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|. Point process theory for bilinear models

The Model

Linear model: X, = chzt—k , Wwhere {Z,} is an IID sequence.
k=0

Simple first-order bilinear model:

Xt = CZt-lxt-l t Zt

where {Z,} is an IID sequence.



Note:
Xt = CZt-lxt-l T Zt
_ 2 2
- Zt +CZt-1 tC Zt-lzt-zxt-z
— 2 2 2 3
- Zt +CZt-1 tC Zt-lzt-Z tC Zt-lzt-ZZt-3Xt-3

= vy
k=0
where
Yt(O) — Zt
1) — -2
Yt _ Zt—l

k-1
Y = (|‘| zt_ijzf_k, for k > 0.
1=1



Tail Behavior of X;

Assume {Z,} is an 11D sequence of non-negative rv’s with cdf
1-F(x) = x“L(X)

where L(x) is a slowly varying function at infinity.

Proposition:
PIYY >x] (202
P[Z; > x] 1

and

PIYY > x,YY >X]
P[22 >x]

O as X —» 00,




Corollary: If ¢“?EZ{"? <1 | then

PEY. oYM > x] = 3 c?(EZ02) P[22 > x]
k=0 k=1

and




Point process convergence

Assumptions: X, =c¢cZ X, +Z, {Z}islID

* P[IZ,|>X] =x"°L(x), P[Z, >Xx]/P[|Z,|>X] — p.

k-1
X, = ZCKY(k) (1) = L, Yt(k) = (l_l Zt-ij th-k
i=1
=inf{x: P[|Z,|>x] <n 7}

* Define the sequence of point processes

M@=§%%@



Theorem:

(i) N, (. i i«f 2oty L

k=1 s=1

where { ], } are points of a Poisson process with intensity
measure p(dx) = a(p X *1[x > 0] + (1p)(— X) *'1[x < 0])dx,
and ( k-1

[V, ifk>1,
1=1

W, =1 1 Ifk=1,
0, If k <1,

with {U, 3 11D (F).
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Applications

Extremes: Define M = max{X,,. ..., X, } and observe that

{b?M, < x}={N(x,] =0}
where N Is the point process ;1 gb-ank . Thus,
P[b*M . < x]=P[N_(x, ] =0]
— P[N(X,00] =0]
(0, ifx < 0,
- exp{E(V?)x™}, ifx>0,
and V= max{ckW, , ; k> 0}.

=<
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Partial sums: Assume @ [1(0,4) and define
S, =) X,.
k=1

Then the partial sums, normalized by bf, are asymptotically
stable. For the case @ [1(0,2) , it follows directly from part

(1) of the theorem that

b’s £ S:= ) jfckw,
=1

k=1 S
o0

— =2

_ Z JSAS’
s=1

which has a stable distribution. (See Davis and Hsing 95 for
form of characteristic function.)
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Sample ACF: Define the sample autocorrelation function
w/0 mean correction by

-

n-

tht+h

~
1

p(h) =-=

>S5

X

t=1

For heavy-tailed linear processes, 0(h) was shown to be
consistent by Davis and Resnick "85. (Limit distribution was

also derived.) For the bilinear process, p(h) hasa
nondegenerate limit distribution w/o any normalization. Proof

follows directly from part (i) of the theorem.
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In particular, if a [J(0,4), then

ﬁ(h) Djd—> k=1 s=1
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Examples: Sample ACF from 3
realizations, n=5000 from the
model:

Xt = O'lzt—lxt-l T Zt’
{Z} D, P[Z,>x]=1/%, x =1

ACF
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I1. Point process theory for stochastic volatility models

The Stochastic Volatility Model

Y, =exp(a,/2)¢, a,= Z Cth-J' ’
i=0

where {&; } is 1ID N(0,1), {Z,} is 11D N(0, ¢2) independent of {¢, }
and the {c;} are square summable.

Note:

(1) {Y,} is a stationary martingale difference sequence.

iy X,=InY?=a,+In&’ isaGaussian linear process

plus an 11D log-x2 process.
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Tail Behavior of X;

Using a Tauberian argument as in Feigin and Yashchin (1983)
and Davis and Resnick (1991), we have

2

g, X XxInx (k—-1)x
> = — + +
P[X, > X] \/;exp{ 207 o o2
S (k+al)Inx In*x K’ +O(In2xj}
20 207 207 X )

as X — o wherek = |n(2/0'§),and o =Var(a,) .
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Point Process Convergence

Choose a,, and b, such that
nP[a,(X; —by) >x] — e™*,
l.e. can take

a, =(2/02)"?d_, d_=(Inn)"?

and
Ind, 1
e,

n n

b,=cd, +c,Ind, +c, +c,

Then, if Cor(a,, d,,,) INh— 0,as h - o,

Pla,(M, —b,) <x] — exp{-e™},

(M, =max{X;, ..., X }). 17



More generally, we have the point process convergence,

Nn(mzzg(t/n,an(xt—bn))(m = N']),

where, N( ) is a Poisson process on [0, ) X (=00, o] with
Intensity measure dt Xexp(—x)dx
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Remarks:

e Scaling constants a, are the same as in the 11D Gaussian case.
Location constants b, differ from those in the 11D case (call
these b.,*. Then,

* 1
b.-b,=c,Ind, +c, +Cd_’

so that b, is “slightly larger’ than b *.

* The condition, Cor(a, 0.,,) Inh— 0, as h - o | is satisfied
by both short memory ARMA and long memory fractionally
Integrated ARMA stochastic volatility models.

* Limit approximation is not as good when Cor(a,, a.,, ) decays
slowly or when 0'5 IS large.
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