in Mp(D0) for some

PRM(m), N , implies (2.8). However, tightness of the sequence (a−1
n maxt=1,...,n Xt) in D and the

tightness condition for regular variation given by (2.5) and (2.6) are in general not equivalent in D.
An assumption such as continuity of the limit Z in (2.7) is in general needed. A counterexample
showing that regular variation of X on D does not imply (2.7) was kindly communicated to us by
Yohann Gentric.

2.3. Regular variation of products of random variables. We will often make use of a simple
result on the products of independent random variables, which we will refer to as Breiman’s result.
See Breiman [4], cf. Basrak et al. [1] for a proof and some multivariate extensions.

Lemma 2.3. Assume ξ, η are non-negative random variables, η is regularly varying with index
α > 0 and one of the following conditions holds:

(1) 0 < Eξα+δ < ∞ for some δ > 0.
(2) 0 < Eξα < ∞ and P (η > x) ∼ c x−α as x →∞ for some c > 0.

Then P (ξη > x) ∼ Eξα P (η > x) as x →∞.

The proof of the result under condition (2) is difficult to find in the literature, but it follows easily
by intersecting the event {ξη > x} with the events {ξ > εx} and {ξ ≤ εx} for ε > 0 sufficiently
small and by observing that P (ξ > x) = o(x−α).
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3. Applications to max-stable random fields

3.1. Preliminaries. The class of max-stable random fields provides a good collection of examples
of regularly varying random fields. It is common (see Resnick [22], de Haan and Lin [11]) to assume
that all one-dimensional marginals of a max-stable process are Fréchet with index 1. Of course, the
marginals of the process X can be transformed to obtain marginals with any other extreme value
distribution. For this reason, we confine our discussion to the case α = 1.

Following de Haan [10], a random field X on [0, 1]d is called max-stable with unit Fréchet
marginals (i.e., P (X(s) ≤ x) = e−x−1

, x > 0, for every s ∈ [0, 1]d), if for iid copies Xi of X
and every k ≥ 1,

k X
d= max

i=1,...,k
Xi ,(3.9)

where d= denotes equality of the finite-dimensional distributions. Condition (3.9) is equivalent to
the existence of a field Y with regularly varying finite-dimensional distributions with index α = 1
such that for iid copies Yi of Y and a suitable sequence (an) of positive constants,

a−1
n max

i=1,...,n
Yi

d→ X ,(3.10)

where d→ represents convergence of the finite-dimensional distributions. The finite-dimensional
distributions of X have the following canonical form,

P (X(s1) ≤ y1, . . . , X(sk) ≤ yk) = exp
{
−

∫ 1

0

(
max

i=1,...,k

fi(x)
yi

)
dx

}
,(3.11)

for some suitable choice of non-negative L1 functions fi which have integral 1, i.e.,
∫ 1
0 fi(y) dy = 1,

see Resnick [22], Proposition 5.11. It follows that the finite-dimensional distributions of X are
regularly varying with index α = 1. Moreover, from (3.10), we have the relation

nP (a−1
n (Y (si))i=1,...,k ∈ ([0, y1]× · · · × [0, yk])c) →

∫ 1

0

(
max

i=1,...,k

fi(x)
yi

)
dx ,

which identifies the measure ms1,...,sk
in (2.4).

According to the defining property (3.9), max-stability is only a property of the finite-dimensional
distributions of the field X. In what follows, this notion is strengthened to requiring that X satisfies
(3.9) and assumes values in D. Interestingly, with this additional assumption that X lives in D,
regular variation of X on D is automatic. This is the content of the following lemma.

Lemma 3.1. Assume that X is a max-stable process with values in D. Then X is regularly varying
on D with index 1.

Proof. The proof follows from part (2) of Lemma 2.2 by taking Yi = Xi for iid copies of the D-valued
max-stable field X. Equality of the finite-dimensional distributions of X and n−1 maxt=1,...,n Xi

implies equality in distribution in D which in turn yields weak convergence in D. Hence X is
regularly varying on D with index 1. ¤

Remark 3.2. For a max-stable field X with unit Fréchet marginals there exists a unique measure
m such that nP (n−1X ∈ ·) ŵ→ m and m(tB) = t−1m(B) for any bounded set B and t > 0.
Moreover, for any si ∈ [0, 1]d and yi ≥ 0, i = 1, . . . , k, k ≥ 1,

P (X(s1) ≤ y1 , . . . , X(sk) ≤ yk) = e−m(Ac) ,(3.12)

where

A = {z ∈ D0 : z(si) ≤ yi , i = 1, . . . , k} .(3.13)
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The measure m is often referred to as the exponent measure of X and uniquely determines the
finite-dimensional distributions of X, i.e., e−m(Ac) coincides with the right-hand side of (3.11).

3.2. A representation of a max-stable random field. In this section, we construct a max-
stable D-valued random field X with unit Fréchet marginals and we show that it is regularly varying
on D with index 1.

To start with, consider a unit rate Poisson process on (0,∞). An increasing enumeration of the
points of the process is denoted by (Γi)i≥1. Consider an iid sequence Y, Y1, Y2, . . ., of random fields
on [0, 1]d with values in D independent of (Γi). Moreover, assume that 0 < EY +(s) < ∞ for all
s ∈ [0, 1]d, where a+ is the positive part of the real number a. Define the càdlàg random field

X(s) = sup
j≥1

Γ−1
j Yj(s) = sup

j≥1
Γ−1

j Y +
j (s) , s ∈ [0, 1]d .(3.14)

Notice that the second equality is due to the fact that 0 < EY +(s) < ∞ and therefore Yj(s) > 0
infinitely often with probability 1 for every s. In view of (3.14) we assume that Y (s) is positive a.s.
and EY (s) < ∞. For s ∈ [0, 1]d, the random variable X(s) is well defined by virtue of the strong
law of large numbers Γj/j

a.s.→ 1 and since Yj(s)/j
a.s.→ 0 by the Borel-Cantelli lemma.

Representation (3.14) was introduced by Schlather [25] as a model for max-stable random fields.
We show that (3.14) yields a representation of any max-stable field in D.

Theorem 3.3. The D-valued random field X is max-stable if and only if X has representation
(3.14) for some iid sequence (Yi) of D-valued random fields such that Y > 0 a.s. and E|Y |∞ < ∞.
In either case, X is regularly varying on D with index 1 and spectral measure σ given by

σ(S) = E
(
|Y |∞IS(Ỹ )

)/
E|Y |∞ , S ∈ B(SD) .(3.15)

Proof. We first show that X given by (3.14) with E|Y |∞ < ∞ is in D. Since E|Y |∞ < ∞, it follows
from the strong law of large numbers and the Borel-Cantelli lemma that |Yj |∞/Γj

a.s.→ 0. Therefore
sup1≤j≤n Γ−1

j Yj converges a.s. as n → ∞ in the uniform topology to X given in (3.14) which is
finite a.s.

Next we show that the random field (3.14) is max-stable in the sense of (3.9). Consider the
point process N =

∑∞
j=1 εΓ−1

j Yj
with state space D0. Using standard arguments, the log-Laplace

functional of N is given by

log E exp{−N(f)} = −E

(∫ ∞

0
(1− e−f(sY )) s−2 ds

)
,

where f is a bounded continuous function on D0 with bounded support. Define a measure m on
the Borel σ-field of D0 by

m({x ∈ D0 : |x|∞ > t , x̃ ∈ S}) = E|Y |∞ t−1 σ(S) , t > 0 , S ∈ B(SD) ,

where the probability measure σ is given by (3.15). Recall that for z ∈ D0 and s > 0 we have
f(sz) = f((s |z|∞, z̃)). It follows that the log-Laplace functional is equal to

−E

(∫ ∞

0
(1− e−f(s |Y |∞,Ỹ )) s−2 ds

)
= −E|Y |∞

∫

SD

∫ ∞

0
(1− e−f(t,θ)) t−2 dt σ(dθ) .

This is the log-Laplace functional of PRM(m) on D0, hence N is PRM(m). For any si ∈ [0, 1]d,
i = 1, . . . , k, and y ∈ Rk

+ consider the finite-dimensional set A ⊂ D0 given by (3.13). Then we have

P (N(Ac) = 0) = P (X(s1) ≤ y1 , . . . , X(sk) ≤ yk) = e−m(Ac) .

Since by definition of m, m(tB) = t−1m(B) for any bounded set B and t > 0, we conclude from
Remark 3.2, in particular equation (3.12), that m is the exponent measure of a max-stable random
field. This proves max-stability of X.
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The regular variation with index 1 of the max-stable random field X given in (3.14) follows from
Lemma 3.1. The spectral measure (3.15) was calculated in the course of the proof above.

Now we prove the converse. Assume that X is max-stable with unit Fréchet marginals. As such
it has an exponent measure m̃ with corresponding spectral (probability) measure σ̃. Let (Yj) be
an iid sequence of positive SD-valued random fields with distribution σ̃. We will show that X has
the same distribution as the D-valued random field

X∗ = c sup
j≥1

Γ−1
j Yj ,

where

c = m({x ∈ D0 : |x|∞ > 1}) .

By the direct part of the proof, X∗ is well defined, max-stable, regularly varying with index 1 and
has exponent measure given by

m({x ∈ D0 : |x|∞ > t , x̃ ∈ S}) = c t−1 σ̃(S) , t > 0 , S ∈ B(SD) .

This means that the exponent measures m and m̃ coincide. Hence the max-stable fields X and X∗
have the same finite-dimensional distributions. This concludes the proof. ¤
Remark 3.4. The condition E|Y |∞ < ∞ can be verified in general circumstances. A prime
example is a C-valued centered Gaussian random field which we can interpret as a mean zero
Gaussian random element with values in a separable Banach space. Then it is well known that the
tail P (|Y |∞ > y) decays exponentially fast, in particular E(|Y |p∞) < ∞ for all p > 0, see Landau
and Shepp [17], Marcus and Shepp [20], cf. Ledoux and Talagrand [18]. Representation (3.14) is
advantageous for simulating max-stable fields as advocated by Schlather [25]. In Figure 3.5 we show
two realizations of max-stable fields on [0, 1]2 based on the representation (3.14), where Y is an
isotropic Gaussian random field with exponential and Gaussian covariance functions, respectively.
These fields were generated in the software package R, using the RandomFields package written by
Schlather.
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Figure 3.5. Two realizations of a max-stable field using the representation (3.14), where Y is an
isotropic Gaussian random field on [0, 1]2 with exponential (left) and Gaussian (right) covariance
functions.
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Remark 3.6. It follows by direct calculation, see Section 4.1 below, that Γ−1
1 Y is regularly varying

with index 1 and has the same limit measure m on D0 as X = supj≥1 Γ−1
j Yj . This means that

the extreme behavior of a max-stable random field X is determined only by the first term in the
supremum. This can also be seen from the fact that for every ε > 0,

nP
(
n−1

∣∣∣ sup
j≥2

Γ−1
j Yj

∣∣∣
∞

> ε
)
→ 0 , n →∞ .(3.16)

Indeed, we have

nP
(
n−1

∣∣∣ sup
j≥2

Γ−1
j Yj

∣∣∣
∞

> ε
)
≤ n

∑

j≥2

P
(
Γ−1

j |Y |∞ > ε n
)

= n

∫ ∞

0




∞∑

j=1

P (Γj ≤ (εn)−1y)− P (Γ1 ≤ (εn)−1y)


 P (|Y |∞ ∈ dy)

= n

∫ ∞

0

( y

εn
− (1− e−y/(εn))

)
P (|Y |∞ ∈ dy) .(3.17)

Observe that fn(y) = n[y/(εn)−(1−e−y/(εn))] ≤ c y for some c > 0, all y > 0. Moreover, fn(y) → 0
as n →∞ for every y > 0. Since E|Y |∞ < ∞ by assumption, a dominated convergence argument
yields that for every ε > 0 the right-hand side in (3.17) converges to zero. Combining the arguments
above, we conclude that (3.16) holds.

4. Examples of regularly varying random fields

In this section we consider some more examples of regularly varying D-valued random fields X.
In Section 3 we have already studied the class of max-stable random fields which constitute an
important family of D-valued regularly varying random fields.

4.1. A simple multiplicative field. Let Y be a càdlàg random field and suppose that η is a
non-negative regularly varying random variable with index α > 0, independent of Y . Assume that
η and ξ = |Y |∞ satisfy the conditions of Breiman’s Lemma 2.3. For example, the assumptions on
ξ are satisfied for Gaussian Y . Define the D-valued random field

X(s) = η Y (s) , s ∈ [0, 1]d .

An application of Lemma 2.3 yields that X is regularly varying on D with index α. Indeed, for any
Borel set S ⊂ SD and t > 0,

nP
(
|ηY |∞ > an t, Ỹ ∈ S

)
→ t−αE

(
|Y |α∞ IS(Ỹ )

)/
E|Y |α∞ = t−α σ(S) , t > 0 ,

where (an) is chosen such that P (|X|∞ > an) ∼ n−1. The right-hand side of this relation has the
form given in (2.2). Using Breiman’s result, one can easily calculate asymptotic expressions related
to the finite-dimensional distributions of X. For example, for positive yi, i = 1, . . . , k,

nP (a−1
n (|X(s1)|, . . . , |X(sk)|) ∈ (y1,∞)× · · · × (yk,∞)) = nP

(
a−1

n η min
i=1,...,k

(|Y (si)|/yi) > 1
)

→ E

(
min

i=1,...,k
(|Y (si)|/yi)α

)
.

In addition, we may conclude that condition (2) of Lemma 2.1 is satisfied for X.
We also mention that, if Y has mean zero and finite second moment and η has finite second

moment, then X and Y have the same correlation structure.



12 RICHARD A. DAVIS AND THOMAS MIKOSCH

Despite its simplicity, the multiplicative model serves as an approximation to the large values
of some important regularly varying random fields. Those include the max-stable fields (see Re-
mark 3.6), but also the sαs random fields considered in Section 4.4.

4.2. Regularly varying Lévy fields. We consider a D-valued random field X which has indepen-
dent and stationary increments and for s ∈ [0, 1]d the log-characteristic function of X(s) is given
by

log Ee i t X(s) = −|[0, s]|
∫

R0

(
e i t y − 1− i t y I[−1,1](y)

)
ν(dy) ,

where ν is a Lévy measure on R0, satisfying
∫
R0

(1∧y2) ν(dy) < ∞ and |A| is the Lebesgue measure
of any set A. Following standard theory for Lévy processes (see Sato [24]), we call X a Lévy random
field. We may and do assume that X has càdlàg sample paths. For fixed s, it follows from Hult and
Lindskog [13] that X(s) is regularly varying with limit measure |[0, s]|µ for some Radon measure µ
on R0 if and only if the Lévy measure ν is regularly varying in the sense that for some sequence of
constants an →∞,

n ν(an ·) v→ µ on R0.

Therefore we assume that X(s) is regularly varying with index α for some s ∈ (0, 1]d. Following the
ideas in Hult and Lindskog [13] in the case d = 1, the càdlàg random field X is regularly varying
on D and the limit measure m in (2.3) can be identified as m = (LEB × µ) ◦ T−1 , where LEB
denotes Lebesgue measure and T : [0, 1]d×R0 → D0 is given by T (t, x) = x I[t,1](s), s ∈ [0, 1]d. We
conclude that the following property of m in spherical coordinates holds. Let θ have distribution
on {1,−1} given by

P (θ = 1) = µ((1,∞))/µ({x ∈ R : |x| > 1} = 1− P (θ = −1) ,

independent of U which has a uniform distribution on (0, 1)d. The spectral measure is then given
by

σ(·) = P
(
θ(I[U,1](s))s∈[0,1]d ∈ ·

)
.

Hence, for y > 0,

m({x ∈ D0 : |x|∞ > y , x̃ ∈ · })
m({x ∈ D0 : |x|∞ > 1}) = y−α σ(·) .

4.3. Regularly varying Ornstein-Uhlenbeck processes. Consider an Ornstein-Uhlenbeck pro-
cess X on [0, 1] driven by a regularly varying Lévy process L, i.e., a Lévy field with d = 1, see
Section 4.2. It has the stochastic integral representation

X(s) =
∫ s

0
e−λ (s−y) L(dy) , s ∈ [0, 1] ,

where λ > 0 is a constant. It follows from Hult and Lindskog [13], Example 24, that if L is regularly
varying with index α > 0, then X is regularly varying on D with the same index and its spectral
measure σ on SD is given by

σ(·) = P (θ(e−λ(s−U)I[U,1](s))s∈[0,1] ∈ ·) ,

where θ and U are as defined in Section 4.2. This example can be extended to filter functions
f(s, y) more general than the exponential function f(s, y) = e−λ(s−y) (see Hult and Lindskog [13])
as well as to certain classes of predictable integrand processes (see Hult and Lindskog [14]). In
particular, for special choices of the function f and regularly varying Lévy processes L one gets
regularly varying continuous-time ARMA (CARMA) processes; see for example Brockwell [5].
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4.4. Regularly varying sαs series. In this section we consider the random field

X =
∞∑

i=1

ri Γ
−1/α
i Yi ,(4.1)

where (Γi) is an increasing enumeration of the points of a unit rate Poisson process on (0,∞),
independent of the sequences (ri) and (Yi), and α ∈ (0, 2). Here (Yi) is an iid sequence of D-valued
random fields and (ri) is an iid Rademacher sequence, i.e., P (ri = ±1) = 0.5. If E(|Y (si)|α) <
∞, si ∈ [0, 1]d, i = 1, . . . , k, it follows from the theory of α-stable processes that the Rk-valued
infinite series (X(s1), . . . , X(sk)) converges a.s. and represents an sαs-stable random vector; see
Samorodnitsky and Taqqu [26], Chapter 3. In particular, the finite-dimensional distributions are
regularly varying with index α.

We will always assume that the infinite series in (4.1) converges a.s. in D. Necessary and
sufficient conditions for the a.s. convergence of (4.1) in D or in the space C in terms of distributional
characteristics of Yi are known in some special cases. We discuss some of them.

Example 4.1. Assume that Y1 assumes values in C and 0 < E(|Y1|α∞) < ∞ for some α ∈ (0, 2).
It follows from the reasoning in Ledoux and Talagrand [18], Chapter 5, in particular Corollary 5.5,
that the infinite series (4.1) represents a symmetric α-stable (sαs) random field with values in C
and every sαs random field with values in C has such a series representation. It is also shown on
p. 135 in [18] that

tα P

(∣∣∣
∞∑

i=2

ri Γ
−1/α
i Yi

∣∣∣
∞

> t

)
→ 0 , t →∞ ,(4.2)

and that X = Γ−1/α
1 r1 Y1 +R is regularly varying on C0 (see pp. 134-136 in [18]) with the straight-

forward interpretation of C0. Choosing (an) such that

P (Γ−1/α
1 |Y1|∞ > an) ∼ E|Y1|α∞ a−α

n ∼ n−1 ,

and following the argument in [18], for any Borel set S ∈ B(SC) which is a continuity set with
respect to the limiting measure,

nP
(
|X|∞ > an t , X̃ ∈ S

)
∼ nP

(
Γ−1/α

1 |Y1|∞ > an t , Ỹ1 ∈ S
)

→ t−α
E

(
|Y1|α∞IS(Ỹ1)

)

E(|Y1|α∞)
.(4.3)

Hence X is regularly varying with index α and spectral measure given on the right-hand side. Notice
that this measure is only determined by the distribution of the first term in the series representation,
and this is completely analogous to the case of max-stable random fields, see Remark 3.6. ¤

For Yi with values in D, such general results about the a.s. convergence of the series (4.1) are
not readily available. Indeed, the proof relies on the fact that the Γ−1/α

i riYi’s are random elements
in a separable Banach space such as C. However, results by Rosiński [23] in the case d = 1, in
particular his Theorem 5.1, indicate that special cases of (4.1) with D-valued Yi’s represent sαs
Lévy motion on [0, 1]. An exception is the case α ∈ (0, 1):

Example 4.2. Assume α ∈ (0, 1). We have for m,h ≥ 0,
∣∣∣

m+h∑

i=m

Γ−1/α
i ri Yi

∣∣∣
∞
≤

m+h∑

i=m

Γ−1/α
i |Yi|∞

If E(|Y |α∞) < ∞ then the right-hand side converges to 0 a.s. as m,h → ∞. Hence the left-hand
side is a Cauchy sequence with respect to the uniform topology. Since D can be made a complete
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separable metric space (after completing the J1-metric) and a.s. convergence in the uniform sense
implies a.s. convergence in the J1-sense, we conclude that the infinite series (4.1) converges a.s. in
D. Hence X is an element of D. Adapting the argument on pp. 124–127 in Ledoux and Talagrand
[18], we conclude that

n P

(
a−1

n

∞∑

i=2

Γ−1/α
i |Yi|∞ > ε

)
= o(1) , ε > 0 .

This proves that X inherits its tail behavior from the first term in the series (4.1), hence it is
regularly varying on D. ¤

5. Regular variation of linear combinations of random fields

5.1. Regular variation. In this section we prove regular variation of the linear processes
∑k

i=1 ψi Zi,
where (Zi) is an iid sequence of regularly varying random fields with values in D. We start with a
result for the truncated series.

Lemma 5.1. Assume that Z1 is regularly varying with index α and limiting measure mZ , ψi,
i = 1, . . . , k, are deterministic functions in D with mini=1,...,k |ψi|∞ > 0. Then

∑k
i=1 ψi Zi is

regularly varying with index α and limiting measure

µ(k) =
k∑

i=1

mZ ◦ ψ−1
i ,

where ψ−1
i (B) = {x ∈ D0 : ψi x ∈ B}.

Proof. For the sake of illustration we focus on the case k = 2; the general case k > 2 following
from an inductive argument. We first note that ψiZ1 is regularly varying. This follows by a direct
application of Lemma 2.1 which yields

nP (a−1
n ψi Z1 ∈ ·) ŵ→ νi = mZ ◦ ψ−1

i , i = 1, 2 .

Hence Yi = ψiZi are independent regularly varying random elements with values in D. Next we
show that Y1+Y2 is regularly varying. Since Y1, Y2 are independent it follows from standard regular
variation theory (see Resnick [21, 22] or Hult and Lindskog [13]) that

nP (a−1
n (Y1,Y2) ∈ (du, dv)) v→ ν1:s1,...,sk

(du) ε0(dv) + ν2:s1,...,sk
(dv) ε0(du) ,

where ε0 is Dirac measure concentrated at 0 ∈ Rk, νi:s1,...,sk
are the restrictions of the measures νi

as defined in (2.4) and

Yi = (Yi(s1), . . . Yi(sk)) , i = 1, 2 .

Here v→ denotes vague convergence on the Borel σ-field B(R2k
0 . It follows from a multivariate

version of Breiman’s result (see Basrak et al. [1]) that linear transformations of (Y1,Y2) are
regularly varying. Hence Y1 + Y2 is regularly varying with index α and limiting measure given by
µ(2) defined above.

Finally, we verify the tightness conditions (2.5) and (2.6) in Lemma 2.1. Notice that

w′′(Y1 + Y2, δ) ≤ w′′(Y1, δ) + w′′(Y2, δ) ,

w(Y1 + Y2, [0, 1]d\[δ, 1− δ]d) ≤ w(Y1, [0, 1]d\[δ, 1− δ]d) + w(Y2, [0, 1]d\[δ, 1− δ]d) ,

implying (2.5) and (2.6) for Y1 + Y2 by the corresponding relations for Y1 and Y2. This proves the
lemma. ¤
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Lemma 5.2. Assume that Z1 is regularly varying with index α and limiting measure mZ and (ψi)
is a sequence of deterministic functions in D with mini |ψi|∞ > 0 and

∞∑

i=1

|ψi|min(1,α−ε)
∞ < ∞

for some ε ∈ (0, α). Then the infinite series X =
∑∞

i=1 ψi Zi converges a.s. in D. Moreover, X is
regularly varying with index α and limiting measure

µ =
∞∑

i=1

mZ ◦ ψ−1
i .

Proof. For fixed m ≥ 1, write X(m) =
∑m

i=1 ψiZi. The infinite series defining X(s) is bounded by

|X(s)| ≤
∞∑

i=1

|ψi|∞ |Zi|∞ .

The right-hand side is a.s. convergent as a consequence of regular variation of |Z1|∞ and the
summability conditions on (|ψi|∞); see Davis and Resnick [7]. Hence the infinite series X(s)
converges a.s. for every s. Moreover, |X(m)−X|∞ → 0 a.s. By virtue of this fact and since uniform
convergence in D implies convergence in the Skorokhod metric, we conclude that the limiting
random function X is an element of D.

Now we turn to regular variation of X. By Lemma 5.1, X(m) is regularly varying with index α
for every m ≥ 1. By the characterization (2.1) of ŵ-convergence, it suffices to show that for any
bounded continuous f with support vanishing outside a bounded set,

nEf(X/an) =
∫

f(x) [nP (a−1
n X ∈ dx)] →

∫
f(x) µ(dx) .

Note that for any m ≥ 1,

n Ef(X(m)/an) →
m∑

i=1

∫
f(ψi x) mZ(dx) =

∫
f(x)µ(m)(dx) .

Also, as m →∞,
m∑

i=1

∫
f(ψi x) mZ(dx) →

∞∑

i=1

∫
f(ψi x) mZ(dx) =

∫
f(x) µ(dx) .(5.1)

This can be seen as follows. Suppose the support of f is contained in the set {x : |x|∞ > c} and
K = maxx∈D |f(x)|. Then∣∣∣∣∣

∞∑

i=m+1

∫
f(ψi x)mZ(dx)

∣∣∣∣∣ ≤ K
∞∑

i=m+1

mZ({x : |ψi x|∞ > c})

≤ K
∞∑

i=m+1

mZ({x : |ψi|∞|x|∞ > c})

= K mZ{x : |x|∞ > c})
∞∑

i=m+1

|ψi|α∞ → 0 , m →∞ .

To complete the proof we show that

lim
m→∞ lim sup

n→∞
nE

∣∣∣f(X/an)− f(X(m)/an)
∣∣∣ = 0 .(5.2)
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Set

w′(x, ε) = sup {|f(x)− f(y)| : y ∈ D\{0} , d(x, y) < ε} ,

where d is the metric on D0 induced by the Skorokhod topology. Note that d(X(m)/an, X/an) ≤
a−1

n |X(m) −X|∞. Hence we may conclude that

nE
∣∣∣f(X/an)− f(X(m)/an)

∣∣∣

≤ nE
[
w′(X(m)/an, ε) I[0,ε](|X −X(m)|∞/an)

(
I(c,∞)(|X(m)|∞/an) + I(c,∞)(|X|∞/an)

)]

+nK P (|X −X(m)|∞ > anε) .(5.3)

For ε small, the first term may be bounded by

nE
[
w′(X(m)/an, ε)

(
I(c,∞)(|X(m)|∞/an) + I(c−ε,∞)(|X(m)|∞/an)

)]

≤ 2nE
[
w′(X(m)/an, ε) I(c−ε,∞)(|X(m)|∞/an)

]
.

Using the ŵ-convergence, the limit of this expression is

2
∫

w′(x, ε) I(c−ε,∞)(|x|∞) µ(m)(dx) m→∞→ 2
∫

w′(x, ε) I(c−ε,∞)(|x|∞) µ(dx) ε→0→ 0 .

Finally, as to the second term in (5.3), we have

|X −X(m)|∞ ≤
∞∑

i=m+1

|ψi|∞ |Zi|∞ ,

which is regularly varying on (0,∞]; see e.g. Embrechts et al. [8], Lemma A3.26. Hence

lim
m→∞ lim sup

n→∞
nP (|X −X(m)|∞ > εan) ≤ ε−α lim

m→∞

∞∑

i=m+1

|ψi|α∞ = 0 .

This completes the proof. ¤

5.2. Point process convergence. In this section we use the results about the regular variation
of the linear combinations for showing point process convergence of the scaled linear process (Xt)
defined in (1.1).

Proposition 5.3. For m ≥ 1 fixed, consider the sequence of point processes

In =
n∑

t=1

εa−1
n (Zt,...,Zt−m+1)

defined on (D0)m. Then In
d→ I where d→ denotes convergence in distribution of point processes on

the space M̂((D0)m) and

I =
∞∑

i=1

[
ε(Pi,0,...,0) + ε(0,Pi,0,...,0) + · · ·+ ε(0,...,0,Pi)

]
.

The space M̂((D0)m) consists of the point measures on (D0)m endowed with the topology generated
by ŵ-convergence, and

∑∞
i=1 εPi is PRM(mZ) on D0.
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Proof. Consider the class S of bounded sets of the form

B = {(x1, . . . , xm) ∈ (D0)m} : (|xi|∞, x̃i) ∈ Bi × Ci , i = 1, . . . , m} ,

where Ci ⊂ SD, σZ(∂Ci) = 0, and Bi = (bi, ci] or Bi = [0, ci], 0 ≤ bi < ci ≤ ∞, i = 1, . . . , m. It
is easy to verify that this class of sets is a DC-semiring in the sense of Kallenberg [16]. Moreover,
since B ∈ S is bounded away from 0, either B = B1× · · ·×Bm has empty intersection with all the
coordinate axes or intersects only one axis in an interval. That is, with ei being the basis element
with ith component equal to 1 and the rest zero,

B1 × · · · ×Bm ∩ {yei : y ≥ 0} = ∅ for i = 1, . . . , m ,(5.4)

or

B1 × · · · ×Bm ∩ {yei : y ≥ 0} =

{ {0} × · · · × {0} ×Bj × {0} · · · × {0} i = j ,

∅ i 6= j .
(5.5)

In the latter case, we must have Bi = [0, ci] for i 6= j. We next show that

Ĩn(B)− In(B) P→ 0 for all B ∈ S such that P (I(∂B) = 0) = 1 ,(5.6)

where

Ĩn(B) =
n∑

t=1

m∑

i=1

εa−1
n Ztei

.

For continuity sets B satisfying (5.4), Ĩn(B) = 0 a.s. and

EIn(B) ≤ nP (a−1
n (|Zm|, . . . , |Z1|) ∈ B) = n

m∏

i=1

P (a−1
n |Z1| ∈ Bi) → 0 .

The limit is zero since in order for B to be a continuity set, bi > 0 for at least two values of i. Hence
(5.6) follows. For B satisfying (5.5), so that 0 ∈ Bi for all i 6= j and bj > 0, we have In(B) ≤ Ĩn(B)
and

P (Ĩn(B)− In(B) > ε) ≤ P

(
n⋃

t=1

{a−1
n |Zt−j | ∈ Bj , a−1

n |Zt−i| 6∈ Bi for some i 6= j}
)

≤ n
∑

i6=j

P (|Z1| > an bj , |Z2| > an ci)

≤ n
∑

i 6=j

P (|Z1| > an bj)P (|Z2| > an ci) → 0 .

This proves that (5.6) holds for all B ∈ S, as was to be shown.
To complete the proof, it suffices to show (see Daley and Vere-Jones [6], Corollary 9.1.VIII) that

for any continuity sets S1, . . . , Sk ∈ S,

(In(S1) , . . . , In(Sk))
d→ (I(S1) , . . . , I(Sk)) .

However, in view of (5.6), this will be implied by

(Ĩn(S1) , . . . , Ĩn(Sk))
d→ (I(S1) , . . . , I(Sk)) .

The proof of this result follows by an application of the continuous mapping theorem; see e.g. the
proof of Theorem 2.2 in Davis and Resnick [7]. This proves the proposition. ¤
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Proposition 5.4. For each m ≥ 1, the sequence of point processes

N (m)
n =

n∑

t=1

ε
a−1

n X
(m)
t

d→ N (m) =
∞∑

i=1

m∑

j=0

εψjPi
,

where X
(m)
t =

∑m
j=0 ψjZt−j is the finite order moving average process, and minj=0,...,m |ψj |∞ > 0.

Proof. By the characterization of weak convergence on M̂(D0), we need to show that N
(m)
n (f) d→

N (m)(f) for all continuous bounded functions f that vanish off a bounded set. But N
(m)
n (f) =

In(f ◦ T ), where T : (D0)m+1 → D0 is the mapping T (u) =
∑m

j=0 ψj uj . The composition function
is continuous on the support E of the point process I in Proposition 5.3, i.e.,

E =
{
D0 × {0} × · · · × {0}

} ∪ {{0} × D0 × {0} × · · · × {0}
} ∪ · · ·

∪{{0} × · · · × {0} × D0

}
.

To see this, suppose u(n) → u with respect to the J1-metric d in (D0)m+1. If the limit vector is in
E then uj 6= 0 for some j and ui = 0 for i 6= j. It follows that |u(n)

i |∞ → 0 for all i 6= j. Hence

d

(
m∑

i=0

ψi u
(n)
i ,

m∑

i=0

ψi ui

)
= d

(
m∑

i=0

ψi u
(n)
i , ψj uj

)

≤ d

(
m∑

i=0

ψi u
(n)
i , ψj u

(n)
j

)
+ d

(
ψj u

(n)
j , ψj uj

)
.

The first term converges to zero since |∑m
i=06=j ψi u

(n)
i |∞ → 0 while the second term converges to

zero since maxj |ψj |∞ < ∞.
In addition, the continuous mapping f ◦ T has bounded support. Suppose the support of f is

contained in {x : |x|∞ > c} for some c > 0. Then the support of f ◦ T is contained in the set
{

u :

∣∣∣∣∣
m∑

i=0

ψi ui

∣∣∣∣∣
∞

> c

}
⊂

{
u :

m∑

i=0

|ψi|∞ |ui|∞ > c

}
,

which is a bounded set on (D0)m.
Now, applying the characterization of ŵ-convergence, it follows that

In(f ◦ T ) = N (m)
n

d→ N (m)(f) = I(f ◦ T ) ,

which proves the proposition. ¤

We are now ready to state and prove the main result of this section which extends the above
result to the infinite moving average case.

Theorem 5.5. Under the assumptions of Proposition 5.4,

Nn =
n∑

t=1

εa−1
n Xt

d→ N =
∞∑

i=1

∞∑

j=0

εψj Pi .

Proof. To transfer the point process convergence result of Proposition 5.4 onto Nn, it suffices to
show, by Theorem 4.2 in Billingsley [3], that for any η > 0,

lim
m→∞ lim sup

n→∞
P

(
ρ̃

(
N (m)

n , Nn

)
> η

)
= 0(5.7)
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and
∞∑

i=1

m∑

j=0

εψj Pi

d→
∞∑

i=1

∞∑

j=0

εψj Pi
,(5.8)

where ρ̃ is a metric on M̂(D0). Relation (5.8) is immediate; see e.g. (5.1). For (5.7), we show that

lim
m→∞ lim sup

n→∞
P

(
n∑

t=1

∣∣∣f(Xt/an)− f(X(m)
t /an)

∣∣∣ > η

)
= 0 ,(5.9)

for every bounded continuous function f which vanishes off a bounded set. By the form of the
metric ρ̃, it will then follow that (5.7) holds. The probability in (5.9) is bounded by

η−1 nE
∣∣∣f(X1/an)− f(X(m)

1 /an)
∣∣∣ ,

which converges to zero by first letting n →∞ and then m →∞, in view of (5.2). This proves the
theorem. ¤

5.3. Some applications.

Example 5.6. Let A ⊂ [0, 1]d be a Borel set and define fA : D→ R by

fA(x) =
∫

A
x(s) ds , x ∈ D .

Although we only consider simple averages here, one could also study averages relative to a kernel
function given by

∫
A K(t − s)x(s)ds. The functional fA is continuous with respect to the J1-

metric. Indeed, consider a sequence (xn) in D converging to x in D in the J1-sense. Then there
exist continuous bijections λn : [0, 1]d → [0, 1]d which are increasing in every component and such
that λn(0) = 0, λn(1) = 1, and

d(xn, x) = sup
s∈[0,1]d

|xn(λn(s))− x(s)| ∨ |λn(s)− s| → 0 , n →∞ .

Then

|fA(xn)− fA(x)| =
∣∣∣∣
∫

A
(xn(λn(s))− x(s)) ds +

∫

A
(xn(s)− xn(λn(s))) ds

∣∣∣∣

≤ |A| d(xn, x) +
∫

Ac

|xn(s)− xn(λn(s))| ds ,

where Ac denotes the set of continuity points of x in A. A dominated convergence argument ensures
that the right-hand side converges to zero as n →∞. Hence fA is a continuous mapping.

For ε > 0, note that

{x ∈ D0 : |fA(x)| > ε} ⊆ {x ∈ D0 : |x|∞|A| > ε} .

Hence fA(x) transforms bounded sets in R\{0} into bounded sets in D0 provided A has positive
Lebesgue measure. Thus, if X is a regularly varying random field with index α > 0 and limiting
measure m in D0, and if A ⊂ [0, 1]d has positive Lebesgue measure, then the continuous mapping
theorem for regularly varying D-valued random fields ensures that fA(X) is regularly varying as
well with limiting measure m ◦ f−1

A . In particular, if Xt is a linear random field as defined in (1.1),
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then for y > 0,

nP

(
a−1

n

∫

A
Xt(s) ds > y

)
→

∞∑

i=0

(mZ ◦ ψ−1
i ◦ f−1

A )(y,∞)

=
∞∑

i=0

mZ({x ∈ D0 :
∫

A
ψi(s)x(s) ds > y})

= y−α
∞∑

i=0

mZ({x ∈ D0 :
∫

A
ψi(s)x(s) ds > 1}) .

Further, if ψi(s) = ψi for some constants ψi and all s ∈ A, then we obtain

y−α

[
mZ({x ∈ D0 :

∫

A
x(s) ds > 1})

∞∑

i=0

(ψi)α
+ + mZ({x ∈ D0 :

∫

A
x(s) ds < −1})

∞∑

i=0

(ψi)α
−

]
.

The same result can be derived by observing that
∫
A Xt(s) ds has representation as a one-dimensi-

onal linear process with iid regularly varying noise
∫
A Zi(s) ds. Results of this kind can be found

e.g. in Embrechts et al. [8], Appendix 3.3.
If we further specify the noise Z to be a regularly varying Lévy random field as considered in

Section 3.2, the latter expression further simplifies. For example, for a random vector V with
uniform distribution on (0, 1)d, θ independent of V with distribution as described in Section 3.2,

mZ({x ∈ D0 :
∫

A
x(s) ds > 1}) = α

∫ ∞

1

∫

[0,1]d
P (θI[v,1]∩A > 1) dv θ−α−1 dθ

= α

∫ ∞

1

∫

[0,1]d
I[v,1]∩A dv θ−α−1 dθ

= |A| .
Example 5.7. In this example, we consider the limiting distribution of the space-time maxima
maxt=1,...,n |Xt|∞. From Theorem 5.5 and the continuous mapping theorem we have

N (1)
n =

∞∑

i=1

εa−1
n |Xt|∞

d→ N (1) =
∞∑

i=1

∞∑

j=0

ε|ψjPi|∞ .

Hence

P (a−1
n max

t=1,...,n
|Xt|∞ ≤ y) = P (N (1)

n ((y,∞]) = 0)

→ P (N (1)((y,∞]) = 0)

= P ( sup
i≥1, j≥0

|ψjPi|∞ ≤ y) = G(y) .(5.10)

In order to get explicit formulas for the limit distribution, we assume that ψj(s) = ψj for some
constants ψj and all j ≥ 0. Then

G(y) = P (sup
i
|Pi|∞ ≤ y/ sup

j
|ψj |) .

The points Pi, i = 1, 2, . . ., constitute a PRM on D0 with mean measure mZ , hence the points
|Pi|∞, i = 1, 2, . . . , constitute a PRM on (0,∞] with mean measure of (z,∞] given by

mZ({x ∈ D0 : |x|∞ > z}) = z−αmZ({x ∈ D0 : |x|∞ > 1}) = cZ z−α .
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Hence

G(y) = e−cZ (supi |ψi|/y)α
.

A straightforward calculation shows that

nP (|X|∞ > any) ∼ y−α cZ

∞∑

j=0

|ψj |α .

The extremal index of the process (|Xt|∞) can then be read off from G as

max
j=0,1,...

|ψj |α/

∞∑

j=0

|ψj |α .(5.11)

We refer to Leadbetter et al. [19] and Embrechts et al. [8], Section 8.1, for the definition and
properties of the extremal index of a strictly stationary sequence. We also mention that the
extremal index of (|Xt|∞) coincides with the extremal index of the absolute value sequence of
a one-dimensional linear process Yt =

∑∞
j=0 ψjηt−j , where (ηj) is an iid sequence of real-valued

regularly varying random variables with index α > 0. Alternatively, the value (5.11) coincides with
the extremal index of the sequence

∑∞
j=0 |ψj | |Zt−j |∞. These facts about the extremal index of a

linear process follow from Davis and Resnick [7].
It is a rather surprising fact that the extremal indices of the sequences (|Xt|∞), (

∑∞
j=0 |ψj | |Zt−j |∞)

and (|Xt(s)|), s ∈ [0, 1]d, coincide. A particular consequence is that the extremal index (5.11) can
be estimated from the time series of observations |Xt(s)| at any site s.

Example 5.8. A result analogous to (5.10) can be obtained for the sequence of maxima at a finite
number of sites si ∈ [0, 1]d. We illustrate the case with two distinct sites s1 and s2. Then the
continuous mapping theorem yields

∞∑

i=1

ε(Xi(s1),Xi(s2))/an

d→
∞∑

i=1

∞∑

j=0

ε(ψj(s1)Pi(s1),ψj(s2)Pi(s2))

We conclude that

P (a−1
n max

t=1,...,n
Xt(s1) ≤ y1 , a−1

n max
t=1,...,n

Xt(s2) ≤ y2)

→ P ( sup
i≥1, j≥0

ψj(s1)Pi(s1) ≤ y1 , sup
i≥1, j≥0

ψj(s2)Pi(s2) ≤ y2)

= P (sup
j≥0

ψj(s1) sup
i≥1

Pi(s1) ≤ y1 , sup
j≥0

ψj(s2) sup
i≥1

Pi(s2) ≤ y2) = p(y1, y2) .

We assume that both Ψi = supj≥0 ψj(si), i = 1, 2, are positive. Then

− log p(y1, y2) = mZ({x ∈ D0 : (x(s1), x(s2)) 6∈ [0, y1/Ψ1]× [0, y2/Ψ2]})
= (Ψ1/y1)α mZ({x ∈ D0 : x(s1) > 1}) + (Ψ2/y2)α mZ({x ∈ D0 : x(s2) > 1})

−mZ({x ∈ D0 : x(s1) > y1/Ψ1 , x(s2) > y2/Ψ2}) .
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