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All-pass Models

Causal AR polynomial: @@)=1-@z —--- —@z°, @(z) # 0 for |z|<1.

Define MA polynomial:
e(z) = —7P (p(z—l)/(pp = —(Zp —(plzp-l —.ee — (R))/ (pp

# 0 for |z|=1 (MA polynomial is non-invertible).
Model for data {X;}: @B)X,=06(B) Z,, {Z} ~ lID (non-Gaussian)
Examples:

All-pass(1): X = @X, =Zi— ¢ Zy, |@[<1.

All-pass(2): Xi= @ Xy~ @ Xio= 2+ @/ @, 2, — 119, 2,



Properties:

* uncorrelated (flat spectrum)
.12 . 2
e o) o _ o

1:X = .2 -9
(W) (Pf)‘(me—lw)‘ 27T (pp2'r[

* data are dependent if noise is non-Gaussian
(e.g. Breidt & Davis 91).

* squares and absolute values are correlated.

e X; Is heavy-tailed if noise is heavy-tailed.




Approximating the likelihood
Data: (X, ..., X,)

Model: X, =@, X, +--+¢ X,
+ (Zt—p _(pOlzt—p+1 _"'_CPOpZt)/CPOr
where @, Is the last non-zero coefficient among the @,;’s.

Noise: Ly = Qi py Tty 2 (X =€ Xy _"'_CPOpXt—p)’

where z, =Z, | @y,

More generally define,

Zt—p ((p) = {

0, ift=n+p,.,n+1
(plzt—p+1((p) +”'+(ppzt ((p) _(KB)XU Ift = n,..., P +1.

Note: z,(@,) is a close approximation to z, (initialization error)



Assume that Z, has density function f; and consider the vector
2= (Xpprees Koy Zip (@1 2(9), 20(D),os 2o (@), 2, (@)

’\ Independent pieces /,

Joint density of z:
N(z) =h(X; oo Xg, 21 (@), 20 (@)

. [rj fo (02 (D) | @ Ijhz(zn_pﬂ(cp),---, Z,(9)),

and hence the joint density of the data can be approximated by

n(x) = [I’j f(0.2,(0)] @, |]

where g=max{0 <j < p: @# 0}.



Log-likelithood:
n-p
L(¢.0) =—=(n=p)In(c/|@, )+ D In f(07P,z (9))
t=1

where f,(z)= 071 f(z/0).

|_east absolute deviations: choose Laplace density

f(2) = %exp(—ﬁ 7))

and log-likelihood becomes

constant —(n—p) Ink - Zx/_lz(cp)|/|<

Concentrated Laplacian likelihood

|(¢) = constant —(n— p) In Z| Z,(Q) |
Maximizing I(¢) Is equivalent to mlnlmlzmg the absolute deviations

mn(cp)=Z|zt(cp)|-




Asymptotic Results:

Theorem 1. Let {Y.} be the linear process

Y, = chzt_j,

j=—oo

where ¢,=0, Y |c;|<oo, {z,}~11D(0,0%), median(z,)=0,

=

g(0)>0 (g density of z,). Then

n—p

S, = > (2™, |-z,
t=1
- Var(Y,)g(0) + N

where N ~ N(0,y*(0) +2) y*(h)) and y*(h) is the covariance

function for Y, sgn(z,) i




Key Idea:

n-p

Sn = Z(' Z; 'n_l/ZYt | ) | Z; |)

t=1

n-p
-n""2 %Y, sgn(z,)
t=1

n-p
12y _
+2 Z (n Yt £ ){ 1{O<zt<n‘1’2Yt} 1{n‘1’2Yt<zt <0} }
t=1

— N +Var(Y,)g(0)



Theorem 2. On C(RP),

S, =3 (z(@ +n0)|- 2,(@) )

- S(u),
where
S(u) = f“(o)u'l'pu+u'N,
|(p0r|
N ~ N(O, 2Var(|Z |) r),

(pO r

and I 1s the covariance matrix of a causal AR(p).




Limit theory for LAD estimate. Note that

E\pLAD:(pO-I_Gn/\/H

so that U, = \/H(EPLAD — @) =argmins, (u)
— U=argminS(u).

Minimizing S, we find that the minimizer or limit random
variable is

~ - |(p0r||_|<;1
U, =+/n - - = N
=IO ~®) -~
I——l
LN N0, YArUZD) or oy

2f_(0) 20%f2(0)  °



Remarks.
1. Need E|z(@)| to have a unique minimum at @=¢ . True

If Z, has heavier tails than Gaussian,
E| Y c¢Z,>E|Z]
j=—0c0
(See Jian and Pawitan (1998) for sufficient conditions.)

2. Asymptotic covariance matrix is scalar multiple of
the limiting covariance matrix of AR(p) using Gaussian
MLE.

.5 Laplace
(377 for t-distribution with 3 d.f.

Examples: scalar



Order Selection:

Partial ACF From the previous result, if true model is of
order r and fitted model is of order p > r, then

A Var(| Z |)
n”chp,LAD - N(O, g fc,z (O))

where @, | op IS the pth element of @ .5

Procedure:

1. Fit high order (P-th order) and obtain residuals and

estimate scalar,
62 — Var(l Zl |)

- 20*12(0)
by empirical moments of residuals and density estimates.




2. Fit all-pass models of order p=1,2, ..., P via LAD and
obtain p-th coefficient @, ; for each.

3. Choose model order r as the smallest order beyond
which the estimated coefficients are statistically
Insignificant.

AIC: An approximate unbiased estimate of -2 log(like)
based on an independent realization is

Var(|Z, )
E | Zl | 02 fc(o)

AIC(p) = —2L, (¢,K) + p

Estimate coefficient of p using empirical moments of
residuals. (Coefficient is 2 in traditional case.)



Simulation results:
* 1000 replicates of all-pass models

* model order parameter value
1 ¢ =4
2 ¢=.3, 9,=.4
* noise distribution is t with 3 d.f.
* sample sizes n=500, 5000

® estimation method i1s LAD



To guard against being trapped in local minima, we adopted the
following strategy.

* 250 random starting values were chosen at random. For
model of order p, k-th starting value was computed
recursively as follows:

k k k . .
1. Draw D@, @) iid uniform (-1,1).
2. For =2, ..., p, compute
OGO [ oK)
j1 j-1,1 j-1,j-1
. _ . _ k) .
- ]
k) k) k)
G| | B B

* Select top 10 based on minimum function evaluation.

* Run Hooke and Jeeves with each of the 10 starting values
and choose best optimized value.
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Estimates:
@ =.297(.0381), @, =.374(.0381)

Standard errors computed as ésqrt{(l— f[)ﬁ) / 500}
where §=.919

Order selection:

e cut-off value for PACF is 1.96*.908/sqrt(500)=.0796
e AIC(p):=-2L, (¢ K)+1.896

1 2 3 4 5

phi_p |0.289 0.374 0.009 0.011 0.01
AIC(p)2451 2346 2347 2348 2350

6 [ 38 9 10
0.047 0.034 -0.05 0.083 0.021
2348 2349 2345 2343 2345




Asymptotic Empirical
N mean std dev mean std dev %coverage
500 @=.5 .0332 4979 .0397 94.2
5000 @=.5 .0105 4998 .0109 95.4
Asymptotic Empirical
N mean std dev mean std dev %coverage
500 @=.3 .0351 2990 .0456 92.5
¢,=.4 .0351 3965 .0447 92.1
5000 @=.3 .0111 3003 .0118 95.5
¢=4 .0111 3990 .0117 94.7




Application to financial data
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All-pass model fitted to NZ-USA exchange rates :
Order = 6, ¢,=-.367, @,=-.750, @,=-.391, ¢,=.088, ¢.=-.193, ¢,=-.096
(AIC had local minima at p=6 and 10)

ACF: residuals ] ACF: (residuals)?




Noncausal AR (p) models (with heavy tailed noise. )

Xim @ Xy = — @ X, = 4,
a. {Z,} ~ lID(a) with Pareto tails
b. p@=1-@z-- - --@7

No zeros on the unit circle = stationary.

No zeros inside the unit circle = causal.

Some zero(s) inside the unit circle = non-causal.




Impulse Response

Causal - Low frequency




Impulse Response

Noncausal - High frequency




Impulse Response

Mixed: High (non-causal) & Low (causal) frequency




Realization of a causal AR(2), and a hon-causal AR(2)

Model: @(B)X,=Z,, {Z} ~ IID(a = 1), where
®.(B) = (1-0.9B)(1 +0.9B) and @ (B)=(1- 1.1B)(1 + 1.1B)
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Application of all-pass to non-causal AR model fitting

Suppose {X,} follows the non-causal AR model
(pc(B) (pnc(B) Xt: Zt ’ {Zt} ~ |ID.

Let {U,} be the residuals obtained by fitting a purely causal
AR model, i.e.,

U, = @(B)X,
=@, (B)'(ypnc (B)X,, (.{pm IS the causal version of @)

_ 9, (B)
®,.(B)

Thus {U,} follows the purely non-causal all-pass model,

@, (B)U, = @ (B)Z,.

Zt



X(t)
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Volumes of Microsoft (MSFT) stock traded over 754
transaction days (6/3/96 to 5/27/99)




Analysis of MSFT:
Log(volume) follows AR(1) or AR(3).
U, =(1-.5834 B) X, (causal AR(1))

All-pass model of order 1 fitted to {U,}:
(1-1.752B)U, =(1-.5708B)Z..

Combining the two models, we obtain the approximate non-
causal model for {X}:

(1-1.752 B)X, S

_ (1-.5708 B) >
(1-.5834B) '
Estimated residuals from all-pass model fit:
~ (1-1.752B)(1-.5834 B)
Zt o Xt
(1-.5708 B)
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