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Abstract

Typically, the likelihood function for non-Gaussian state-space models
can not be computed explicitly and so simulation based procedures, such
as importance sampling or MCMC, are commonly used to estimate model
parameters. In this paper, we consider an alternative estimation procedure
which is based on an approximation to the likelihood function. The approx-
imation can be computed and maximized directly, resulting in a quick esti-
mation procedure without resorting to simulation. Moreover, this approach
is competitive with estimates produced using simulation-based procedures.
The speed of this procedure makes it viable to fit a wide range of potential
models to the data and allows for bootstrapping the parameter estimates.

1 Introduction

The class of state-space models (SSM) provides a flexible framework for modeling
and describing a wide range of time series in a variety of disciplines. The books
by Harvey (1989) and Durbin and Koopman (2001) contain extensive accounts of
state-space models and their applications. One of the attractive features of state-
space models is that many traditional models, such as ARMA and ARIMA, can be
expressed in a linear state-space system. For linear and/or Gaussian state-space
models, the Kalman filter can be used to compute predictors of the state-variables
and one-step-ahead predictors of the observations. This allows for straightforward
calculation of the likelihood in the Gaussian case. However, in many applications
in which the Gaussian assumption is not realistic, the likelihood function is difficult
to calculate, which makes maximum likelihood estimation problematic.

The state-space model that we consider in this paper has the following formu-
lation: If Y1, Y2, . . . , represent the time series of observations and α1, α2, . . . the
respective “state variables”, then it is assumed that

p(yt|αt, αt−1, . . . , α1, yt−1, . . . , y1) = p(yt|αt) (1)
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belongs to a known parametric family of distributions. In addition, the state process
is assumed to follow an AR(p) model, given by

αt = γ + φ1αt−1 + . . . + φpαt−p + ηt, (2)

where p is an integer greater than zero and ηt ∼ iid N(0, σ2), t = 1, 2, . . .. Perhaps
the most important special case is when the conditional distribution in (1) is a
member of the exponential family, an extremely rich class of distributions. Durbin
and Koopman (1997) and Kuk (1999), consider the following form for this family

p(yt|αt) = e(xT
t β+αt)yt−b(xT

t β+αt)+c(yt), (3)

where xt is a vector of covariates observed at time t; β is a vector of parameters;
and b(.) and c(.) are known real functions.

One special application that we will consider in more detail, is the case in which
the time series Y1, . . . , Yn consist of counts. Here, it might be plausible to model
Yt by a Poisson distribution with rate λt := eαt+xT

t β in which case, p(yt|αt; β) is a
particular case of (3). Models of this type have been used for modeling counts of
individuals infected by a rare disease, e.g., Zeger (1988); Campbell (1994); Chan
and Ledolter (1995); Harvey and Fernandes (1989); Davis et al. (1998).

Another noteworthy application of the SSM that we will consider, is the stochas-
tic volatility model (SVM), a frequently used model for returns of financial assets.
In the basic SVM, the distribution of Yt|αt is Gaussian with mean 0 and variance
eαt . Applications, together with estimation for SVMs, can be found in Jacquier, et
al. (1994); Briedt and Carriquiry (1996); Harvey and Streibel (1998); Sandmann
and Koopman (1998); Geweke and Tanizaki (1999); Pitt and Shepard (1999).

Let y := (y1, . . . , yn) denote the vector of observations, α := (α1, . . . , αn) the
vector of states and ψ := (θ, λ) the parameters in the state-space model. Here θ is
the vector of the parameters associated with the specification of p(yt|αt), which may
include the regression parameter β, and λ := (φ1, . . . , φp, γ, σ2) is the parameter
vector associated with the AR model in (2). With this specification, the likelihood
based on the “complete data” (y, α) of the SSM becomes

L(ψ;y,α) = p(y|α, θ)p(α|λ) (4)

=

(
n∏

t=1

p(yt|αt, θ)

)
|V|1/2e−(α−µ)T V(α−µ)/2/(2π)n/2,

where V−1 := cov{α}, µ = γ/(1 − φ1 − . . . − φp)1 is the vector of means of the
state process, and 1 is a vector of ones. From (4) it follows that the likelihood of
the observed data is

L(ψ;y) =

∫
L(ψ;y,α)dα. (5)

Except in simple cases, the integral in (5) can not be computed explicitly,
which makes maximum likelihood estimation difficult. There are several simulation
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approaches in the literature for estimating and ultimately maximizing this likeli-
hood. For example, Durbin and Koopman (1997, 2001) use importance sampling
to estimate (5). The observation density p(y|α; θ) is approximated by selecting
a Gaussian density g(y|α; θ) that best approximates p(y|α; θ). The Monte Carlo
integration is computed using g(α|y; ψ), the conditional density of α relative to
the working model, as the importance density. This approach is known as “many
samples” because for distinct values of ψ, the importance function g(α|y; ψ) is up-
dated during the optimization of the approximate observed likelihood. To overcome
the instability problem inherent with the “many samples” approach, Durbin and
Koopman generate from the same noise. Kuk (1999) advocates a “single-sample”
approach, which for a fixed ψ0, a sample is drawn from the importance density
g(α|y,ψ0) and then the relative likelihood function is optimized using these sam-
ples. To get better approximations of the relative likelihood near the true maximum
likelihood estimate, Geyer (1996) suggests repeating the process several times, up-
dating ψ0 with the new maximizer at each iteration.

A Monte Carlo EM algorithm treating the unobserved α’s as missing values was
proposed by Chan and Ledolter (1995). At the i -th iteration of the algorithm, the
M -step is performed by Monte Carlo integration drawing a sample from the con-
ditional distribution p(α|y,ψ(i−1)), where ψ(i−1) is the maximizer obtained in the
previous iteration. Kuk and Cheng (1997) proposed a Monte Carlo implementation
of the Newton-Raphson (MCNR) as a viable alternative to the MCEM algorithm.
All of these simulation based procedures can be computationally intense.

In this paper we will follow a different approach to obtain an approximation to
the distribution p(α|y; ψ). In Section 2 we will produce an analytical approxima-
tion to (5) by obtaining an approximation pa(α|y; ψ) to the posterior distribution
p(α|y; ψ). The innovations algorithm (Brockwell and Davis, 1991) can be used
to speed up the computation of these approximations. The approximation to the
observed likelihood can then be maximized to produce an estimate of ψ. In Section
3 we demonstrate the good performance of this procedure via simulation studies.
This procedure will also be applied to analyze two datasets; the monthly number
of U.S. cases of poliomyelitis for 1970 to 1983 (Zeger, 1988) is analyzed using a
Poisson state-space model and a historical pound to dollar exchange rates (Harvey,
et al., 1994) is analyzed using a stochastic volatility model.

The quality of our approximation depends, to a large extent, on the normal
approximation to the posterior, p(α|y; ψ). In a numerical example we assess this
approximation in two ways. First, we notice the closeness between the posterior
mode and posterior mean of p(α|y; ψ). As a second check of closeness we compare
samples generated from p(α|y; ψ) using sampling importance resampling (SIR)
with the approximating normal distribution via a Chi-squared QQ-plot and a cor-
relation test. These topics, together with bootstrap bias correction are considered
in Section 3. In Section 4 we summarize our findings. Application of the inno-
vations algorithm to the problems considered in Sections 2 and 3 is given in the
appendix.

3



2 Parameter Estimation

In this section we find an approximation to the observed likelihood L(ψ;y) given
in (5) that is based on an approximation La(ψ;y,α) to the likelihood L(ψ;y,α)
using the complete data. For the latter, a Taylor series expansion of log p(y|α; θ)
in a neighborhood of the posterior mode of p(α|y; ψ) is used.

To begin, let `(θ;y|α) := log p(y|α; θ). Note that the log of the observed
likelihood is given by

`(ψ;y,α) = −n

2
log(2π) +

1

2
log |V|+ `(ψ;y|α)− 1

2
(α− µ)TV(α− µ). (6)

Now, let

k∗ :=
∂

∂α
`(θ;y|α)|α=α∗

where α∗ is the mode of `(ψ;y,α), which solves ∂
∂α

`(ψ;y,α) = 0. From (4), it
follows that

k∗ = V(α∗ − µ),

hence, if T (α; α∗) denotes the second order Taylor expansion of `(θ;y|α) around
α∗ and R(α; α∗) := `(θ;y|α)− T (α; α∗) the corresponding remainder, then

`(ψ;y|α) = T (α; α∗) + R(α; α∗),

= h∗ + (α−α∗)Tk∗ − 1

2
(α−α∗)TK∗(α−α∗) + R(α; α∗),

= h∗ + (α∗ − µ)TV(α−α∗)− 1

2
(α−α∗)TK∗(α−α∗) (7)

+ R(α; α∗),

where

h∗ := `(θ;y|α)|α=α∗ and K∗ := − ∂2

∂α∂αT
`(θ;y|α)|α=α∗ . (8)

Thus, substituting (7) in (6), it follows that

`(ψ;y,α) = −n

2
log(2π) +

1

2
log |V|+ h∗ − 1

2
(α∗ − µ)TV(α∗ − µ) (9)

−1

2
(α−α∗)T (K∗ + V)(α−α∗) + R(α; α∗).

We note that the posterior p(α|y; ψ) satisfies p(α|y; ψ) ∝ L(ψ;y,α). Let pa(α|y; ψ)
be the posterior based on the log likelihood given in (9) when the term R(α; α∗)
is omitted, it follows that

pa(α|y; ψ) = φ(α; α∗, (K∗ + V)−1), (10)

where φ(.; µ,Σ) is the multivariate normal density with mean µ and covariance
matrix Σ. Hence

L(ψ;y) =
|V|1/2

|K∗ + V|1/2
eh∗− 1

2
(α∗−µ)T V(α∗−µ)

∫
eR(α;α∗)pa(α|y; ψ)dα, (11)

= La(ψ;y)Era(ψ),
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where La(ψ;y) is the approximation to L(ψ;y)

La(ψ;y) :=
|V|1/2

|K∗ + V|1/2
eh∗− 1

2
(α∗−µ)T V(α∗−µ), (12)

that is obtained when the factor eR(α;α∗) is ignored in the integral in (11); and
Era(ψ) is the approximation error

Era(ψ) :=

∫
eR(α;α∗)pa(α|y; ψ)dα. (13)

Thus, if pa(α|y; ψ) is highly concentrated around α∗, the integral in (13) should
be close to 1.

Since the evaluation of (12) does not involve simulation, it can be maximized
to obtain an approximate MLE of ψ. In fact, we will see later that both the
computation of α∗ and the evaluation of (12) can be accelerated with the aid of
the innovations algorithm (Brockwell and Davis, 1991).

A second way to motivate our approximation La(ψ;y) is based on a Bayesian
viewpoint. If we treat α as the parameters of the system with prior p(α|λ), then un-
der regularity conditions and a fixed number of parameters, the posterior p(α|y; ψ)
can be approximated by a normal density function for n large (e.g., Bernardo and
Smith, 1994; page 287). This normal density matches the mode of the posterior
p(α|y; ψ) and has covariance matrix equal to the inverse of the information matrix
of the posterior evaluated at the posterior’s mode. Notice that α∗ is the mode of
the posterior p(α|y; ψ) and the observed information matrix is given by K∗ + V.
Both assertions can be obtained from the fact that p(α|y; ψ) ∝ L(ψ;y, α). Thus,
is this context, the normal approximation is, in fact, the same as pa(α|y; ψ) given
in (10).

We note that

L(ψ;y) =

∫
p(y|α; θ)p(α|λ)dα,

=

∫
p(y|α; θ)p(α|λ)

pa(α|y; ψ)
pa(α|y; ψ)dα. (14)

So, pa(α|y; ψ) in (10) can be viewed as an importance density.
Now, we provide a recursive algorithm to find α∗, the mode of p(α|y; ψ). Let

αj be the current iterate to the value of α∗. If

kj :=
∂

∂α
`(θ;y|α)|α=αj and Kj := − ∂2

∂α∂αT
`(θ;y|α)|α=αj , (15)

then the Newton-Raphson algorithm gives

αj+1 = αj − (῭j)−1 ˙̀j, (16)
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where

˙̀j :=
∂

∂α
`(ψ;y,α)|α=αj

= kj −V(αj − µ)

= kj + Kjαj + Vµ− (Kj + V)αj, (17)

῭j := (
∂2

∂α∂αT
`(ψ;y,α))−1|α=αj

= −Kj −V. (18)

Let
ỹj := kj + Kjαj + Vµ. (19)

Substituting this, (17) and (18) into (16), we obtain

αj+1 = (Kj + V)−1ỹj. (20)

Application to the exponential family

Assume that the observation density function is from the exponential family given
by

p(y|α; θ) =
n∏

t=1

p(yt|αt,θ) = e(xβ+α)T y−1T {b(xβ+α)−c(y)}, (21)

where b(xβ+α) := [b(xT
1 β+α1), . . . , b(x

T
nβ+αn)]T and c(y) := [c(y1), . . . , c(yn)]T .

In this setting, the matrix K∗ in (8) becomes

K∗ = diag{ ∂2

∂α2
t

b(xT
t β + αt)|α∗t }. (22)

The approximation to the observed likelihood is then

La(ψ;y) =
|V|1/2

|K∗ + V|1/2
eyT (xβ+α∗)−1T {b(xβ+α∗)−c(y)}−(α∗−µ)T V(α∗−µ)/2. (23)

From (15) and (21), kj = y − ḃj, where

ḃj :=
∂

∂α
1Tb(xβ + α)|αj . (24)

Hence,
ỹj := y − ḃj + Kjαj + Vµ, (25)

where Kj is defined in (15). ¤

Although at this point we can find an approximation to the likelihood, each
iteration of (20) needs the inversion of a matrix of dimension n × n, while each
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evaluation of (12) requires calculation of the determinant of a matrix of similar
dimension. For small values of n, these computations can be carried out directly,
but for large values, direct computations are impractical. Recursive prediction
algorithms, such as the Kalman recursions or the innovations algorithm accelerate
these calculations. Here we use the innovations algorithm, which seems to be ideally
suited for this problem. The implementation of the innovation algorithm in this
context is described in the Appendix.

As we noted from (14), pa(α|y; ψ) in (10) can be used as an importance density.
In fact, as we show below for the case of the exponential family of distributions,
pa(α|y; ψ) coincides with the importance density function of Durbin and Koop-
man (1997) to estimate the likelihood in (5) via simulation. In order to describe
their method, let Lg(ψ) denote the likelihood of the Gaussian approximating model
of the state-space model proposed by Durbin and Koopman (1997). Such an ap-
proximation is obtained when p(yt|αt; ψ) is replaced by a Gaussian distribution
g(yt|αt; θ) = φ(yt; Ztαt + µt, Ht), where µt and Ht are found by solving iteratively

∂

∂αt

log p(yt|αt; ψ)|αt=α̂t −H−1
t (yt − α̂t − µt) = 0 (26)

∂2

∂α2
t

log p(yt|αt; ψ)|αt=α̂t + H−1
t = 0. (27)

Here, the α̂t are found by routine application of the Kalman filtering and smoothing
algorithms. The iterations, initialized with µt = 0 and Ht arbitrary, must be
stopped until convergence of µt and Ht. Let Eg denote the conditional expectation
operator under the approximating model. Durbin and Koopman (1997) found that
the likelihood (5) can be expressed as

L(ψ) = Lg(ψ)Eg

{
p(y|α,θ)

g(y|α, ψ)
|y,ψ

}
. (28)

Hence, with simulated values α(1), . . . , α(N) from the conditional density g(α|y; ψ)
under the approximating model, the integral in (5) is estimated as

L̂(ψ) = Lg(ψ)
1

N

N∑
i=1

p(y|α(i),θ)

g(y|α(i), ψ)
. (29)

This method is called a “many samples” approach, because new simulated
values of the α(i)’s are needed for each value of ψ. To ensure stability in their
numerical process, they generate from the noise only once.

Alternatively, Kuk (1999) proposes using the relative likelihood

L(ψ)

Lg(ψ0)
= Eg

{
p(y, α|ψ)

g(y,α|ψ0)
|y,ψ0

}
, (30)

where the conditional expectation is computed relative to the conditional density
g(α|y,ψ0) under the approximating model. Using simulated values α(1), . . . , α(N)
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from the conditional density g(α|y,ψ0), an estimate of L(ψ) using (30) is

L̂(ψ) = Lg(ψ0)
1

N

N∑
i=1

p(y|α(i),θ)p(α(i)|λ)

g(y|α(i),θ0)p(α(i)|λ0)
. (31)

This approach is known as a “single-sample” procedure, since it involves sim-
ulating from g(α|y,ψ0) instead of g(α|y; ψ). In order for this method to work, a
few updatings of ψ0 to the optimizer of L̂(ψ) in (31) is recommended (Geyer, 1996;
Kuk, 1999).

If p(yt|αt; ψ) is a member of the exponential family of distributions as given
in (3), then using the notation ḃt := ∂

∂αt
b(xT

t β + αt)|αt=α̂t and b̈t := ∂2

∂α2
t
b(xT

t β +

αt)|αt=α̂t , Durbin and Koopman (1997) find that

H−1
t = b̈t, µt = yt − α̂t − b̈−1

t (yt − ḃt). (32)

They comment that α̂ := [α̂1, . . . , α̂n]T , obtained using the iterative procedure
described above, is the posterior mode of p(α|y; ψ). We conclude that α̂ = α∗.
Furthermore, from (32), it follows that the variance of the distribution g(α|y; ψ)
computed under the approximating model until convergence is achieved is given by
(K∗+V)−1, where K∗ is given in (22). Thus, pa(α|y; ψ) in (10) and g(α|y,ψ) are
identical. As a result, the observed likelihood Lg(ψ) of the Durbin and Koopman’s
approximate Gaussian model is given by

Lg(ψ) = (2π)−n/2|b̈∗|1/2e1T {b(xβ+α∗)−c(y)}−yT α∗−{y−ḃ∗}T (b̈∗)−1{y−ḃ∗}/2La(ψ;y),
(33)

where ḃ∗ := ∂
∂α

1Tb(xβ + α)|α∗ , and b̈∗ := ∂2

∂α∂αT 1Tb(xβ + α)|α∗ .

To get a feel for how these two procedures perform, we consider the case when
the observation density is Poisson with rate λt = e0.7+αt and the state process
follows the AR(1) model

αt = φαt−1 + ηt, (34)

where ηt ∼ iid N(0, 0.3), t = 1, . . . , n = 200. In this example, the state-space model
has only one parameter, i.e., ψ = φ. Using φ = 0.5, one realization y1, . . . , y200 from
this process was generated. In Figure 1 we show two estimates of the observed
likelihood of this process. In this figure, the solid line is the approximation to the
observed likelihood given in (23). Also, the lower and upper dotted lines, computed
for each value of φ in a grid of points, are the minimum and maximum, respectively,
of 100 replicates of the estimated likelihood given in (29) using N = 1000. The
dashed line is an estimation of the likelihood using (29) for one of these realizations.
The pair of dotted lines in this figure illustrate the randomness of the estimation
of φ that is obtained by the maximization of (29). The shape of the dashed line in
Figure 1, typical of the estimator in (29), comes from the “many samples” effect.
The maximization of this random function to obtain an estimator of φ requires
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Figure 1: (Many samples) For a grid of values of φ, the logarithm of the estimation of
the likelihood of a Poisson SSM are shown. For the solid line, estimates were obtained
using (23) while for the dashed line, (29) was used. The dotted lines are the minimum
and maximum respectively, of 100 replicates using (29).

additional effort. In contrast, the approximation in (23) is smooth and can be
computed much faster.

To compute the estimator of the observed likelihood in (31) using the approach
described by Kuk (1999), we need an initial value ψ0 and update it to the maximizer
of (29) a “few times”. In Figure 2, we use an initial value of φ0 = −0.4, and perform
six updatings of this parameter using N = 1000. In each panel of this figure,
the solid line is the approximation (23) of the observed likelihood and the thick
vertical line shows the maximizer 0.5098 of this function, i.e., the (approximate)
ML estimate of φ. In the upper left panel, the long dashed line is the estimation
given in (31) of the observed likelihood, while the vertical dotted line shows its
maximizer -0.027. This value is then used as φ0 in the middle panel in the top
row, and so on. As φ0 is updated, the current maximizer of (31) moves “quickly”
toward an estimate that is close to the true value. As expected, for given φ0, (31)
approximates well the observed likelihood only in a neighborhood of ψ0. Unlike the
estimator in (29), the estimator in (31) is smooth, but there is a price to pay for
this gain in terms of imposing a stopping rule. Note that in a vicinity of ψ0, the
estimate in (31) is close to the approximate likelihood in (23).

In Figure 3, we show the randomness feature of (31). In each panel, a fixed
value of φ0 is used. The solid line and vertical solid line are as in Figure 2. The
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Figure 2: (Single-sample) From left to right and top to bottom, in each panel we show
for a grid of values of φ, the logarithm of the estimation of the likelihood of a Poisson
SSM. For the solid line, the estimates were obtained using (23) while for the dashed line
(31) was used. ψ0 is the optimizer (shown by the dotted vertical line) of (31) from the
preceding panel. The solid vertical line shows the optimizer of (23).

lower and upper dotted lines are the minimum and maximum, respectively, of one
hundred replicates of (31) while from left to right, the dotted vertical lines are the
minimum, mean and maximum of their optimizers. The long dashed line is one
replicate of (31).

3 Numerical Results

In this section, we perform two simulation studies; one based on the basic stochastic
volatility model and the second based on a Poisson observation density for modeling
a time series of counts. Also, we analyze two real datasets. One is a historical
dataset of the Pound-Dollar exchange rates, first studied by Harvey, et al. (1994)
using a basic stochastic volatility model. The other is the polio incidence data
analyzed by Zeger (1988) who used estimating equations to fit the model. Kuk
and Cheng (1997) use the Monte Carlo Newton Raphson algorithm to analyze this
data.

3.1 Stochastic Volatility Model

The stochastic volatility process that is often used for modeling log-returns of fi-
nancial assets is defined by

yt = σtξt = eαt/2ξt, αt = γ + φαt−1 + ηt, (35)
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Figure 3: (Single-sample) From left to right and top to bottom, in each panel we show
for a grid of values of φ, the logarithm of the estimation of the likelihood of a Poisson
SSM. For the solid line, estimates were obtained using (23). The solid vertical line shows
its optimizer. For the dashed line, estimations were obtained using (31) with φ0 shown
in the x axis. The dotted lines are the minimum and maximum respectively, of 100
replicates using (31). From left to right, the dotted vertical lines are the minimum, mean
and maximum of the optimizers of these replicates.

where ξt ∼ iid N(0, 1), ηt ∼ iid N(0, σ2), t = 1, . . . , n = 1000, and |φ| < 1. In this
case, ψ = (γ, φ, σ2). The format for this simulation study is the same as the layout
considered in Jacquier, et al. (1994). They considered nine models, indexed by the
coefficient of variation CV of the conditional variance σ2

t := eαt . For convenience,
the parameters of these models are reproduced in Table 1. Jacquier, et al. (1994)
point out that the nine models are calibrated so that E(σ2

t ) = 0.0009. Also, from
empirical studies (e.g., Harvey and Shepard, 1993; Jacquier, et al. 1994) values of
φ between 0.9 and 0.98 are of primary interest.

φ
CV 0.90 0.95 0.98
10.0 γ -0.821 -0.4106 -0.1642

σ 0.6750 0.4835 0.308
1.0 γ -0.736 -0.368 -0.1472

σ 0.363 0.260 0.1657
0.1 γ -0.706 -0.353 -0.1412

σ 0.135 0.0964 0.0614

Table 1: Parameter values for a simulation experiment of nine stochastic volatility pro-
cesses.
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The density of the observed series is given by

p(yt|αt; ψ) = e−{y
2
t e−αt+αt+log(2π)}/2,

which differs slightly from the standard representation of the exponential family of
distributions given in (3). Equation (19) becomes

ỹj = diag{1/2 + αj/2}diag{y2}e−αj − 1/2 + Vµ. (36)

To compare the estimate of ψ obtained by maximizing (12) with those obtained by
maximizing either (29) or (31), the normal approximation g(yt|αt; θ), t = 1, . . . , n
proposed by Durbin and Koopman is required. Working with the distribution of
the log of the squared observations, Sandmann and Koopman (1998) obtain this
approximation and comment that this tranformation may cause problems when
zero or small values are encountered. To avoid this “inlier” problem we use the
general importance sampling procedure proposed in (14).Thus, if α(1), . . . , α(N) are
draws from pa(α|y; ψ), an estimate of L(ψ;y) is given by

L̂(ψ) =
1

N

N∑
i=1

p(y,α(i)|ψ)

pa(α(i)|y; ψ)
. (37)

For a fixed value ψ0, estimate L(ψ;y) by

L̂(ψ) =
1

N

N∑
i=1

p(y,α(i)|ψ)

pa(α(i)|y, ψ0)
, (38)

where α(1), . . . , α(N) is a sample from pa(α|y,ψ0). As in (31), to estimate ψ by
maximizing (38), a few updatings of ψ0 is recommended.

For our simulation study, we consider samples of size n = 500 and compute
mean and root mean squared errors over 500 simulated realizations for each of the
nine parameters given in Table 1. The results are shown in Table 2. In this Table,
AL denotes the estimates obtained by maximizing the approximating likelihood
given in (12) and MCL denotes estimates obtained by maximizing the estimate of
the likelihood in (37). To attain numerical stability, the same noise was used to
generate replicates of α(j)’s as a function of the AR parameters. MCL0 denotes
estimates obtained by maximizing the single-sample estimate of the likelihood in
(38). For this case, we start ψ0 with the AL estimate and the updating scheme
is as follows: 10 updates with N=100, 5 updates with N=500 and 5 updates with
N=1000.

We notice that MCL and MCL0 essentially produce the same estimates, but
with a few exceptions MCL gives smaller mean square errors. Because of this, we
focus only on the MCL estimator. For all methods, the estimates become more
biased as CV decreases. The large bias for CV=0.1 comes from the fact that the
data appear almost indistinguishable from a constant volatility model (Breidt and
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CV Method γ φ σ γ φ σ γ φ σ
true -0.821 0.900 0.675 -0.411 0.950 0.484 -0.164 0.980 0.308
AL -0.902 0.890 0.663 -0.491 0.940 0.478 -0.257 0.969 0.315

0.299 0.036 0.081 0.210 0.025 0.065 0.176 0.021 0.052
10 MCL -0.866 0.894 0.657 -0.491 0.940 0.484 -0.260 0.968 0.320

0.255 0.031 0.075 0.203 0.024 0.064 0.176 0.021 0.054
MCL0 -0.878 0.894 0.661 -0.490 0.940 0.481 -0.257 0.967 0.317

0.283 0.034 0.092 0.216 0.026 0.073 0.175 0.049 0.058
true -0.736 0.900 0.363 -0.368 0.950 0.260 -0.147 0.980 0.166
AL -0.956 0.870 0.377 -0.499 0.932 0.270 -0.260 0.965 0.176

0.685 0.092 0.093 0.341 0.046 0.068 0.341 0.046 0.052
1 MCL -0.894 0.879 0.372 -0.484 0.934 0.270 -0.271 0.963 0.178

0.597 0.081 0.085 0.296 0.040 0.065 0.518 0.070 0.051
MCL0 -0.883 0.880 0.367 -0.485 0.934 0.268 -0.263 0.964 0.176

0.536 0.072 0.086 0.324 0.043 0.068 0.399 0.054 0.053
true -0.706 0.900 0.135 -0.353 0.950 0.096 -0.141 0.980 0.061
AL -1.848 0.740 0.188 -1.260 0.823 0.151 -0.830 0.883 0.104

2.524 0.354 0.156 2.240 0.314 0.137 1.860 0.260 0.113
0.1 MCL -1.918 0.729 0.172 -1.569 0.779 0.147 -1.258 0.823 0.115

2.748 0.387 0.126 2.898 0.407 0.116 2.682 0.375 0.114
MCL0 -2.184 0.692 0.169 -1.555 0.780 0.140 -1.097 0.845 0.096

2.784 0.392 0.127 2.506 0.353 0.117 2.074 0.291 0.098

Table 2: Comparison of AL, MCL and MCL0 estimates based on 500 replications. Root
mean square errors of estimates are reported below each estimate.

Carriquiry, 1996; Sandmann and Koopman, 1998). For the remaining cases, the bias
for φ and σ are small, while the bias for γ is large even for large CV. Also, for this
parameter, AL has larger bias than MCL. For CV=10, MCL and AL have roughly
equal mean squared errors. For CV=1, MCL has smaller mean squared errors for
the first two values of φ. More importantly, is that the two estimation procedures
have comparable performance throughout the range of parameter values. The setup
of the models in the simulation study by Sandmann and Koopman (1998) is similar
to ours. They obtain parameter estimates following the Durbin and Koopman
procedure by working the log of the squared observations. The bias and root mean
square errors of φ for the models for which CV is 10 or 1, are comparable with ours.
For most of the cases we obtain smaller bias for σ and larger bias for γ.

3.2 Poisson Model

For the second simulation example, we assume that p(yt|αt; ψ) is a Poisson distri-
bution with rate λt := eβ+αt , where αt = φαt−1+ηt, ηt ∼ iid N(0, σ2), t = 1, . . . , n,
and |φ| < 1. We consider again nine models. This time, to classify the models, the
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index of dispersion D of the conditional variance of the observations σ2
t = eβ+αt

appears to be a more useful characterization of the ability to extract information
in the signal αt than its coefficient of variation. The mean of σ2

t is held fixed at 1.5.
The parameters of the models that result with this set up are shown in Table 3.

φ
D 0.90 0.95 0.98

10.0 β -0.6130 -0.6130 -0.6130
σ 0.6221 0.4456 0.2840

1.0 β 0.1501 0.1501 0.1501
σ 0.3115 0.2232 0.1422

0.1 β 0.3732 0.3732 0.3732
σ 0.1107 0.0793 0.0506

Table 3: Parameter values for a simulation experiment of nine Poisson state-space models.

For this simulation, we consider samples of size n = 500 and compute mean
and root mean squared errors over 1000 simulated realizations for each of the nine
parameters given in Table 3. The results are shown in Table 4. In this table,
AL denotes the estimates obtained by maximizing the approximated likelihood
given in (23) and MCL denotes estimates obtained by maximizing the estimate of
the likelihood in (29). From this table, we notice that the estimates of φ and σ2

deteriorate as D decreases, with large bias for these parameters when D = 0.1.
Except for a couple of cases, AL and MCL produce remarkably similar results.

3.3 Bias Correction via Bootstrap

In the two simulation studies that we considered, the approximate MLE of the
parameters for the Poisson and stochastic volatility models can be slightly biased.
Indeed, we will see in the two applications to real data, that the approximate
likelihood and importance sampling estimates can be very close to each other.
Closeness here is “measured” via the Monte Carlo error. In this section, we will
show via simulation that the bias of the estimates can be reduced considerably
using the bootstrap. Stoffer and Wall, 1991 uses the bootstrap to reduce the bias
of the ML estimates of the parameters of a classical Gaussian state-space model.

To implement the bootstrap in our modeling setup, let y1 . . . , yn be observations
from a state-space model and let ψ̂AL be the maximizer of the approximate likeli-
hood in (12). Following Efron and Tibshirani (1993), the bootstrap bias correction
of the estimate ψ̂AL of ψ is given by

ψ̄AL = ψ̂AL − b̂ias, (39)

where b̂ias = ψ̄
∗−ψ̂AL, and ψ̄

∗
is the average of B bootstrap estimates ψ̂

∗
1, . . . , ψ̂

∗
B.

Here, the bootstrap estimate ψ̂
∗
j is the maximizer of the approximate likelihood in
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D Method β φ σ β φ σ β φ σ
true -0.613 0.900 0.622 -0.613 0.950 0.446 -0.613 0.980 0.284
AL -0.593 0.889 0.617 -0.629 0.940 0.444 -0.599 0.969 0.288

10 0.288 0.033 0.061 0.390 0.023 0.055 0.605 0.037 0.061
MCL -0.592 0.892 0.614 -0.630 0.941 0.445 -0.600 0.969 0.289

0.287 0.030 0.059 0.390 0.022 0.054 0.603 0.030 0.049
true 0.150 0.900 0.312 0.150 0.950 0.223 0.150 0.980 0.142
AL 0.152 0.888 0.312 0.143 0.938 0.229 0.142 0.968 0.150

1 0.143 0.039 0.046 0.201 0.028 0.039 0.317 0.030 0.033
MCL 0.151 0.889 0.313 0.142 0.938 0.230 0.142 0.968 0.150

0.143 0.037 0.046 0.201 0.027 0.039 0.317 0.022 0.031
true 0.373 0.900 0.111 0.373 0.950 0.079 0.373 0.980 0.051
AL 0.369 0.759 0.146 0.369 0.868 0.103 0.370 0.873 0.075

0.1 0.064 0.336 0.083 0.081 0.242 0.066 0.114 0.329 0.060
MCL 0.371 0.774 0.136 0.369 0.864 0.102 0.370 0.855 0.076

0.063 0.327 0.070 0.080 0.248 0.063 0.114 0.353 0.060

Table 4: Comparison of AL and MCL estimates based on 500 replications. Root mean
square errors of estimates are reported below each estimate.

(12) computed with a realization y∗1 . . . , y∗n drawn from the state-space model that
has true parameters ψ̂AL. The bootstrap estimate of the variance of the estimator
ψ̂AL is

̂var(ψ̂AL) =
1

B − 1

B∑
j=1

(ψ̂
∗
j − ψ̄

∗
)(ψ̂

∗
j − ψ̄

∗
)T . (40)

To assess the performance of the bootstrap bias correction, we conducted a
simulation study on three Poisson models with parameters given in the second
row of Table 3. As seen in Table 4, φ has a moderate bias in these models. The
results of the simulation are given in Table 5. BC refers to the average of 1000 bias
corrected estimates defined in (39) computed with B=100 bootstrap estimates. The
standard errors of the 1000 bias corrected estimates are also shown in the table.
The AL estimates were obtained from 1000 simulated realizations from the state-
space model having true parameters given in the second row of Table 3. The row
labeled AL is the average of the 1000 simulated ψ̂AL estimates. Inspecting this
table, the bootstrap bias correction has done a good job in reducing the bias of the
AL estimate of φ with only little alteration of the standard errors.

In Figure 4 we compare the estimated densities of the AL and BC estimates
of the parameters β and φ. Each column in this figure corresponds to the models
with parameters (0.150, 0.900, 0.312), (0.150, 0.950, 0.223) and (0.150, 0.980, 0.142)
respectively. As seen from these graphs, the BC estimates have essentially shifted
the location of the AL estimates.
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estimate β φ σ β φ σ β φ σ
true 0.150 0.900 0.312 0.150 0.950 0.223 0.150 0.980 0.142
AL 0.153 0.887 0.313 0.147 0.938 0.227 0.140 0.967 0.147

S.E. 0.144 0.038 0.047 0.201 0.026 0.038 0.302 0.029 0.033
BC 0.154 0.904 0.305 0.147 0.953 0.217 0.141 0.985 0.133

S.E. 0.144 0.034 0.048 0.202 0.023 0.040 0.303 0.025 0.036

Table 5: Simulation results of bias correction for three Poisson state-space models based
on 1000 replications. The rows labelled AL and BC are the average of the replications.
Each AL estimate is the optimizer of the approximate likelihood in (23) and each BC
estimate is the bootstrap bias correction estimate defined in (39).
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Figure 4: Parameter densities for β (first row) and φ (second column) for estimations
AL (solid line) and BC (dotted line) for three Poisson state-space models.

3.4 Pound-Dollar Exchange Rates

The first dataset that we analyze is the Pound/Dollar exchange rates. The data,
taken from the site http://staff.feweb.vu.nl/koopman/sv/ consists of the log dif-
ferences yt of the daily observations of weekdays closing pound to dollar exchange
rates zt, t = 1, . . . , 946 from 10/1/81 to 6/28/85. We use the basic stochastic
volatility model (35) to model yt := log(zt) − log(zt−1). Setting the parameter
vector ψ := (γ, φ, σ2), Table 6 shows various estimates of ψ. The second column,
labeled as AL, contains the estimate of ψ obtained by maximizing (12). The col-
umn labeled MCL contains the estimate of ψ obtained by maximizing (37). MCE
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denotes Monte Carlo error and is obtained as the standard error of 1000 estimates
of ψ, using for each estimate the same observations y1, . . . , y945. The standard error
of the estimates AL and MCL are obtained using (40). The columns labeled as BC
are bootstrap bias corrections of AL and MCL computed with B = 500 bootstrap
estimates. Notice that the AL and MCL estimates are remarkably close. In fact, the
difference between these estimates is due to the randomness of the MCL estimate.
For example, two distinct MCL estimates of σ2 are unlikely to differ more than four
times the Monte Carlo error, i.e., 0.0028, while the estimates AL and MCE of σ2

differ only by 0.0006. In other words, we would not be able to differentiate the AL
estimate from a “cloud” of MCL replicates.

Parameter AL S.E. BC MCL MCE S.E. BC
γ -0.0227 0.0198 -0.0140 -0.0230 0.0004 0.0173 -0.0153
φ 0.9750 0.0194 0.9845 0.9747 0.0004 0.0166 0.9832

σ2 0.0267 0.0141 0.0228 0.0273 0.0007 0.0138 0.0228

Table 6: Parameter estimates for the Pound-Dollar exchange rates data. AL and MCE
are the maximizers of (12) and (37), respectively. BC are bootstrap bias corrected es-
timates (B = 500) and S.E. are bootstrap estimates of the standard errors of AL and
MCL, respectively. MCE is the standard error of 1000 MCL replicates.

3.5 Polio data

The second dataset consists of the observed time series y1, . . . , y168 of the monthly
number of U.S. cases of poliomyelitis for 1970 to 1983 that was first considered by
Zeger (1988). We adopt the same model used by Zeger in which the distribution of
Yt, given the state αt, is Poisson with rate λt := eαt+xT

t β. Here, βT := (β1, . . . , β6),
xt is the vector of covariates given by

xT
t = (1, t/1000, cos(2πt/12), sin(2πt/12), cos(2πt/6), sin(2πt/6)),

and the state process is assumed to follow the AR(1) model given by, αt = φαt−1+ηt,
where ηt ∼ iid N(0, σ2), t = 1, . . . , n = 1000, and |φ| < 1. The vector of parameters
of this SSM is ψ = (β, φ, σ2). Table 7 contains the results of two estimation
procedures. Columns 2 and 5 labeled as AL and MCL respectively, contain the
estimates of ψ obtained by maximizing (12) and (29), respectively. As in the
previous example, MCE denotes Monte Carlo error, based on 1000 replicates of the
MCL estimates using for each replicate the same observations y1, . . . , y168.

Notice that only the AL and DK estimates for β2 differ more than the expected
difference between two DK estimates (4 times MCE). In general the AL estimates
are very close to the DK estimates in spite of the fact that the length n of the
observed time series is not large. We obtain here larger Monte Carlo error than
in Table 6 even when we have used the same number of draws (N = 1000) to
compute the Monte Carlo integration in (37) and (29) respectively. This may not
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Parameter AL S.E. BC MCL MCE S.E. BC
β1 0.202 0.332 0.043 0.200 0.0010 0.345 0.220
β2 -2.691 3.376 -2.484 -2.647 0.0064 3.551 -2.820
β3 0.113 0.124 0.105 0.112 0.0003 0.121 0.108
β4 -0.454 0.142 -0.451 -0.454 0.0003 0.142 -0.445
β5 0.396 0.108 0.392 0.396 0.0003 0.109 0.392
β6 0.017 0.108 0.011 0.017 0.0003 0.110 0.014
φ 0.845 0.212 0.945 0.850 0.0018 0.181 0.936

σ2 0.104 0.074 0.094 0.102 0.0020 0.067 0.095

Table 7: Parameter estimates for the polio data. AL and MCE are the maximizers of (12)
and (29), respectively. BC are boostrap bias corrected estimates and S.E. are bootstrap
estimates of the standar errors of AL and MCL, respectively. MCE is the standard error
of 1000 MCL replicates.

be surprisingly since the polio data set has far fewer observations than the Pound-
Dollar exchange rate data. Moreover, the model fitted to the latter has fewer
parameters.

3.6 How good is the posterior approximation?

As seen in the simulation studies considered above, the use of pa(α|y; ψ) in (10)
as the normal approximation to the posterior distribution p(α|y,ψ) gives good re-
sults. The quality of the likelihood approximation is due largely to the closeness of
the normal approximation to the posterior. In this subsection we provide two meth-
ods for examining the closeness of this normal approximation. The first method
compares the posterior mean with the posterior mode. The second method is a
statistical test based on the correlation between the generalized squared distances
defined in (43) above with the quantiles of a Chi-squared distribution.

For the first method, first recall that the posterior mode is given by α∗. We now
provide an estimate α̂, also known as the smoothed state vector, of the posterior
mean of the state vector. From (5) and the fact that p(α|y; ψ) ∝ L(ψ;y,α)

E(α|y,ψ) =

∫
αp(α|y,ψ)dα =

1

L(ψ;y)

∫
αL(ψ;y, α)dα.

Hence, if α(1), . . . , α(N) are draws from pa(α|y; ψ) and L̂(ψ;y) is the estimate of
the likelihood given in (37), an estimate of the posterior mean is given by

α̂ =
1

NL̂(ψ;y)

N∑
i=1

α(i) p(y, α(i)|ψ)

pa(α(i)|y; ψ)
. (41)

As an example, for the Pound-Dollar exchange rates and polio data let ψ be
the AL estimate from Tables 6 and 7 respectively. Using N = 1000 in (41), α̂ was
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computed. In Figures 5 and 6 the solid line shows the smoothed state vector, and
the dashed line shows the posterior mode α∗ of p(α|y,ψ) obtained as in (16). In
both cases, the posterior mode and smoothed state vector are relatively close even
though the number of observations of the polio data (n=168) is not large. This
adds support to the goodness of the approximation to the posterior distribution
p(α|y; ψ) by a multivariate normal density.
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Figure 5: (smoothed state vector) For the Pound-Dollar exchange rates data, the
solid line shows estimate of the posterior mean of the state vector and the dashed
line shows its posterior mode.
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Figure 6: (smoothed state vector) For the Polio data, the solid line shows estimate
of the posterior mean of the state vector and the dashed line shows its posterior
mode.
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For the second method, if an independent sample from p(α|y,ψ) can be gen-
erated, then we could assess the compatibility of the samples with a normal pop-
ulation. Such a sample can be obtained as follows: First generate an independent
sample α(1),α(2), . . . , α(N) from the approximate distribution pa(α|y,ψ). For N
large, an iid sample from the discrete distribution that puts mass pi given by

pi :=
wi∑N
i=1 wi

, wi =
p(α(i)|y, ψ)

pa(α(i)|y,ψ)
∝ L(ψ;y,αi)

pa(α(i)|y,ψ)
, (42)

is an (approximate) iid sample from p(α|y,ψ). In the Bayesian literature, this
method is known as sampling importance-resampling (SIR), e.g., Bernardo and
Smith (1994). Assume now that α̃(1), α̃(2), . . . , α̃(M) is an iid sample from p(α|y,ψ).
If pa(α|y,ψ) in (10) were a good approximation to p(α|y, ψ), for M −n large, the
squared generalized distances

d2
j := (α̃(j) −α∗)T (K∗ + V)(α̃(j) −α∗), j = 1, . . . , M, (43)

would resemble an iid sample from the chi-squared distribution with n degrees of
freedom (Johnson and Wichern, 1998). Thus, a chi-squared QQ-plot of d2

1, . . . , d
2
M ,

should resemble a straight line through the origin with slope 1.
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Figure 7: (Chi-squared QQ-plots) The QQ-plot from i-th row and j-th column was
obtained using a SIR sample α̃(1), α̃(2), . . . , α̃(M) from p(α|y, ψj) by resampling a sample
of size 5000 from the approximation pa(α|y, ψj).

To illustrate this techniques, consider the state-space model for which p(yt|αt; ψ)
is the Poisson distribution with rate λt := eβ+αt ; αt = φαt−1 + ηt, ηt ∼ iid

20



N(0, σ2), t = 1, . . . , n; and |φ| < 1. The vector of parameters of this process,
ψ = (β, φ, σ2), is fixed to (0.373, 0.9, 0.012). Chi-squared QQ-plots of d2

1, . . . , d
2
M

are shown in Figure 7. With a sample of size N=5000 from pa(α|y; ψ), a sample
of size M from p(α|y; ψ) was obtained via SIR. The j-th column of this figure
corresponds to the parameter value of ψ = ψj, where ψ1 := (0.2, 0.8, 0.002),
ψ2 := (0.373, 0.9, 0.012) and ψ3 := (0.5, 0.95, 0.02). From this figure, we notice
that even for a small sample (n = 50), the squared generalized distances closely
resemble the chi-squared distribution with n degrees of freedom.

The correlation coefficient rQ between the ordered distances d2
(j), j = 1, . . . , M

and the Chi-squared quantiles can be used to test any departure from normality
of pa(α|y,ψ) (Johnson and Wichern, 1998). The nine correlations rQ for the data
used to create Figure 7 are shown in the last three columns of Table 8. The
hypothesis must be rejected at level α% if the correlation falls below rα. The
critical points r0.05 for each M , needed to test the null hypothesis of normality with
5% of significance level are given in the third column of this table. In all cases,
normality is not rejected. This provides some evidence that the distribution in (10)
may be a reasonable approximation for the posterior distribution p(α|y,ψ).

rQ

N M r0.05 ψ1 ψ2 ψ3

50 100 0.9873 0.9952 0.9978 0.9925
100 150 0.9913 0.9957 0.9952 0.9926
200 250 0.9920 0.9974 0.9974 0.9973

Table 8: Correlation coefficients of the points in the QQ-plots from figure 7.

4 Conclusions

For the state-space model, a second order Taylor series expansion of the log of
the conditional likelihood gives an approximation to the observed likelihood of the
state-space model. An approximate MLE of the parameters of the state-space
model can be obtained from this function. Because no simulation is involved, this
procedure is fast. The Taylor series expansion gives also a normal approximation
pa(α|y,ψ) to the posterior distribution of the states. For the exponential family
of distributions in standard form, the approximate distribution pa(α|y,ψ) coin-
cides with the approximation to the conditional distribution of α found by Durbin
and Koopman (1997). This approximation can be used to implement existing es-
timation procedures based on the Monte Carlo approximation to the likelihood,
as it is the case of the procedure given by Kuk (1999) and Durbin and Koopman
(1998). In various simulation studies, the results obtained with our approach, are
close to other simulation based approximations of the MLE. Although the (approx-
imate) likelihood estimates may have some bias, the speed of this procedure makes
bootstrap method for bias correction a viable procedure.
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5 Appendix. The Innovations Algorithm

In this appendix, we briefly describe the innovations algorithm (Brockwell and
Davis, 1991) and show with an example, how it can be adapted to compute the re-
cursion in (16) and the determinant needed in approximation (23). This algorithm
is applicable to any time series with finite second moments, whether stationary or
not.

Suppose that {Xt}n
t=1 is a time series with finite second moment and covariance

matrix Γ. Define X := (X1, X2, . . . , Xn). Let X̂ be the vector of one-step predictors,
i.e., X̂ := (0, X̂2, . . . , X̂n) and νj := E(Xj+1 − X̂j+1)

2 be the mean-squared error of

the one-step predictor X̂j+1. Then (Brockwell and Davis, 1996; pp. 70-71)

X = C(X− X̂), (44)

where

C :=




1 0 0 . . . 0
θ11 1 0 . . . 0
θ22 θ21 1 . . . 0
...

...
...

. . .
...

θn−1,n−1 θn−1,n−2 θn−1,n−3 . . . 1




. (45)

The entries θij of this matrix can be found recursively as in Proposition 5.2.2. from
Brockwell and Davis (1991). Computing the covariance matrices on both sides of
(44), it follows that

Γ = CDCT , (46)

where D := E{(X−X̂)(X−X̂)T} = diag{ν0, ν1, . . . νn−1}. The last equallity comes
from the fact that the components of X − X̂ are uncorrelated. Also, because the
determinant of the matrix C is 1, taking determinants in both sides of (46), we
obtain

|Γ| = |CDCT | = |D| =
n−1∏
j=0

νj, (47)

Now, using using (44) and (46), we can show that

Γ−1X = C−Te, (48)

where the entries ej of the vector e are the “normalized” residuals (Xj − X̂j)/νj−1.

For example, consider the SSM for which the observations y1, . . . , yn are real-
izations of a Poisson distributed with rates λt = eβ+αt and the state process follows
the AR(1) model

αt = φαt−1 + ηt, (49)

where ηt ∼ iid N(0, σ2), t = 1, . . . , n. Notice that the distribution of the observa-
tions has the format of the exponential family in (3) where b(αt) = eαt+β.
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From the fact that cov{αt, αt+h} = σ2|φ|h/(1− φ2), we have

V = cov{α}−1 = 1/σ2




1 −φ 0 . . . 0 0
−φ 1 + φ2 −φ . . . 0 0
0 −φ 1 + φ2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 + φ2 −φ
0 0 0 . . . −φ 1




.

Now, let αj be the current iterate to the value of α∗. From (15) and (24)

ḃj =
∂

∂α
1Tb(α)|αj = eβdiag{eαj}

Kj =
∂2

∂α∂αT
1Tb(α)|αj = eβdiag{eαj}.

Since no intercept is included in the AR(1) process in (49), µ = 0. Thus, ỹj defined
in (25) is given by

ỹj = y − ḃj + Kjαj + Vµ = y − eβeαj

+ eβdiag{eαj}αj.

Set Γ := Kj + V and X := ỹj. Since Γ is a band-limited matrix, it follows
from Proposition 5.2.2. of Brockwell and Davis (1991) that

νj =

{
γ11, if j = 0,
γj+1,j+1 − θ2

j1νj−1, if j = 1, . . . , n− 1,
(50)

X̂j =

{
0, if j = 1,

θj−1,1(Xj−1 − X̂j−1), if j = 2, . . . , n

and for m = 1, . . . , n− 1,

θmj =

{
ν−1

j−1γj+1,j, if j = 1,
0, if j = 2, . . . , m.

Once these values have been computed, then the vector of normalized residuals
e needed in (48) is easily obtained, and the iteration in (20) becomes

αj+1 = (Kj + V)−1ỹj = Γ−1X = C−Te (51)

Due to the fact that C is a band matrix, rather than inverting it to obtain αj+1

we can compute it by a reversed iteration obtained from e = Cαj+1.

The iteration in (20) tends to converge quite rapidly -only a few iterations
are required. Now, to compute the determinant of the matrix K∗ + V needed in
(23), set Γ := K∗ + V, where K∗ = eβdiag{eα∗} -see (22), and X = y − eβeα∗ +
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eβdiag{eα∗}α∗, where α∗ is the converged value of the iteration in (51). Then,
from (47),

|K∗ + V| = |Γ| =
n−1∏
j=0

νj,

where νj, j = 0, . . . , n − 1 must be computed as in (50). Extensions to state pro-
cesses following an AR(p) model can be handled in a similar fashion.
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