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I. Point process theory for bilinear models
• The model
• Tail behavior of marginal distribution
• Point process convergence
• Applications

extremes
partial sums
sample ACF

II. Point process theory for stochastic volatility 
models

• The model
• Tail behavior of marginal distribution
• Point process convergence
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I. Point process theory for bilinear models

The ModelThe Model

Linear model: ,  where  {Zt } is an IID sequence.Xt = −
=

∞

∑ c Zk t k
k 0

Simple first-order bilinear model:

where  {Zt } is an IID sequence.

X Z X Zt t-1 t-1 t= +c
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Note:
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Tail Behavior of  Tail Behavior of  X1

Assume {Zt} is an IID sequence of non-negative rv’s with cdf

1−F(x) = x−αL(x)

where L(x) is a slowly varying function at infinity.

Proposition: 
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Corollary: If                               ,  then
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Point process convergencePoint process convergence

Assumptions:                                      , {Zt } is IID

• P[|Zt | >x] =x−αL(x),     P[ Zt > x] / P[|Zt | >x]         p.

• bn= inf{x: P[|Zt | > x] < n−1}

• Define the sequence of point processes

X Z X Zt t -1 t -1 t= +c

X = Y  Y =  Z  Y Z Zt t
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Theorem:

(i)  N  n
k=1

j W
s=1 s

2
s,k

( ) ( ),⋅  → ⋅
∞ ∞

∑ ∑
d

ckε

where { js } are points of a Poisson process with intensity 

measure µ(dx) = α(p x−α−11[x > 0] + (1−p)(− x)−α−11[x < 0])dx,
and

with {Us,k} IID (F).
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(ii)  
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ApplicationsApplications

Extremes: Define Mn= max{X1,. . . . ,Xn} and observe that

{b Mn
-2

n n≤ = ∞ =x x} {N ( , ] }0

where Nn is the point process                    .  Thus,
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and V1= max{ckW1,k ; k > 0}.



11

Partial sums: Assume                     and define α ∈ ( , )0 4

S Xn k=
=
∑
k

n

1
.

Then the partial sums, normalized by     , are asymptotically 
stable.  For the case                   ,  it follows directly from part 
(i) of the theorem that
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which has a stable distribution.  (See Davis and Hsing `95 for 
form of characteristic function.)
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Sample ACF: Define the sample autocorrelation function 
w/o mean correction by

>( ) .ρ h = =

=

∑

∑

X X

X

t t+ h
t 1

n -h

t
2

t 1

n

For heavy-tailed linear processes,          was shown to be 
consistent by Davis and Resnick `85.  (Limit distribution was 
also derived.)  For the bilinear process,             has a
nondegenerate limit distribution w/o any normalization.  Proof 
follows directly from part (ii) of the theorem.

>( )ρ h

>( )ρ h
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In particular, if                   , then
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Examples: Sample ACF from 3 
realizations, n=5000 from the 
model:

X Z X Z ,   
{Z  IID,   P[Z  
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II. Point process theory for stochastic volatility models

The Stochastic Volatility ModelThe Stochastic Volatility Model

where {ξt } is IID N(0,1), {Zt } is IID N(0, σ2) independent of {ξt }
and the {cj} are square summable.

Y    = c Z  ,t t j
j= 0

t- j=
∞

∑exp( / ) ,α ξ αt t2

Note:

(i) {Yt } is a stationary martingale difference sequence.

(ii)                                                      is a Gaussian linear process 

plus an IID log-χ2 process. 

X ln Y =t t
2

t
2= +α ξt ln
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Tail Behavior of  Tail Behavior of  X1

Using a Tauberian argument as in Feigin and Yashchin (1983) 
and Davis and Resnick (1991), we have

P[X1 > ≈ − + +
−

−
+

− − +
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Point Process ConvergencePoint Process Convergence

Choose an and bn such that

nP[an(X1 − bn) > x] e−x ,

i.e. can take

a d    d = ( ,  n n n= ( / ) , ln )/ /2 2 1 2 1 2σα n

and

b d d
d

d
1

dn n n
n

n n
= + + + +c c c c c1 2 3 4 5ln

ln
.

Then, if Cor(αt , αt+h ) ln h      0, as  h          ,

P[an(Mn − bn) < x] exp{− e−x },

(Mn = max{X1 , . . . , Xn}).  

→ ∞
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More generally, we have the point process convergence,

N Nn (t/ n, a (X
t=1

n t
( ) ( ) ( ),))⋅ = ⋅  → ⋅−

∞

∑ ε b
d

n

where, N( ) is a Poisson process on                             with 
intensity measure dt exp(−x)dx

[0, ) ( , ]∞ × −∞ ∞
×
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Remarks:

• Scaling constants an are the same as in the IID Gaussian case. 
Location constants bn differ from those in the IID case (call 
these bn*.  Then,

so that bn is ‘slightly larger’ than bn*.

• The condition, Cor(αt , αt+h ) ln h      0, as  h           , is satisfied 
by both short memory ARMA and long memory fractionally 
integrated ARMA stochastic volatility models.

• Limit approximation is not as good when Cor(αt , αt+h ) decays 
slowly or when          is large.

b b d
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