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Abstract

Continuous-time autoregressive moving average (CARMA) processes with a non-
negative kernel and driven by a non-decreasing Lévy process constitute a very
general class of stationary, non-negative continuous-time processes. An example is
the Lévy-driven stationary Ornstein-Uhlenbeck (or CAR(1)) process, introduced by
Barndorff-Nielsen and Shephard (2001) as a model for stochastic volatility. For such
processes we take advantage of the non-negativity of the increments of the driving
Lévy process to develop a highly efficient estimation procedure for the parameters
when observations are available at uniformly spaced times 0,h,... , Nh. We also
show how to reconstruct the background driving Lévy process from a continuously
observed realization of the process and use this result to estimate the increments
of the Lévy process itself when A is small. Asymptotic properties of the coefficient
estimator are derived and the results illustrated using a simulated gamma-driven

Ornstein-Uhlenbeck process.
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1. Introduction.

This paper is concerned with estimation of the parameters of a non-negative Lévy-
driven Ornstein-Uhlenbeck process and of the parameters of the background driving Lévy
process, based on observations made at uniformly and closely-spaced times. The idea is to
obtain a highly efficient estimator of the CAR(1) coefficient by estimating the correspond-
ing coefficient of the sampled AR(1) process using the estimator of Davis and McCormick
(1989) for non-negative discrete-time AR(1) processes. This estimator is then used to
estimate the corresponding realization of the driving Lévy process using a generalization
of an argument due to Pham-Din-Tuan (1977). The exact recovery of the driving Lévy
process requires continuous observation of the Ornstein-Uhlenbeck process. The integral
expressions determining the driving Lévy process are therefore replaced by approximating

sums using the available discrete-time observations.

In Section 2, we define the stationary Lévy-driven Ornstein-Uhlenbeck (or CAR(1))
process, {Y(t),t > 0}. In Section 3, we characterize the sampled AR(1) process, {Yn(h) =
Y (nh),n =0,1,2,...}, and the distribution of its driving white noise sequence in terms
of the parameters of the underlying CAR(1) process and its driving Lévy process. The au-
toregressive coefficient of the sampled process is then estimated with very high efficiency
using the method of Davis and McCormick (1989). From the relation between the sampled
and continuous-time processes we then obtain corresponding parameter estimates for the
CAR(1) process. The idea of using the sampled process to estimate the parameters of
the underlying continuous-time process was first used by Phillips (1954), but in our case
the non-decreasing property of the driving Lévy process and the non-negativity of the
corresponding discrete-time increments permits a very large efficiency gain. In Section 4,
we show how to recover the driving Lévy process under the assumption that the process
is observed continuously and then approximate the results using closely-spaced discrete
observations. In Section 5, we derive the asymptotic distribution of the coefficient esti-
mator when the driving Lévy process is a gamma process and illustrate with a simulated
example the performance of the estimators of both the CAR(1) parameters and the driv-
ing Lévy process. When the continuously observed process is available, the autoregression

coefficient can be identified with probability 1. This is discussed in Section 6.
2. Stationary Lévy-driven Ornstein-Uhlenbeck processes.

In order to define the stationary Lévy-driven Ornstein Uhlenbeck (or CAR(1)) process,
we first record a few essential facts concerning Lévy processes. (For a detailed account of

integration with respect to Lévy processes, see Protter (2004)). Suppose we are given a



filtered probability space (€2, F, (Fi)o<t<oo, P), where Fq contains all the P-null sets of F

and (F;) is right-continuous.

Definition 1 (Lévy Process). {L(t),t > 0} is an (F;)-adapted Lévy process if L(t) € F;
for all ¢ > 0 and

e L(0) =0 as.,

e L(t) — L(s) is independent of F;, 0 < s < t < 00,

e L(t) — L(s) has the same distribution as L(t — s) and
e L(t) is continuous in probability.

Every Lévy process has a unique modification which is cadlag (right continuous with
left limits) and which is also a Lévy process. We shall therefore assume that our Lévy

process has these properties. For non-decreasing Lévy processes the Laplace transform
fL(t)(S) := E(exp(—sL(t))) has the form

frw(s) = exp(—t®(s)), R(s) =0,

where

d(s) =m+ /(0 )(1 — e )y (dx),

with m > 0 and v a measure on the Borel subsets of (0,00) satisfying

u
v(du) < oo.

The measure v is called the Lévy measure of the process L and m is the drift. There

exists a wealth of possible marginal distributions for L(t), attainable by suitable choice
of m and v. (See for example Barndorff-Nielsen and Shephard (2001).) For second-order

Lévy processes F(L(1))?> < oo and there exist real constants y and o such that
EL(t) = pt and Var(L(t)) = o?t, fort > 0.

To avoid problems of parameter identifiability in the CAR(1) process defined below we
assume throughout that L is scaled so that Var(L(1)) = 1. Then Var(L(t)) =t for ¢t > 0
and we shall refer to the process L as a standardized second-order Lévy process. Through-
out this paper we shall be concerned with CAR(1) (or stationary Ornstein-Uhlenbeck)
processes driven by standardized second-order non-decreasing Lévy processes. The Lévy-
driven CAR(1) process is defined as follows.



Definition 2 (Lévy-driven CAR(1) process) A CAR(1) process driven by the Lévy
process {L(t),t > 0} is defined to be a strictly stationary solution of the stochastic
differential equation,

dY (t) + aY (t)dt = odL(t). (2.1)

In the special case when {L(¢)} is Brownian motion, (2.1) is interpreted as an It6 equation
with solution {Y'(¢),¢ > 0} satisfying

Y(t) =e Y (0) + a/t e WAL (u), (2.2)

where the integral is defined as the L? limit of approximating Riemann-Stieltjes sums. For
any second-order driving Lévy process, {L(t)}, the process {Y(¢)} can be defined in the
same way, and if {L(¢)} is non-decreasing (and hence of bounded variation on compact
intervals) {Y(¢)} can also be defined pathwise as a Riemann-Stieltjes integral by (2.2).
We can also write

t
Y(t) = e Y (s) + 0'/ e~ dL(u), for allt > s > 0, (2.3)

showing, by independence of the increments of {L(¢)}, that {Y(¢)} is Markov. (For a
general theory of integration with respect to semimartingales, and in particular with re-
spect to Lévy processes see Protter (2004).) The following proposition gives necessary and
sufficient conditions for stationarity of {Y(¢)}. For a proof see Brockwell and Marquardt
(2005).

Proposition 1. If Y(0) is independent of {L(¢),¢ > 0} and E(L(1)?) < oo, then Y (¢) is
strictly stationary if and only if @ > 0 and Y'(0) has the distribution of o fooo e~ "dL(u).

Remark 1. By introducing a second Lévy process {M(t),0 < ¢t < oo}, independent of L
and with the same distribution, we can extend {Y'(¢),t > 0} to a process with index set

(—00,00). Define the following extension of L:
L*(t) = L(t)l[gyoo) (t) — M(—t—)[(,ooyg] (t), —00 <t < oo

Then, provided a > 0, the process {Y(¢)} defined by

t
Y(t)=0 / e "I IL* (u), (2.4)
is a strictly stationary process satisfying equation (2.3) (with L replaced by L*) for all
t > sand s € (—o0, 00). Henceforth, we refer to L* as the background driving Lévy process
(BDLP) and denote it by L for simplicity.



Remark 2. From (2.4) we have the relation
t
Y(t) = e 9y (s) + U/ eV L(u), t> s> —oo0. (2.5)
Taking s = 0 and using Lemma 2.1 of Eberlein and Raible (1999), we find that
t
Y (t) = eV (0) + o L(t) — ac / == L () du, > 0, (2.6)
0

where the last integral is a Riemann integral and the equality holds for all finite ¢ > 0
with probability 1.

3. Parameter estimation via the sampled process.

Setting ¢t = nh and s = (n — 1)h in equation (2.5), we see at once that for any h > 0, the
sampled process {Yn(h), n=0,1,2,...} is the discrete-time AR(1) process satisfying

YW —gv® £z n=01,2,..., (3.1)
where
d) — e—ah, (32)
and
nh
A / e~ M= gL (). (3-3)
(n—1)h

The noise sequence {Z,} is i.i.d. and positive since L has stationary, independent and

positive increments.

If the process {Y(¢),0 < ¢t < T} is observed at times 0, h,2h, ..., Nh, where N =
[T/h], i.e., N is the integer part of T/h, then, since the innovations 7, of the process
{Yn(h)} are non-negative and 0 < ¢ < 1, we can use the highly efficient Davis-McCormick

estimator of ¢, namely

(h)

Ry . Yn

oN = 1EneN y (3-4)
n—1

To obtain the asymptotic distribution of gz;%l) as N — oo with A fixed, we need to suppose
that the distribution function F of Z, satisfies F'(0) = 0 and that F' is regularly varying
at zero with exponent «, i.e., that there exists a > 0 such that
F(tx)
im
tlo F(t)

=z% forallz > 0.



(These conditions are satisfied by the gamma-driven CAR(1) process as we shall show
in Section 5.) Under these conditions on F', the results of Davis and McCormick (1989)
imply that ég\l;) — ¢ a.s. as N — oo with A fixed and that

lim P |ky (80 — ¢)ca < 2| = Ga(x), (3.5)

N—00

where ky = F-Y(N1), ¢q = (BY,"*)V® and G,, is the Weibull distribution function,

Gula) 1 —exp{—2“}, ifx>0, (3.6)
o(z) = .
0, if v <0.

From the observations {Yn(h), n=20,1...,N} we thus obtain the estimator ég\l;) and,

from (3.2), the corresponding estimator,
il = —h~"log Y (3.7)

of the CAR(1) coefficient a. Provided the distribution function F' of the noise terms 7,
in the discrete-time sampled process satisfies the conditions indicated above, we can also
determine the asymptotic distributions of this estimator. In particular, using a Taylor
series approximation, we find that

lim P [(—h)e e ky! (ag@ . a) < x] = Go(z), (3.8)

N—

where G, is given in (3.6). Since var(Y®) = 52 /(2a), we use the estimator,

. N
o 2ay NORR=0N
ONn = N Z(z -Yy) (3.9)
i=0

to estimate o2,
4. Estimating the Lévy increments.

So far, we have made no assumptions about the driving Lévy process except for non-
negativity and existence of FL(1)?. In order to suggest an appropriate parametric model
for L and to estimate the parameters, it is important to recover an approximation to L
from the observed data. If the CAR(1) process is continuously observed on [0,7], then
the argument of Pham-Din-Tuan (1977) can be used to recover {L(t),0 < ¢ < T'}. His
L?-based spectral argument which he applied to Gaussian processes, also applies to the

Lévy-driven CAR(1) process to give
¢
Lt)=0"" [Y(t) —Y(0) +a/ Y(s)ds] : (4.1)
0
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A direct justification of this result can be obtained by defining L as in (4.1) and then
showing that Y (0)e %" + afot e =" dL(u) = Y(t). Thus, using Remark 2 of Section 2,

we have
Y(0)e  + o /0 t e WAL (u)

—Y(0)e + oL(t) — a0 /0 ool [ (u)du

—V(0)e * + [Y(t) ~Y(0) +a /0 t Y(s)ds] —a /0 Cattw [Y(u) ~Y(0) +a /0 ' Y(s)ds] du

t t t t

=Y (t) +a/ Y(s)ds — a/ e~ Y (u)du — aZ/ Y(s)/ e~ ="y, ds
0 0 0 s

=Y (t)

as required.

From (4.1), the increment of the driving Lévy process on the interval ((n — 1)h, nh] is
given by

A LW .= L(nh) — L((n —1)h) = o~ {Y(nh) —Y((n—1)h) + a/(nh

n
n—1)h

Y(u)du] .

Replacing the CAR(1) parameters by their estimators and the integral by a trapezoidal

approximation, we obtain the estimated increments,

n n—1

ALY = o3t [y =y 4 aPhr +vi0) /2] (4.2)

5. The gamma-driven CAR(1) process

In this section, we illustrate the preceding estimating procedure in the case when L is
a standardized gamma process. Thus L(t) has the gamma density f;; with exponent ~t,

scale-parameter v~ /2, mean v'/?t and variance t. The Laplace transform of L(t) is
fL(t)(s) := FEexp(—sL(t)) = exp {—t®(s)}, R(s) >0, (5.1)
where ®(s) = vlog(1 4+ Bs), f =~""/2 and v > 0.
Based on the h-spaced observations {Yn(h), n=0,1,..., N}, we estimate the discrete-
time autoregression coefficient ¢ and the CAR(1) parameters a and o2 using (3.4), (3.7)
and (3.9) respectively. We then estimate the Lévy increments as in (4.2) and use them

to estimate the parameter v of the standardized gamma process L. To obtain the asymp-
totic distributions of ¢S\I,1) and d%l) as N — oo with A fixed, we first show that the

7



distribution function F' of Z, in (3.1) is regularly varying at zero with exponent ~h
and then determine the coefficients ky = F~1(N-1) and ¢, = (EY,"*)V* in (3.5). To
do so, we use the Laplace transform (5.1) to investigate the behavior of the density of
Z, = afoh e~ h=dL(t) = afoh e~ %dL(t) near zero.

Define W), := Z, /o = foh e~dL(t). The Laplace transform of W), is

fw, (s) = exp [— /Oh <I>(se“t)dt]
= exp [— /Oh vlog(1 + 5se“t)dt] : (5.2)

The exponent in (5.2) has the power series expansion,

h h 1
—/0 vlog(1 + Bse”™)dt = —7/0 log [356_‘”(1 + ﬁseat)] dt

1
432s%a

1 1
~ log(sB)™" + §7ah2 + [—(1 — e (1—e®h)y 4. |,

Bsa

as s — oo. Hence fyy, (s) has the corresponding expansion,

—vh
Y 6%7(1«}12 Cl CQ

fWh(S) ~ s7h gYh+1 + §Th+2 +eee,

where Cy, Cy, ... are constants depending on 7, 3, h and a. Since fz,(s) = fWh (0s),
57hle (s) = (Uﬁ)‘”heéwh?, as s — 00.

By Theorem 30.2 of Doetsch (1974), the density f, of Z; has the expansion, in a neigh-

bourhood of zero,

Fou(2) = (0B) T e _(02)"Cy | (02)™Cs
7 ['(vh) ol'(yh+1)  ol'(yh +2)
So
fzih(i) — (08)7™"e3 1" JT(yh), as z — 0,
X
and
Fz,(z) ~ 27" (cB) e JT(vh + 1), as z — 0. (5.3)

Thus the distribution F' of Z,, is regularly varying at zero with exponent vh.
From the definition of ky in (3.5) we have &+ = OkN Fy,(du). This equation, together
with (5.3), gives

k'~ (08) [T(vh + 1)] YO eath NYOW - ag N = 0. (5.4)



In order to calculate c,;, we need to find E[Yn( )] , where Y;\" = i0? ' Zn—j. The

Laplace transform of V" s

fro(s) = B~ HE 5970,

So
log fy,m(s) Z log fz, (s¢7)
= Z log fw, (so¢’)
§=0
- _72/ log(1 4 fsod’e ¥)dy
j=0 70
and hence

fYéh) (s) = exp [

SIS

Z [dilog(1 + Bso¢’) — dilog(1 + Bso¢’e *")]
=0

— exp (gdilog(l + ﬁsa)) ;

where dilog is the dilogarithm function, dilog(z) = [," log(u)/(1 — u)du. Using Theorem
2.1 of Brockwell and Brown (1978), we get

vh 1 —~h ‘ ~ ‘
e D
) T(1—7h) /0 ’ v (5)] ds

:m /0 s Lexp (gdilog(l + ﬂsa)) log(1 + fso)ds, (5.5)

E{y(h)

n

r11/(vh)
w7 ] can be numerically

where Df denotes the derivative of f. Then c,, = [E [Ya"]
evaluated from (5.5) for fixed h.

Theorem 1. For a sequence of observations {Yn(h), n=0,1,...,N} from a gamma-driven

CAR(1) process, we have &S\f;) — a a.s. and

lim P (—h)e_“hk]_vl(d%l) —a)cy < x| = Go(z),

N—00
where G, is as in (3.6), a« = 7h, &S\f;) is defined in (3.7), k' is given in (5.4), and c, is
evaluated through (5.5).
Proof. At the beginning of Section 3, we have shown that V" isa stationary discrete-time

AR(1) with autoregression coefficient ¢ € (0,1) and i.i.d. noise sequence {7, }. According
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o (5.3), the distribution function F of Z, is regularly varying at zero with exponent
a = 7vh and satisfies the condition F'(0) = 0. Since 0 < Z,, < o(L(nh) — L((n — 1)h),

fuéF (du) < oo for all £ > 0. By Corollary 2.4 of Davis and McCormick (1989), we have

(]5N — ¢ a.s., which implies agv) — a a.s.. From the same corollary, we also conclude that

lim P [k;fl(g)g\}fl) — @)eyn < x] = Gn(2),

N—oo

where q%ﬁ@ and ky' are given in (3.4) and (5.4) respectively, and c.; is evaluated through

(5.5). Using a Taylor series expansion, we find from this result that

lim P [(—h)e_“hkx,l(&s\};) —a)cy, < m] = Gp(). O

N—oo

Theorem 1 gives the limiting distribution of qﬁ%l) for fixed h as N — oo. It is of interest
also to consider the behaviour of the estimator as h also goes to zero. For any non-negative

random variable Y with density function f(u), we have

[EY?]'* = [/OOO usf(u)du] v = [1 n S/Ooo USIf(u)du] Vs
(oot e

as long as EY ! is finite. Applying this result to v,

and Brown (1978), we obtain
lim ¢, = exp (B(V,") 1) = exp (/ fyu»(s)dS)
—0 0 n

= exp </ ezdﬂog(lws")ds) : (5.6)
0

The behaviour of k]’vl, defined in (5.4), is more complicated. Using L’Hospital’s Rule, we

and using Theorem 2.1 of Brockwell

have
logl’ 1 I 1
hm_m — —limﬂ = -T'(1) = vg,
5—0 s 5—0 F(s + 1)
where g is the Euler-Mascheroni constant, with numerical value of 0.5772- - -. Hence
limy_ [[(yh 4+ 1)] 70" = ¢ and
ky' ~ (0B) e NYOR a5 N — oo and b — 0. (5.7)

When £ is small, ky' and c¢,;, can be well approximated by (5.6) and (5.7). Since the rate
of convergence in Theorem 1, as indicated by kN , increases as h decreases and since the

limiting distribution G.,; becomes degenerate as h — 0, this suggests the possibility of
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super-convergence of dg\];) to a as N — oo and h — 0. In fact, in Section 6, we show that
(h)

for any fixed T > 0, dT/h — a a.s. as h — 0.
Example 1. We now illustrate the estimation procedure with a simulated example. The
gamma-driven CAR(1) process defined by,

DY (1) +0.6Y(t) = DL(t), ¢ € [0,5000], (5.8)

was simulated at times 0,0.001,0.002, ... ,5000, using an Euler approximation. The pa-
rameter v of the standardized gamma process was 2. The process was then sampled at
intervals h = 0.01, h = 0.1 and h = 1 by selecting every 10", 100"" and 1000*"" value
respectively. We generated 100 such realizations of the process and applied the above esti-
mation procedure to generate 100 independent estimates, for each h, of the parameters a
and 0. The sample means and standard deviations of these estimators are shown in Table

1, which illustrates the remarkable accurady of the estimators.

Table 1. Estimated parameters based on 100 replicates on [0, 5000] of the

gamma-driven CAR(1) process (5.8) with v = 2, observed at times nh,n =0,...,[T/h].
Gamma increments
Spacing | Parameter | Sample mean Sample std deviation
of estimators of estimators
h=1 a 0.59269 0.00381
o 0.99796 0.01587
h=0.1 a 0.59999 0.00000
o 1.00011 0.01281
h=0.01 a 0.60000 0.00000
o 0.99990 0.01175

To estimate the parameter v of the driving standardized gamma process, the following
procedure was used. For each h and each realization, the estimated CAR(1) parameters
were used in (4.2) to generate the estimated increments AL%’Z), n=1,...,5000/h. These
were then added in blocks of length 1/h to obtain 5000 independent estimated increments
of L in one time unit. The histogram of the increments for one realization with h = .01
is shown, together with the true probability density of L(1), in Figure 1. Even if we did
not know that the background driving Lévy process is a gamma process, the histogram
strongly suggests that this is the case. For each h and for each realization of the process,
the sample mean # of the estimated increments per unit time was then used to estimate
the parameter v of the driving standardized Lévy process, giving a set of 100 independent

estimates of 7 for each h. The sample means and standard deviations of these estimators
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are shown in Table 2.

0.4 -

0.3 -

0.2 H _

0.1 .
fo) | I Ham . .

(o] 1 2 3 4 5 6 7 8 9
AL

Figure 1: The probability density of the increments per unit time of the standardized Lévy process with
v = 2 and the histogram of the estimated increments from a realization of the CAR(1) process (5.8),

)

obtained by computing AL%O1 , n=1,...,500000, from (4.2) and adding successive values in blocks of

100 to give estimated increments per unit time.

Table 2. Estimated parameter of the standardized driving Lévy process.

Spacing | Parameter | Sample mean Sample std deviation
of estimators of estimators

h=1 7y 1.99598 0.05416

h=0.1 ¥ 2.00529 0.03226

h =0.01 ¥ 2.00547 0.02762

6. Estimation for the continuously observed process.

It is interesting to note that from a continuously observed realization on [0,7] of a
CAR(1) process driven by a non-decreasing Lévy process with drift m = 0, the value of
a can be identified exactly with probability 1. This contrasts strongly with the case of a

Gaussian CAR(1) process. The result is a corollary of the following theorem.

Theorem 2. If the CAR(1) process {Y (t),t > 0} defined by (2.1) is driven by a non-

12



decreasing Lévy process L with drift m and Lévy measure v, then for each fixed ¢,
Y(t+h)—Y(t)

h

Proof. From (2.6) we find that

+aY(t) - mas.as hl0.

Y(t+h)=Y(t)=Y(0)(e ®“M —e ) 4 o(L(t + h) — L(t))

¢ t+h
—aa/ e~ =W (e _ 1) L(u)du — aa/ e~ UL (w)du.
0 t

Dividing each side by h, letting i | 0, and using the fact that limyo(L(t+h)—L(t))/h =m
(Shtatland (1965)), we see that

Y(t+h) —Y(t)
h

t
—m —aY (0)e™™ + a20/ e~ UYL (u)du — aoL(t) = m — aY (). O
0

Corollary 1. If m = 0 in Theorem 2 (this is the case if the point zero belongs to the
closure of the support of L(1)), then for each fixed ¢, with probability 1,

logY(t) —log Y (t + h)

a= l}%l A (6.1)
For each fixed T' > 0, a is also expressible, with probability 1, as
logY(s) —logY (¢t
a= sup 0g () = log ¥'( ) (6.2)

0<s<t<T t—s
Proof. By setting L(t) = 0 for all ¢ in the defining equation (2.1) we obtain the inequality,
for all s and ¢ such that 0 < s <t < T,

logY(s) —logY(t) < a(t — s),

from which it follows that

logY(s) —logY (¢
a> sup 0g ¥'(s) — log ) (6.3)
0<s<t<T t—s

From Theorem 2 with m = 0 we find that

Y(t)=Y(t+h)
hY (t)

—aas h 0.

From the inequalities (6.3) and 1 —x < —logx for 0 < x < 1, we obtain the inequalities,

)t+h) < log Y () —le)gY(t—i-h) <

Y () - Y(
hY (¢

a,

13



and letting h | 0 gives (6.1). But this implies that
logY(s) —log Y (t)

a < sup )
0<s<t<T t—s
which, with (6.3), gives (6.2). O
Remark 3. If observations are available only at times {nh : n =0,1,2,...,[T/h]}, and
if the driving Lévy process has zero drift, Corollary 1 suggests the estimator,
logY (nh) —logY 1)h
0 qp Y () ~logY((n+ 1)
0<n<[T/h] h

This estimator is precisely the same as the estimator (3.7). Its remarkable accuracy has

already been illustrated in Table 1. The analogous estimator, based on closely but irreg-

ularly spaced observations at times ti,ts,... ,ty such that 0 <t <ty < --- <ty <T,
is
logY (t,) —logY (¢t
n tn+1 - tn

By Corollary 1, both estimators converge almost surely to a as the maximum spacing

between successive observations converges to zero.

7. Conclusions
In Section 3 of this paper, we developed a highly efficient method, based on observa-

tions at times 0, h, 2h,... , Nh, for estimating the parameters of a stationary Ornstein-
Uhlenbeck process {Y'(¢)} driven by a non-decreasing Lévy process {L(t)}. If h is small,
we used a discrete approximation to the exact integral representation of L(t) in terms of
{Y(s),s < t} to estimate the increments of the driving Lévy process, and hence to esti-
mate the parameters of the Lévy process. Under specified conditions on the driving Lévy
process we obtained the asymptotic distribution of the estimator of the CAR(1) coefficient
as N — oo with A fixed. The accuracy of the procedure was illustrated with a simulated
example of a gamma-driven process. We also showed that the CAR(1) coefficient a is de-
termined almost surely by a continuously observed realization of Y on any interval [0, 7.
The expression for a suggests an estimator based on discrete observations of Y which,
for uniformly spaced observations, is the same as the estimator developed in Section 3.
The generalization of the procedure to non-negative Lévy-driven continuous-time ARMA

processes is currently in progress.
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