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1 Introduction

An Independent Components Analsis (ICA) refers to the problem of recovering individual signals from ob-
servations that consist of mixtures of the signals. Specifically, we consider observations coming from the
model

X = AS , (1.1)

where S is an m-dimensional source vector, X is a random m-vector, and A ∈ Rm×m is the unknown mixing
matrix. Based on observations X1, . . . , Xn, the goal is to estimate the unmixing matrix W = A−1 which
allows on the recover the corresponding signals S1, . . . , Sn. Independent Component Analysis (ICA) is a
popular framework where we answer this question by estimating the a priori unknown mixing matrix. ICA
has been used for signal separation in fields such as financial time series, biomedical engineering, neuroscience,
speech recognition, and so on, see [12], [6] and [9].

Formally, denote the signal by S = (S1, S2, ..., Sm)T ∈ Rm a random vector where the components
{S1, S2, ..., Sm} are mutually independent random variables. For a mixing matrix A ∈ Rm×m, which we
assume to be invertible, we observe n samples X1, ..., Xn with distribution X where X = AS. The question
of separating the signals is to estimate W0 := A−1, the unmixing matrix.

The motivation for this body of work comes from studying data like the financial cost and number of
deaths due to natural disasters in Davis and Ng, 2021 [? ]. It is observed that these variables tend to have
large values corresponding to disaster type events such as September 11, Hurricane Katrina, Hurricane Sandy,
and so on. To fix ideas consider a Vector Autoregressive VAR(p) time series model Yt ∈ Rm represented by

Yt = φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + et (1.2)

where φi ∈ Rm×m for 1 ≤ i ≤ p. The noise term is taken to be an ICA model et = ASt and independent
component of St is referred to as a shock. It is observed that the shock component corresponding to disaster-
type events has heavy tails. We thus need a method that can reliably return estimates for the unmixing
matrix when one of the components of the signal S has infinite variance.

Numerous methods for ICA have been developed and studied since its introduction. These include estima-
tion using maximum likelihood [5], JADE [3], kurtosis maximization/minimization in fastICA [10], product
density estimation using splines in ProDenICA [8] and log concave density approximation in LogConICA
[14]. Refer [6] and for a more extensive list of methods and techniques developed for ICA. With the exception
of LogConICA, all these methods require finite second moments. Anderson et al. 2015 [1] and Anderson et
al. 2017 [2] study the heavy tailed ICA problem via a convex geometry approach where they orthogonalize
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the data using the centroid body. However our method is based on the methods CHFICA Chen and Bickel
2005 [4] and dCovICA from Matteson and Tsay 2017 [11].

CHFICA uses the following method as a criterion for independence. Let Z ∈ Rm be a random vector and
recall that the components of Z are mutually independent if and only if the joint the characteristic function
of Z factorizes: E exp(izTZ) =

∏m
k=1 E exp(izkZk) for each z ∈ Rm. One can then consider:

∫
Rm

∣∣∣∣∣E exp(izTZ)−
m∏
k=1

E exp(izkZk)

∣∣∣∣∣
2

dµ(z) (1.3)

where µ is some measure with support Rm. Chen and Bickel [4] considered µ(z) =
∏m
j=1 λ1(zj) where λ1 is

a 1-D probability measure.
Matteson and Tsay [11] obtained consistency and asymptotic distributions for their estimator by using

the distance covariance statistic as the criterion for independence. Distance covariance was developed by
Székely et al. [16] and Székely and Rizzo [15]. It is a weighted square norm of the difference between the
joint and product of the marginal characteristic functions with respect to a specific weight function. Let
X ∈ Rp and Y ∈ Rq be random vectors and consider∫

Rp+q

∣∣E exp(i〈s,X〉+ i〈t, Y 〉)− E exp(i〈s,X〉) · E exp(i〈t, Y 〉)
∣∣2dµ(s, t) (1.4)

where µ is a measure supported on Rp+q. Suppose we choose µ such that the above integral is finite, for
example if µ is a finite measure (as the absolute value of the characteristic functions are bounded by 1).
Then (1.4) is zero if and only if X and Y are independent. Distance covariance, however, uses an infinite
measure which we will state in Section 2.

This paper is organized as follows. In Section 2 we introduce the distance covariance statistic and prove
uniform convergence results for the distance covariance which we shall find useful when tackling ICA. Our
main result is in Section 3 where we apply the aforementioned uniform convergence results to the ICA
and prove consistency of our estimator. We also show that in the presence of noise, our estimator remains
consistent. The ancillary results as well as the more technical results are collected in the Appendix.

2 Distance Covariance

Let X ∈ Rp and Y ∈ Rq be random vectors and we are interested in studying if X and Y are independent or
not. Covariance or correlation between X and Y is one quantity one immediately thinks of when studying
independence. However it is well known that covariance or correlation can be zero when X and Y are
dependent. An alternative to these quantities is the so called distance covariance (and distance correlation)
as introduced by Székely et al. [16] and Székely and Rizzo [15]. This quantity has the property that it is a
measure of dependence and in particular this has the very desirable property that it is zero if and only if X
and Y are independent.

Notation Before embarking on the main results, we begin with some notation. To avoid heavy notation
we suppress the dependence of inner products and norms on p and q. All inner products and norms are
compatible with the dimension of the vectors and matrices. For vectors z, z′ ∈ Rq denote their inner product
by 〈z, z′〉. Denote the Euclidean norm by |z| :=

√
〈z, z〉. For a p× q matrix U , we denote by ||U || to be the

spectral norm of U . That is,

||U || = sup
z∈Rq

|Uz|
|z|

Denote by φX,Y (s, t) = E exp(i〈s,X〉 + i〈t, Y 〉), the joint characteristic function. Let φX(s) = φX,Y (s, 0)
and φY (t) = φX,Y (0, t) denote the respective marginal characteristic functions.

2



We will start by defining the distance covariance metric for studying the factorization of (X,Y ) a random
vector into its components X and Y . Let (X,Y ) have some joint distribution with X ∈ Rp and Y ∈ Rq such
that E|X| <∞, E|Y | <∞. We define the distance covariance to be

I(X,Y ) :=

∫
Rp+q

|φX,Y (s, t)− φX(s)φY (t)|2 dω(s, t)

where ω is the infinite measure

dω(s, t) = (cpcq|s|1+p|t|1+q)−1dsdt,

cp = π(1+p)/2/Γ((1 + p)/2), cq = π(1+q)/2/Γ((1 + q)/2).
The finiteness of I(X,Y ) is guaranteed if E|X| < ∞, E|Y | < ∞ - see (2.5) in Székely, et al. [16]. If in

addition we had E|XY | <∞, then due to Lemma 2.3 in Davis et al. 2018, [7]

I(X,Y ) = E[|X − Ẋ||Y − Ẏ |] + E[|X − Ẋ|]E[|Y − Ẏ |]− 2E[|X − Ẋ||Y − Ÿ |] (2.1)

where (Ẋ, Ẏ ) and (Ẍ, Ÿ ) are i.i.d copies of (X,Y ). If X and Y both have components with infinite variance,
then E|XY | is not necessarily finite. This is a key point in ICA with heavy tails (i.e. source S ∈ Rm with
one infinite variance component) because for most m ×m matrices B, BS will have multiple components
with infinite variance.

Suppose we have samples {(Xj , Yj)}nj=1 where (Xj , Yj) ∼ (X,Y ). We can estimate the distance covariance
statistic by the sample estimate

In(X,Y ) =

∫
Rp+q

|ϕ̂X,Y (s, t)− ϕ̂X(s)ϕ̂Y (t)|2 dω(s, t)

where ϕ̂X,Y (s, t) = 1
n

∑n
j=1 exp(i(sTXj+t

TYj)), ϕ̂X(s) = 1
n

∑n
j=1 exp(isTXj) and ϕ̂Y (t) = 1

n

∑n
j=1 exp(itTXj).

Unlike (2.1), the sampling distribution has all the moments. We can thus obtain the expression for the
sample distance covariance to be

In(X,Y ) =

(
1

n2

∑
1≤j,k≤n

|Xj −Xk||Yj − Yk|
)

+

(
1

n2

∑
1≤j,k≤n

|Xj −Xk|
)(

1

n2

∑
1≤j,k≤n

|Yj − Yk|
)

− 2

(
1

n3

∑
1≤j,k,l≤n

|Xj −Xk||Yj − Yl|
)

We obtain a strong consistency result for uniform convergence of the empirical distance covariance over
a compact set

CM := {(U, V ) : U ∈ Rp×p, V ∈ Rq×q, ||U || ≤M, ||V || ≤M}

The consistency In(X,Y )
a.s.−−→ I(X,Y ) (for i.i.d samples) was shown in Theorem 1 of Székely, et al. [16]

and to prove our result we generalize the proof of this consistency result to our case. The details of the proof
can be found in Section 4.

Theorem 2.1. Consider a strictly stationary ergodic time series {Xj , Yj}j≥1 with values in Rp+q with
marginal distribution (X,Y ) such that E|(X,Y )| <∞. Then

(a) For each M > 0, we have as n→∞

sup
(U,V )∈CM

|In(UX, V Y )− I(UX, V Y )| a.s.−−→ 0

(b) For {(Γn,Λn)}n≥1 a sequence of random matrices, where Γn ∈ Rp×p and Λn ∈ Rq×q that converge
almost surely to non-random matrices Γ and Λ respectively and M > 0, we have as n→∞

sup
(U,V )∈CM

|In(UΓnX,V ΛnY )− I(UΓX,V ΛY )| a.s.−−→ 0
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3 Application of Distance Covariance to ICA

Before stating our results it is important we note that there are identifiability issues that require attention - we
employ the same convention from Chen and Bickel [4]. Firstly, to standardize the scaling for each component
of S we assume that each row of W0 has norm 1. Secondly, the signs on each S and corresponding row of S
can be flipped to get the same distribution. To solve this we assume that along each row of W0, the entry
with the largest absolute value has positive sign. Finally, we may permute the rows of S - to resolve this we
assume that the rows are partially ordered by ≺, where for a, b ∈ Rm we say a ≺ b if whenever there exists
1 ≤ k ≤ m such that ak < bk then al = bl for 1 ≤ l ≤ k − 1. Thus we get the parameter space as in Chen
and Bickel [4]

Ω := {W ∈ Rm×m : ∀ 1 ≤ k ≤ m,
∣∣wk∣∣ = 1, max

1≤l≤m
|Wk,l| = max

1≤l≤m
Wk,l, w1 ≺ w2 ≺ ... ≺ wm}

where he have used the notation wk to denote the kth row of the matrix W . We shall henceforth assume
without loss of generality that W0 ∈ Ω. Also note that given any matrix W with non-zero rows, we can
rearrange and rescale it’s rows to find its Ω projection, which we shall denote by [W ]Ω.

The independence of the components of S implies that the joint characteristic function of S factorizes
into its components, that is φS(z) = Πm

k=1φSk
(zk). For W ∈ Ω, if we define Z := WX we can measure the

independence of all the components of Z using the difference between the characteristic function φZ(t) and∏m
k=1 φZk

(tk). Note that Z has independent components if and only if WA is a rescaled, signed permutation
matrix which further holds if and only if W = W0, as W ∈ Ω. Hence it suffices to try and factorize the joint
characteristic function of the random variable Z as in (1.3).

Now (1.3) is non-negative and is equal to zero if and only if we have for all z ∈ Rm that E exp(izTZ) =
Πm
k=1E exp(izkZk) which holds if and only if Z has independent components. As noted above it thus follows

that (1.3) is zero if and only if W = W0.
As noted by Matteson and Tsay [11], we can show that the components of Z are mutually independent if

and only if for every 1 ≤ k ≤ m− 1 we have that Zk and Zk+1:m = (Zk+1, ..., Zm)T are independent random
vectors. This result is useful because as Matteson and Tsay [11] showed we need only consider,

m−1∑
k=1

∫
s∈R,t∈Rm−k

∣∣E exp(i(sZk + tTZk+1:m))− E exp(isZk)E exp(itTZk+1:m)
∣∣2 dµk(s, t) (3.1)

where for each 1 ≤ k ≤ m−1, µk(s, t) = ω(s, t) is the distance covariance measure in Rm−k+1. By estimating
the characteristic functions by the corresponding population quantities and we get the objective function
used by Matteson and Tsay [11]

m−1∑
k=1

∫
s∈R,t∈Rm−k

∣∣ϕ̂Zk:m
(s, t)− ϕ̂Zk

(s)ϕ̂Zk+1:m
(t)
∣∣2 dµk(s, t) (3.2)

where ϕ̂Zk:m
, ϕ̂Zk

, ϕ̂Zk+1:m
are the estimates of the characteristic functions from the observations X1, ..., Xn.

The above is precisely the technique used by Matteson and Tsay [11] for estimating W0. However their
results are only for the case where each component of S has finite variance.

3.1 Prewhitening and the Objective Function

From equation (3.2), optimize over the space of matrices in Ω. To estimate W0 can be a large dimensional
optimization that is difficult to implement. Prewhitening is used to reduce the size of the parameter space
which facilitates the optimization. This is often a key first step in an ICA estimation procedure.

Let X1, ..., Xn be an i.i.d sample from the ICA model X = AS. Consider the sample covariance matrix
Σ̂X = 1

n−1

∑n
j=1(Xj − X̄)(Xj − X̄)T where X̄ is the mean of the Xj ’s and let Σ̂X = UDUT be it’s SVD

decomposition. Define Σ̂
1/2
X := UD1/2UT to be the square root matrix and Σ̂

−1/2
X = UD−1/2UT . Here and
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in further exposition, the square root of a generic symmetric matrix is one that is defined via SVD as shown

above for Σ̂
1/2
X .

Then let Yj := Σ̂
−1/2
X Xj be the prewhitened data and note that the sample covariance of Y is the identity

matrix. With On := Σ̂
−1/2
S W0Σ̂

1/2
X , we have

Σ̂
−1/2
S Sj = OnYj

Again, the sample covariance of Σ̂
−1/2
S S is the identity so that Im = OnO

T
n which shows that On is

orthogonal. Here is a more explicit verification of this fact:

OnO
T
n = Σ̂

−1/2
S W0Σ̂

1/2
X Σ̂

1/2
X WT

0 Σ̂
−1/2
S = Σ̂

−1/2
S W0Σ̂XW

T
0 Σ̂
−1/2
S

= Σ̂
−1/2
S Σ̂SΣ̂

−1/2
S = Im

We expect Σ̂
−1/2
S to converge to the diagonal matrix Σ

−1/2
S with each diagonal entry being the inverse

standard deviation if the second moment is finite, or zero in case the second moment is infinite. Specifically,

the (k, k)th entry of Σ
−1/2
S is 1/

√
Var(S(k)) if Var(S(k)) <∞ and 0 otherwise.

Due to Lemma A.2, Σ̂
1/2
S is approximately a diagonal matrix for large n. Thus Σ̂

1/2
S On is approximately

a rescaled orthogonal matrix and we can estimate W0 = Σ̂
1/2
S OnΣ̂

−1/2
X by [OΣ̂

−1/2
X ]Ω where O ∈ O(m).

Thus, we minimize the objective function (3.2) over the “acting parameter” space

Ω̂n :=
{[
OΣ̂
−1/2
X

]
Ω

: O ∈ O(m)
}

The significance of prewhitening is that now optimizing over Ω̂n is easier than the space Ω.

∆̂Y (O) :=

m−1∑
k=1

In(Yk(O), Yk+(O))

where ∆̂Y (O) :=
∑m−1
k=1 In(Yk(O), Yk+(O)) is precisely the characteristic function objective in equation (3.2),

with Yk(O) is the kth component of OY and Yk+(O) denotes the k+ 1, ...,m components of OY . We arrive
at the optimization problem

Ô := arg min
O∈O(m)

∆̂Y (O) (3.3)

The estimate for W0 is [Ŵ ]Ω where Ŵ := ÔΣ̂
−1/2
X . Now, OO−1

n is orthogonal for O ∈ O(m) and Z =

WX = OΣ̂
−1/2
X AS = OO−1

n Σ̂
−1/2
S S. Therefore minimizing over orthogonal matrices in (3.2) is equivalent to

minimizing

m−1∑
k=1

∫
s∈R,t∈Rm−k

∣∣∣ϕ̂Z̃k:m
(s, t)− ϕ̂Z̃k

(s)ϕ̂Z̃k+1:m
(t)
∣∣∣2 dµk(s, t) (3.4)

over orthogonal matrices O ∈ O(m) where now Z̃ = OΣ̂
−1/2
S S. The minimizer of this is given by Õ := ÔO−1

n .

Thus, we study the function in equation (3.4) to get convergence of Õ.

3.2 Consistency of Estimator for ICA

To simplify notation in the objective function (3.4), for L ∈ Rm×m a matrix, denote by Sk(L) ∈ R to be
the kth row of L and Sk+(L) ∈ Rm−k to be the components {k + 1, ...,m} of LS for 1 ≤ k ≤ m− 1. Define
finally

J (L) :=

m−1∑
k=1

I(Sk(L), Sk+(L))
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For an i.i.d sample S1, ..., Sn of S we can similarly define

Jn(L) :=

m−1∑
k=1

In(Sk(L), Sk+(L))

Then, the equation (3.4) is precisely Jn(OΣ̂
−1/2
S ). We show that over the compact space of orthogonal

matrices O ∈ O(m), Jn(OΣ̂
−1/2
S ) converges uniformly to J (OΣ

−1/2
S ).

Theorem 3.1. Consider a strictly stationary ergodic time series {Sj}j≥1 with values in Rm with marginal
distribution S such that E|S| < ∞. Assume that the components of S are mutually independent, at most
one component has infinite variance, at most one component is normal and that none of the components are
degenerate. Then as n→∞

sup
O∈O(m)

∣∣∣Jn(OΣ̂
−1/2
S )− J (OΣ

−1/2
S )

∣∣∣ P−→ 0

Proof. Suffices to show for each 1 ≤ k ≤ m− 1 that as n→∞,

sup
O∈O(m)

∣∣∣In(Sk(OΣ̂
−1/2
S ), Sk+(OΣ̂

−1/2
S ))− I(Sk(OΣ

−1/2
S ), Sk+(OΣ

−1/2
S ))

∣∣∣ P−→ 0

Take p = 1 and q = m− k. Note for any O ∈ O(m),∣∣∣In(Sk(OΣ̂
−1/2
S ), Sk+(OΣ̂

−1/2
S ))− I(Sk(OΣ

−1/2
S ), Sk+(OΣ

−1/2
S ))

∣∣∣
=
∣∣∣In(U Σ̂

−1/2
S S, V Σ̂

−1/2
S S)− I(UΣ

−1/2
S S, V Σ

−1/2
S S)

∣∣∣
where U ∈ Rp×m is the kth row of O and V ∈ Rq×m is the submatrix consisting of rows {k+ 1, ...,m} of O.
It is clear that if we take a supremum over O ∈ O(m), the RHS above is bounded by the term in Theorem 2.1

with M = 1 and taking X = Y = S. Taking limit as n→∞ and using Theorem 2.1, with Γn = Λn = Σ̂
−1/2
S

and Γ = Λ = Σ
−1/2
S , the proof is complete due to Lemma A.2

As discussed in Section 2, our estimator is Ŵ = ÔΣ̂
−1/2
X and we have Ŵ = ÕΣ̂

−1/2
S W0. We already know

the convergence of Σ̂
−1/2
S due to Lemma A.2. We will show in the proof of our main theorem that Õ

P−→ Im
as a result of the above Theorem 3.1. We now come to our main result:

Theorem 3.2. Consider an ICA model {Xj}j≥1 taking values in Rm where Xj = ASj for some invertible
matrix A, W0 = A−1 ∈ Ω and {Sj}j≥1 is a strictly stationary ergodic time series with marginal distribution
S such that S has mutually independent components and E|S| < ∞. Assume at most one component of S
has infinite variance, at most one component is normal and that none of the components are degenerate.
Then as n→∞ [

Ŵ
]

Ω

P−→W0

Proof. Define,

Õ := arg min
O∈O(m)

Jn(OΣ̂
−1/2
S )

We have previously shown in Section 3.1 that we can express Ô = ÕOn where On = Σ̂
−1/2
S W0Σ̂

1/2
X . Hence

Ŵ = ÕOnΣ̂
−1/2
X = ÕΣ̂

−1/2
S W0

We shall show that as n → ∞, Õ converges to the identity matrix or some permutation of the rows of the
identity matrix.
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Without loss of generality suppose that only the mth component of S has infinite variance. By the

uniqueness of W0 ∈ Ω, [Ŵ ]Ω
P−→W0.

To prove Õ
P−→ Im we know from Theorem 3.1, as

Õ = arg min
O∈O(m)

Jn(OΣ̂
−1/2
S )

converges to O∗ ∈ arg minO∈O(m) J (OΣ
−1/2
S ). But J (O∗Σ

−1/2
S ) ≥ 0 and due to Comon [5] and since

O∗Σ
−1/2
S has a zero last column, equality holds if and only if the top m − 1 columns of O∗Σ

−1/2
S is a sub-

matrix of a rescaled signed permutation matrix, which holds if and only if the top m− 1 columns of O∗ is a
sub-matrix of a signed permutation matrix. Furthermore this holds if and only if O∗ = Im or its permutation,
as required.

3.3 ICA with Noise

We now consider a more realistic version of the ICA model where we now include noise. The model will
now be Xj = ASj + r(n)Uj where Uj ∈ Rm is the noise with EUj = 0 and r(n) ∈ R. We will allow for
dependence between Uj and Sj .

Denote by X0 = AS the noiseless version of the ICA. The objective function with no noise is given by

∆̂X0(O) :=

m−1∑
k=1

In(OkΣ̂
−1/2
X0 X0, Ok+Σ̂

−1/2
X0 X0)

The objective function for the noisy version we consider is

∆̂X(O) :=

m−1∑
k=1

In(OkΣ̂
−1/2
X X,Ok+Σ̂

−1/2
X X)

and our estimate for W0 = A−1 is Ŵ = ÔΣ̂
−1/2
X . By putting conditions on the noise we show that ∆̂X(·) is

very close to ∆̂X0(·) and thus get consistent estimates for W0.

Theorem 3.3. Consider a noisy ICA model {Xj}j≥1 taking values in Rm where Xj = ASj + r(n)Uj for
some invertible matrix A, W0 = A−1 ∈ Ω, {(Sj , Uj)}j≥1 is a strictly stationary ergodic time series with
marginal distribution (S,U) such that S has mutually independent components, E|S| < ∞, EU = 0 and
E|S||U | <∞. Assume at most one component of S has infinite variance, at most one component is normal

and that none of the components of S are degenerate. If r(n) = oP (1) and ||Σ̂−1
X − Σ̂−1

X0 ||
P−→ 0 then,

1. supO∈O(m) |∆̂X(OΣ̂
−1/2
X )− ∆̂X0(OΣ̂

−1/2
X0 )| P−→ 0

2. [Ŵ ]Ω
P−→W0

We apply this theorem to the VAR(p) time series (1.2) example from Section 1. Consider for simplicity
the VAR(1) model:

Yt = φYt−1 + et

Recall that et = ASt is the ICA model where St has independent components. From the observations of Yt,
one only has an estimate of φ - say the least squares estimator - denoted by φ̂. The ICA model thus becomes
êt = Yt− φ̂1Yt−1 = et+(φ− φ̂)Yt−1. Or, êt = ASt+r(n)Ut where Ut = Yt−1 and r(n) = φ− φ̂. Assuming the
conditions in the theorem above, we can see that in this case we can show that Ŵ is a consistent estimator
for W0 = A−1. We thus are able to get consistent estimates for the unmixing matrix W0 in the presence of
a heavy-tailed shock even with the noise from estimating φ with φ̂.
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A Appendix: Proofs

We intend to generalize the results of Székely et al. [16] and use it to prove our main theorem. We will
follow the basic outline of the proof of Theorem 2 in Székely et al.[16].

Proof of Theorem 2.1 (a). Let (U, V ) ∈ CM . Define for t ∈ Rp, s ∈ Rq

ξn(s, t;U, V ) := φnX,Y (UT s, V T t)− φnX(UT s)φnY (V T t)

ξ(s, t;U, V ) := φX,Y (UT s, V T t)− φX(UT s)φY (V T t)

For each 0 < δ < 1, define the compact set

D(δ) := {(s, t) : δ ≤ |s| ≤ 1/δ, δ ≤ |t| ≤ 1/δ} (A.1)

We can break the proof of the theorem into three parts since,

|In(UX, V Y )− I(UX, V Y )| =
∣∣∣∣ ∫

Rp+q

∣∣ξn(s, t;U, V )
∣∣2dω − ∫

Rp+q

∣∣ξ(s, t;U, V )
∣∣2dω∣∣∣∣

≤
∣∣∣∣ ∫
D(δ)

∣∣ξn(s, t;U, V )
∣∣2dω − ∫

D(δ)

∣∣ξ(s, t;U, V )
∣∣2dω∣∣∣∣

+

∫
Dc(δ)

∣∣ξn(s, t;U, V )
∣∣2dω +

∫
Dc(δ)

∣∣ξ(s, t;U, V )
∣∣2dω

and it suffices to show:

1. For 0 < δ < 1,

lim sup
n→∞

sup
(U,V )∈CM

∣∣∣∣ ∫
D(δ)

∣∣ξn(s, t;U, V )
∣∣2dω − ∫

D(δ)

∣∣ξ(s, t;U, V )
∣∣2dω∣∣∣∣ = 0 a.s. (A.2)

2.

lim sup
δ↓0

sup
(U,V )∈CM

∫
Dc(δ)

∣∣ξ(s, t;U, V )
∣∣2dω = 0 (A.3)

3.

lim sup
δ↓0

lim sup
n→∞

sup
(U,V )∈CM

∫
Dc(δ)

∣∣ξn(s, t;U, V )
∣∣2dω = 0 a.s. (A.4)

Proof of (A.2): Let A be the collection of functions f : Rp+q → C defined by f(x, y) = exp(i(sTUx +
tTV y)) where (s, t) ∈ D(δ), (U, V ) ∈ CM . As

sup
(U,V )∈CM ,(s,t)∈D(δ)

|sTU + tTV | ≤ 2M/δ

by continuity of the exponential it follows that A is equicontinuous. Clearly each f is totally bounded by
the constant function 1. Due to Theorem 6.2 in Rao [13] it follows that as n→∞,

sup
(U,V )∈CM ,(s,t)∈D(δ)

∣∣φnX,Y (UT s+ V T t)− φX,Y (UT s+ V T t)
∣∣ a.s.−−→ 0

Similarly we have as n→∞,

sup
(U,V )∈CM ,(s,t)∈D(δ)

∣∣φnX(UT s)− φX(UT s)
∣∣ a.s.−−→ 0

sup
(U,V )∈CM ,(s,t)∈D(δ)

∣∣φnY (V T t)− φS(V T t)
∣∣ a.s.−−→ 0
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Combining these three results above gives us

sup
(U,V )∈Cm,(s,t)∈D(δ)

∣∣∣|ξn(t, s;U, V )|2 − |ξ(t, s;U, V )|2
∣∣∣ a.s.−−→ 0

as n→∞. As
∫

(s,t)∈D(δ)
dω <∞, A.2 follows from above.

Proof of (A.3): Let (U, V ) ∈ CM and δ > 0. Note that,

ξ(s, t;U, V ) =
∣∣E exp(i(sTUX + tTV Y ))− E exp(isTUX)E exp(itTV Y )

∣∣2
≤ (1−

∣∣E exp(isTUX)
∣∣2)(1−

∣∣E exp(itTV Y )
∣∣2)

= (1− E exp(isTU(X −X ′)))(1− E exp(itTV (Y − Y ′)))
= E [1− cos〈s, U(X −X ′)〉] · E [1− cos〈t, V (Y − Y ′)〉]

For y ∈ R≥0, define

G(y) :=

∫
z∈Rp,|z|p<y

1− cos(z1)

cp|z|p+1
dz

where z1 denotes the first component of z ∈ Rp. Due to Lemma 1 in [16], G(y) ≤ 1. Clearly G is an
increasing function on y ≥ 0 and limy↓0G(y) = 0. We note the following result obtained via change of
variables: for θ ∈ Rp, y ≥ 0, ∫

z∈Rp,|z|<y

1− cos〈θ, z〉
cp|z|p+1

dz = G(|θ|y)|θ|

Note that
∣∣∣V2
·,δ − I(UX, V Y )

∣∣∣ =
∫
Dc(δ)

|ξ(s, t)|2 dω. Thus,∫
Dc(δ)

|ξ(s, t;U, V )|2 dω ≤
∫
|s|<δ

|ξ(s, t;U, V )|2 dω +

∫
|s|>1/δ

|ξ(s, t;U, V )|2 dω

+

∫
|t|<δ

|ξ(s, t;U, V )|2 dω +

∫
|t|>1/δ

|ξ(s, t;U, V )|2 dω

For the first term we have∫
|s|<δ

|ξ(s, t;U, V )|2 dω ≤
∫
|s|<δ

E [1− cos〈s, U(X −X ′)〉] dt

cp|s|p+1

·
∫
t∈Rq

E [1− cos〈t, V (Y − Y ′)〉] ds

cq|t|q+1

= E [G(|U(X −X ′)| δ) |U(X −X ′)|] · E |V (Y − Y ′)|
≤ E [G(M |X −X ′|δ)M |X −X ′|] ·ME|Y − Y ′|

where the equality above follows from Fubini and change of variables as mentioned above. The last inequality
follows from the fact that G is an increasing function and that (U, V ) ∈ CM . By continuity of G at zero and
DCT, it follows that as δ ↓ 0, the RHS above goes to zero uniformly over (U, V ) ∈ CM . Next,∫

|s|>1/δ

|ξ(s, t;U, V )|2 dω ≤
∫
|s|>1/δ

E [1− cos〈s, U(X −X ′)〉] ds

cp|s|p+1

·
∫
t∈Rm−k

E [1− cos〈t, V (Y − Y ′)〉] dt

cq|t|q+1

≤
∫
|s|>1/δ

dt

cp|s|p+1
· E|V (Y − Y ′)|

≤
∫
|s|>1/δ

ds

cp|s|p+1
ME|Y − Y ′|
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Finally,
∫
z∈Rp,|z|>1/δ

dz
cp|z|p+1 = o(1) as δ ↓ 0 implies

lim sup
δ↓0

lim sup
n→∞

sup
(U,V )∈CM

∫
|s|>1/δ

|ξ(s, t;U, V )|2 dω = 0 a.s.

Similarly we can show that the integrals over |t| < δ and |t| > 1/δ also go to zero uniformly over (U, V ) ∈ CM .

Proof of (A.4): Set uj = exp(i〈s, UXj〉) − E exp(i〈t, UX〉) and vj = exp(i〈s, V Yj〉) − E exp(i〈t, V Y 〉).
Note that

ξn(s, t;U, V ) =
1

n

n∑
j=1

ujvj −
1

n

n∑
j=1

uj
1

n

n∑
j=1

vj

Applying |x+ y|2 ≤ 2|x|2 + 2|y|2 and Cauchy-Schwarz,

|ξn(s, t;U, V )|2 ≤ 4

n

n∑
j=1

|uj |2
1

n

n∑
j=1

|vj |2

Now, ∫
Dc(δ)

∣∣ξn(s, t;U, V )
∣∣2dω ≤ ∫

|s|<δ
|ξn(s, t;U, V )|2 dω +

∫
|s|>1/δ

|ξn(s, t;U, V )|2 dω

+

∫
|t|<δ

|ξn(s, t;U, V )|2 dω +

∫
|t|>1/δ

|ξn(s, t;U, V )|2 dω (A.5)

For the first term above,∫
|s|<δ

|ξn(s, t;U, V )|2 dω ≤ 4

n

n∑
j=1

∫
|s|<δ

|uj |2ds
cp|s|1+p

1

n

n∑
j=1

∫
Rq

|vj |2dt
cq|t|1+q

Using |vj |2 = 1 + |φS(V T t)|2 − ei〈t,V S〉φS(V T t)− e−i〈t,V S〉φS(V T t),∫
Rq

|vj |2dt
cq|t|1+q

= 2EY |V (Yj − Y )| − E
∣∣V (Y − Ẏ )

∣∣ ≤ 2M (|Yj |+ E|Y |)

where EY is the expectation with respect to Y and Ẏ is an independent copy of Y . Next, using change of
variables, ∫

|s|<δ

|uj |2ds
cp|s|1+p

=2EX [
∣∣U(Xj −X)

∣∣G(|U(Xj −X)|δ)]− E[
∣∣U(X − Ẋ)

∣∣G(|U(X − Ẋ)|δ)]

≤ 2EX [||U || · |Xj −X|G(||U || · |Xj −X|δ)]
≤ 2MEX [|Xj −X|G(M |Xj −X|δ)]

where EX is the expectation with respect to X and Ẋ is an independent copy of X and we have used
||U || ≤M and G(·) is non-decreasing. Therefore, from (A.5)∫

|s|<δ
|ξn(s, t;U, V )|2 dω ≤ 4

2M

n

n∑
j=1

(|Yj |+ E|Y |)2M

n

n∑
j=1

EX [|Xj −X|G(M |Xj −X|δ)]

Now by ergodicity, since E[|X − Ẋ|G(M |X − Ẋ|δ)] ≤ E[|X − Ẋ|] ≤ 2E|X| <∞ and E|Y | <∞,

lim sup
n→∞

sup
(U,V )∈CM

∫
|s|<δ

|ξn(s, t;U, V )|2 dω ≤ 4 · 22M2 · 2E|Y | · E[|X − Ẋ|G(M |X − Ẋ|δ)] a.s.
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Therefore by the continuity of G at zero and Lebesgue’s DCT,

lim sup
δ↓0

lim sup
n→∞

sup
(U,V )∈CM

∫
|t|<δ

|ξn(s, t;U, V )|2dω = 0 a.s.

Now for the second term in (A.5), |uj |2 ≤ 4 which implies 1
n

∑n
j=1 |uj |2 ≤ 4. Hence,∫

|s|>1/δ

|uj |2ds
cp|s|1+p

≤ 16

∫
|s|>1/δ

ds

cp|s|1+p

1

n

n∑
j=1

∫
Rq

|vj |2dt
cq|t|1+q

≤ 16

∫
|s|>1/δ

ds

cp|s|p+1

2

n

n∑
j=1

M(|Yj |+ E|Y |)

Taking n→∞ and then δ ↓ 0, we have

lim sup
δ↓0

lim sup
n→∞

sup
(U,V )∈CM

∫
|s|>1/δ

|ξn(s, t;U, V )|2dω = 0 a.s.

One can apply a similar argument for the remaining terms in (A.5).

Proof of Theorem 2.1 (b). First,∣∣In(UΓnX,V ΛnY )− I(UΓX,V ΛY )
∣∣ ≤ |In(UΓnX,V ΛnY )− I(UΓnX,V ΛnY )|

+ |I(UΓnX,V ΛnY )− I(UΓX,V ΛY )|

Almost surely there exists L > 0 such that ||Γn|| ≤ L and ||Λn|| ≤ L for all n ∈ N. With M̃ := ML > 0,

sup
(U,V )∈CM

∣∣In(UΓnX,V ΛnY )− I(UΓX,V ΛY )
∣∣ ≤ sup

(Ũ,Ṽ )∈CM̃

∣∣∣In(ŨX, Ṽ Y )− I(ŨX, Ṽ Y )
∣∣∣

+ sup
(U,V )∈CM

|I(UΓnX,V ΛnY )− I(UΓX,V ΛY )|

Using Theorem 2.1 the first term goes to zero almost surely. We need only prove

sup
(U,V )∈CM

|I(UΓnX,V ΛnY )− I(UΓX,V ΛY )| a.s.−−→ 0 (A.6)

Let (U, V ) ∈ CM . For 0 < δ < 1, let D(δ) be as in (A.1). Then, almost surely∣∣I(UΓnX,V ΛnY )− I(UΓX,V ΛY )
∣∣

≤
∣∣∣∣ ∫
D(δ)

∣∣ξ(UΓnX,V ΛnY )
∣∣2dω − ∫

D(δ)

∣∣ξ(UΓX,V ΛY )
∣∣2dω∣∣∣∣

+

∫
Dc(δ)

∣∣ξ(UΓnX,V ΛnY )
∣∣2dω +

∫
Dc(δ)

∣∣ξ(UΓX,V ΛY )
∣∣2dω

≤
∫
D(δ)

∣∣∣∣∣∣ξ(UΓnX,V ΛnY )
∣∣2 − ∣∣ξ(UΓX,V ΛY )

∣∣2∣∣∣∣dω
+ 2 sup

(Ũ,Ṽ )∈CM̃

∫
Dc(δ)

∣∣ξ(ŨX, Ṽ Y )
∣∣2dω

Taking lim sup as δ ↓ 0 and using (A.3) we have the last term in the RHS of above going to zero almost
surely. To complete the proof, we need only show for 0 < δ < 1,

sup
(U,V )∈CM

∫
D(δ)

∣∣∣∣∣∣ξ(UΓnX,V ΛnY )
∣∣2 − ∣∣ξ(UΓX,V ΛY )

∣∣2∣∣∣∣dω a.s.−−→ 0
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Since the characteristic functions are uniformly continuous, given ε > 0 there exists η > 0 such that whenever
|s− s̃| < η and |t− t̃| < η, we have∣∣∣∣∣∣φX,Y (s, t)− φX(s)φY (t)

∣∣2 − ∣∣φX,Y (s̃, t̃)− φX(s̃)φY (t̃)
∣∣2∣∣∣∣ < ε′

where ε′ > 0 is chosen later. Almost surely, there exists N large enough such that whenever n ≥ N ,
||Γn − Γ|| ≤ δη/M and ||Λn − Λ|| ≤ δη/M hold almost surely. Then for n ≥ N we have almost surely
|ΓTnUT s− ΓTUT s| < η and |ΛTnV T t− ΛTV T t| < η. Thus, almost surely for n ≥ N

sup
(U,V )∈CM

sup
(s,t)∈D(δ)

∣∣∣∣∣∣ξ(s, t;UΓn, V Λn)
∣∣2 − ∣∣ξ(s, t;UΓ, V Λ)

∣∣2∣∣∣∣ < ε′

Choose ε′ = ε/
∫
D(δ)

dω > 0. Thus whenever n ≥ N , almost surely

sup
(U,V )∈CM

∫
D(δ)

∣∣∣∣∣∣ξ(UΓnX,V ΛnY )
∣∣2 − ∣∣ξ(UΓX,V ΛY )

∣∣2∣∣∣∣dω ≤ ε′ ∫
D(δ)

dω = ε

Lemma A.1. Let Γn ∈ Rm×m be a sequence of symmetric random matrices converging in probability to a

non-random symmetric matrix Γ. Then Γ
1/2
n

P−→ Γ1/2.

Proof of Lemma A.1. We have the SVD Γn = UTnDnUn where Dn is a diagonal matrix such that the
entries of the diagonal are non-increasing. Let Γ = V TDV be the eigenvalue decomposition with entries
of D non-increasing. As the eigenvalue is a continuous functions of the entries of Γn, we have due to

hypothesis that Dn
P−→ D. Suppose we take an arbitrary subsequence of N. As the sequence of Un’s

belong to O(m) which is compact, consider a further subsequence {nk}k≥1 along which Unk
’s converge

to (a possibly random) matrix U∗ almost surely and as l → ∞, Γnk

a.s.−−→ Γ and Dnk

a.s.−−→ D. But,

Γnk
= UTnk

Dnk
Unk

a.s.−−→ UT∗ DU∗ so that UT∗ DU∗ = V TDV or D(U∗V
T ) = (U∗V

T )D. We claim that the

last equality implies that D1/2(U∗V
T ) = (U∗V

T )D1/2, so that UT∗ D
1/2U∗ = V TD1/2V = Γ1/2 and hence

Γ1/2
nk

= UTnk
D1/2
nk
Unk

a.s.−−→ UT∗ D
1/2U∗ = Γ1/2

To finish the proof we need to show D1/2(U∗V
T ) = (U∗V

T )D1/2 when D(U∗V
T ) = (U∗V

T )D holds. To
see this, for notational ease set Ũ := U∗V

T and denote its columns by ũ1, ..., ũm. We then have for 1 ≤ i ≤ m
that Dũi = Di,iũi. Thus for 1 ≤ j ≤ m, Dj,j ũi,j = Di,iũi,j which then implies that

√
Dj,j ũi,j =

√
Di,iũi,j

for every 1 ≤ i, j ≤ m. Thus D1/2Ũ = ŨD1/2.

Lemma A.2. Let S ∈ Rm is a random vector. Assume that the components of S are mutually independent,
none of the components are degenerate and that at most one component has infinite variance. If {Sj}j≥1 is
a strictly stationary ergodic time series with stationary distribution S then as n→∞,

Σ̂
−1/2
S

P−→ Σ
−1/2
S

Proof of Lemma A.2. If all the components of S have finite variance then we know from the ergodic theorem

that Σ̂S
P−→ ΣS so that Σ̂−1

S
P−→ Σ̂−1

S . Due to Lemma A.1 we are done.
Now suppose that only the mth component has infinite variance. Without loss of generality assume that the
first m− 1 components are non-zero and that the entries of Σ−1

S are non-increasing along the diagonal. We

know by ergodicity that as n → ∞, Σ̂−1
S1:m−1

P−→ Σ−1
S1:m−1

where Σ̂S1:m−1
is the sample standard variance of
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the first m−1 components of S and ΣS1:m−1 is the diagonal matrix of variance of the first m−1 components

of S. Let A = Σ̂S1:m−1 and b, c be such that Σ̂S =

(
A b
bT c

)
. Note that,

Σ̂−1
S =

(
A−1 +A−1bbTA−1/r −A−1b/r

−bTA−1/r 1/r

)
where r = c− bTA−1b. Note that for 1 ≤ t ≤ m− 1, bt = 1

n

∑n
j=1 S

(t)
j S

(m)
j . By the ergodic theorem, bj

a.s.−−→

ES(t)ES(m) so that bT
a.s.−−→ ES(m)

(
ES(1),ES(2), ...,ES(m−1)

)T
. Also, limn→∞ c = limn→∞

1
n

∑n
j=1

(
S

(m)
j

)2

=

∞ almost surely. We know A−1 = Σ̂−1
S1:m−1

P−→ Σ−1
S1:m−1

. Thus, r
a.s.−−→ ∞, and hence Σ̂−1

S
P−→ Σ−1

S . Applying
Lemma A.1 finishes the proof.

Proof of Theorem 3.3. We first show a stronger result, that under r(n)
a.s.−−→ 0,

sup
(U,V )∈CM

|In(UX, V X)− In(UX0, V X0)| a.s.−−→ 0 (A.7)

where CM = {(U, V ) : U ∈ Rp×m, V ∈ Rq×m, ||U || ≤ M, ||V || ≤ M}. Using the subsequence argument for
the case r(n) = oP (1), this proves part 1 of the theorem. We make the claim:

lim sup
δ↓0

sup
(U,V )∈CM

∫
Dc(δ)

|ξn(s, t;U, V )|2dω(s, t) = 0 a.s.

lim sup
δ↓0

sup
(U,V )∈CM

∫
Dc(δ)

|ξ0
n(s, t;U, V )|2dω(s, t) = 0 a.s.

where

ξn(s, t;U, V ) =
1

n

n∑
j=1

eis
TUXj+itTV Xj − 1

n

n∑
j=1

eis
TUXj · 1

n

n∑
j=1

eit
TV Xj ,

ξ0
n(s, t;U, V ) =

1

n

n∑
j=1

eis
TUX0

j +itTV X0
j − 1

n

n∑
j=1

eis
TUX0

j · 1

n

n∑
j=1

eit
TV X0

j .

Note that from the proof of Theorem 2.1, specifically (A.4) the second equation above holds. For the first,
appealing to the proof of (A.4) we need to show

lim sup
δ↓0

lim sup
n→∞

1

n

n∑
j=1

EX0 |Xj −X0|G(M |Xj −X0|δ) = 0 a.s.

Since G(·) is increasing and bounded by 1, for every j by the triangle inequality

EX0 [|Xj −X0|G(M |Xj −X0|δ)] ≤ EX0 [|X0
j −X0|G(M |Xj −X0|)] + r|Uj |

≤ EX0 [|X0
j −X0|G(M |X0

j −X0|δ + rM |uj |δ)] + r|Uj |

By a change of variables to polar coordinates, one can express

G(y) =

∫ π

0

∫ y

0

1− cos(r cos θ)

πr2
sinm−2(θ)drdθ

Taking the derivative under the integral sign,

G′(y) =

∫ π

0

1− cos(y cos θ)

πy2
sinm−2(θ)dθ
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which can be bounded by a positive constant c using the inequality 1 − cos(x) ≤ x2/2. The mean value
theorem gives G(M |X0

j −X0|δ + rM |uj |δ) ≤ G(M |X0
j −X0|δ) + crM |Uj |δ so that

EX0 [|Xj −X0|G(M |Xj −X0|δ)] ≤ EX0 [|X0
j −X0|G(M |X0

j −X0|δ)]
+ rM |Uj | · ||A|| · ES [|S0

j − S|] + r|Uj |

Now r(n)
a.s.−−→ 0 and ergodic theorem shows, lim supn→∞ r(n) 1

n

∑n
j=1 |Uj | = 0 almost surely. Similarly, the

ergodicity of {Sj , Uj} shows lim supn→∞ r(n) 1
n

∑n
j=1 |Uj |ES [|Sj − S|] = 0 almost surely. For the first term,

it suffices to show

lim sup
δ↓0

lim sup
n→∞

1

n

n∑
j=1

ES [|Sj − S|G(M ||A||δ|Sj − S|)] = 0 a.s.

By the ergodic theorem,

lim sup
n→∞

1

n

n∑
j=1

ES [|Sj − S|G(M ||A||δ|Sj − S|)] = E[|S − Ṡ|G(M ||A||δ|S − Ṡ|)]

where Ṡ is an independent copy of S. By the continuity of G(·) at zero and DCT we are done.
With the claim above, we are left to show for 0 < δ < 1 that

sup
(U,V )∈CM

∫
D(δ)

|ξn(s, t;U, V )− ξ0
n(s, t;U, V )|2dω(s, t)

a.s.−−→ 0

Note that for (s, t) ∈ D(δ) by the triangle inequality and |eix − 1| ≤ |x|,∣∣∣∣ 1n
n∑
j=1

(
eis

TUXj+itTV Xj − eis
TUX0

j +itTV X0
j

)∣∣∣∣ ≤ 1

n

n∑
j=1

∣∣∣∣eirsTUUj+irtTV Uj − 1

∣∣∣∣
≤ r

n

n∑
j=1

|sTU + tTV ||Uj |

≤ M

δ
· r
n

n∑
j=1

|Uj |

Similarly
∣∣ 1
n

∑n
j=1

(
eis

TUXj−eis
TUX0

j
)∣∣ ≤ M

δ
r
n

∑n
j=1 |Uj | and

∣∣ 1
n

∑n
j=1

(
eit

TV Xj−eit
TV X0

j
)∣∣ ≤ M

δ
r
n

∑n
j=1 |Uj |.

But r(n)
a.s.−−→ 0 and the ergodic theorem implies r

n

∑n
j=1 |Uj |

a.s.−−→ 0. Thus,

sup
(U,V )∈CM

sup
(s,t)∈D(δ)

∣∣|ξn(s, t;U, V )|2 − |ξ0
n(s, t;U, V )|2

∣∣ a.s.−−→ 0

so that

sup
(U,V )∈CM

∫
D(δ)

∣∣|ξn(s, t;U, V )|2 − |ξ0
n(s, t;U, V )|2

∣∣dω(s, t)

≤ sup
(U,V )∈CM

sup
(s,t)∈D(δ)

∣∣|ξn(s, t;U, V )|2 − |ξ0
n(s, t;U, V )|2

∣∣ ∫
D(δ)

dω

goes to zero almost surely. Thus (A.7) holds.
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If Σ̂
−1/2
X0

P−→ Σ
−1/2
X0 and Σ̂

−1/2
X

P−→ Σ
−1/2
X0 , then via Theorem 2.1 we get

sup
(U,V )∈CM

|In(U Σ̂
−1/2
X0 X0, V Σ̂

−1/2
X0 X0)− I(UΣ

−1/2
X0 X0, V Σ

−1/2
X0 X0)| P−→ 0

sup
(U,V )∈CM

|In(U Σ̂
−1/2
X X0, V Σ̂

−1/2
X X0)− I(UΣ

−1/2
X0 X0, V Σ

−1/2
X0 X0)| P−→ 0

Combining both these results show us that

sup
(U,V )∈CM

|In(U Σ̂
−1/2
X X0, V Σ̂

−1/2
X X0)− In(U Σ̂

−1/2
X0 X0, V Σ̂

−1/2
X0 X0)| P−→ 0 (A.8)

We thus need to prove Σ̂
−1/2
X0

P−→ Σ
−1/2
X0 and Σ̂

−1/2
X

P−→ Σ
−1/2
X0 . Due to Lemma A.1 it suffices to show

Σ̂−1
X0

P−→ Σ−1
X0 and Σ̂−1

X
P−→ Σ−1

X0 . The first one is an easy result due to

Σ̂−1
X0 = WT

0 Σ̂−1
S W0

P−→WT
0 Σ−1

S W0 = Σ−1
X0

Finally, ||Σ̂−1
X − Σ̂−1

X0 ||
P−→ 0 implies Σ̂−1

X
P−→ Σ−1

X0 .
Now by triangle inequality

|∆̂X(O)− ∆̂X0(O)| ≤
m−1∑
k=1

|In(OkΣ̂
−1/2
X X,Ok+1:mΣ̂

−1/2
X X)− In(OkΣ̂

−1/2
X0 X0, Ok+1:mΣ̂

−1/2
X0 X0)|

Taking for each fixed k, U to be kth row of O and V to be the k + 1, ..,mth rows of O and apply (A.8) we
get

sup
(U,V )∈CM

|∆̂X(O)− ∆̂X0(O)| = oP (1)

This finishes the proof of Part 1. For Part 2, we define Ô0 and Ŵ 0 to be the noiseless estimates from the
previous sections. Then,

Ŵ = (Ô − Ô0)Σ̂
−1/2
X + Ŵ 0(Σ̂

1/2
X0 Σ̂

−1/2
X )

Due to Part 1 of this theorem Ô − Ô0 P−→ 0 and we have already seen Σ̂
1/2
X0 Σ̂

−1/2
X

P−→ I. From Theorem 3.2

we conclude that [Ŵ 0]Ω
P−→ W0 and we thus thus get consistent estimation of W0 since it now follows that

[Ŵ ]Ω
P−→W0.
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