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Two Types of Models for Poisson Counts

Parameter-driven models

e Poisson regression when serial dependence
 Testing for a latent process
e Estimating serial dependence

* Fitting latent processes

Observation-driven models

e Fitting, distribution, and standard errors

* Application to asthma data
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Example: Daily Asthma Presentations (1990:1993)
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Polio Incidence In the U.S.

The rate of polio infection dropped dramatically following the
Inactivated polio vaccine (IPV) introduction in 1955. The decline
continued following the introduction of live oral polio vaccine
(OPV) in 1961. In 1960, there were 2,525 cases of paralytic polio
reported in the United States, and in 1965 there were only 61.
Between 1980 and 1990 an average of 8 cases were reported per
year, most of which were vaccine associated. Since 1979 there has
not been a single case of polio caused by wild virus in the United
States and only an average of one imported case per year.

CENTER FOR DISEASE CONTROL AND PREVENTION
Date Last Revised: March 9, 1995
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Example: Polio Counts (Zeger 1988)
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Notation and Setup

Count Data: Y, ...,Y,
Regression variable: x,

Model: Distribution of the Y, given x, and a stochastic process v,
are indep Poisson distributed with mean

He = exp(x," B +vy).

The distribution of the stochastic process v, may depend on a
vector of parametersy.

Note: If v,= 0, then in standard Poisson regression model.

Objective: Inference about B.
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Linear Regression Model-A Review

Suppose {Y,} follows the linear model with time series errors given

by
Yi=x'B+W,,

where {W,} Is a stationary (ARMA) time series.
® Estimate (3 by ordinary least squares (OLS).
® OLS estimate has same asymptotic efficiency as MLE.

N\
* Asymptotic covariance matrix of B s depends on ARMA
parameters.

® |dentify and estimate ARMA parameters using the estimated
residuals, A
Wi =Y, - X" BoLs

® Re-estimate 3 and ARMA parameters using full MLE.
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Example: Polio (cont)

Regression function:
X,'=(1, t'/1000, cos(21et’/12), sin(21t"/12), cos(21t"/6), Sin(21t"/6))

where t'=(t-73).

Summary of various models fits to Polio data:

Study Trend([3) SE(P) t-ratio
GLM Estimate -4.80 1.40 -3.43
Zeger (1988) -4.35 2.68 -1.62
Chan and Ledolter (1995) -4.62 1.38 -3.35
Kuk&Chen (1996) MCNR  -3.79 2.95 -1.28
Jorgensen et al (1995) -1.64 018 -91.1
Fahrmeir and Tutz (1994) -3.33 2.00 -1.67
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Desiderata for models - Zeger and Qagish

Zeger & Qaqish (1988) offer 3 desiderata that should be met.

1. Ease of interpretation. Marginal mean of Y, should be
approximately

E(Y) = 1, = exp(x,'B)

(regression coefficient 3 can be interpreted as the proportional
change in the marginal expectation of Y, given a unit change in x,)

2. Flexibility. Both positive and negative serial correlation should
be possible in the model.

3. Orthogonality of the estimates of 3 and y. (Enables
Implementation of a 2-stage estimation procedure?)
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Desiderata for models - continued

Condition 3 is met for linear regression models with time series
errors. For count data, this condition may be overly restrictive
since the mean and variance of Y, are linked.

4. Ease of producing forecasts. Often this is primary goal of time
series modelling.

5. Procedures for model fitting and inference.

6. Diagnostic tools. Required for assessing model adequacy.
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Latent Process or Parameter Driven Model

Count Data: Y, ..., Y,

Conditional distribution of Y, given x, and a non-negative stochastic
process &, , is Poisson distributed with mean g, exp(x,' B), i.e.,

Yil &, % UP(g exp(x,' B)).
Note: E Y, =exp(x," B )E g,. We assume E g =1 for identification
purposes.

Assumptions on latent process: {&} Is a non-negative stationary
time series with mean 1 and ACVF

Ye (N) = E(€n-1) (€-1).
Often assume g, = exp(a, ), where {a.} Is a stationary Gaussian T.S.

( A ~ N(_GGZ/Z’ Gaz) )
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Moment Properties of the Poisson Count Process

Mean of Y,
H=E(Yy) = exp(x, B)

Variance of Y;:
Var(Yy) = Yt H°0;?

Autocovariance function of Y,
CoV(Yns Yo) = Mt Hewn Ye (D) -

Autocorrelation function of Y,
COr(Youns Y9) = Pe (M(L+ K10, 2)(L+ oy 10 2)Y?

Special case x,=1 and g, = exp(a,):
0 < Cor(Yyp, Yy) < pq (),

Implication: difficult to detect correlation in latent process from Y,
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GLM Estimates

Model: Y, | &, x, OP(g, exp(x," B)).
GLM log-likelihood:

I(B) = ZeXtB+ZYxB Iog{rj }

(Likelihood ignores presence of the latent process.)

Assumptions on regressors:

QI,n = n_lthXtTut - Q| (B)1
t=1

£-2ll,n = n_lZZthzl‘ltusye(S _t) - QII (B)1

t=1 s=1
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Theorem for GLM Estimates

N\
Theorem. Let B be the GLM estimate of 3 obtained by
maximizing I(3) for the Poisson regression model with a stationary
lognormal latent process. Then

~ d
n"2(B-PB) - N(0,Q7 +Q7'Q, Q).
Notes:

1. n1Q1is the asymptotic cov matrix from a std GLM analysis.

2. n'1Q1Q, Q,1is the additional contribution due to the presence
of the latent process.

3. Result also valid for more general latent processes (mixing, etc),

4. Can have x, depend on the sample size n.
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When does CLT Apply?

Conditions on the regressors hold for:

1. Trend functions.
X = f(t/n)

where f is a continuous function on [0,1]. In this case,

N 1
n_lthXtTut . jf(t)fT(t)ef OB,

R I T HTITRACER jf OF @ Pdt> v, ()
t=1 s=1
Remark. x.. = (1, t/n) corresponds to linear regression and works.
However x, = (1, t) does not produce consistent estimates say if the

true slope Is negative.
12/23/2001
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When does CLT apply? (cont)

2. Harmonic functions to specify annual or weekly effects, e.g.,

X, = cos(21t/7)

3. Stationary process. (e.g. seasonally adjusted temperature series.)

12/23/2001

Modelling Time Series of Counts

16




Application to Polio Data

Use the same regression function as before. Assume latent process
Is a log-normal AR(1), i.e., In g = a,, where

(a+04/2) = (o, + 0%/2) +n,, {nJ~11D N(O, o4(1-¢)),
with ¢ =.82,0%=.57.

Zeger GLM Fit  Asym Simulation

N\ N\ N\

B, se.| PBeom S€ | se | Bswm S
Intercept 0.17 0.13| .207 .075 | .205 | .150 .213
Trend(x10°) -4.35 268 | -4.80 1.40 | 4.12 | -4.89 3.94
cos(2mt/12) | -0.11 0.16 | -0.15 .097 | .157 | -.145 .144
sin(2rt/12) | -.048 0.17| -0.53 .109 | .168 | -.531 .168
cos(211/6) 020 0.14| .169 .098 | .122 | .167 .123
sSin(211/6) -0.41 0.14| -432 .101 | .125 | -440 .125
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Polio Data With Estimated Regression Function
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Testing for the Existence of a Latent Process

Under H,: no latent process (i.e., & = 1), the Pearson residuals
Y~ [j‘t

e

H

€ =

are approx 11D N(0,1). Test statistic
n n
— -1 2 A ~2 -1 -1 ~ =1
Q —(n D e —1)/%, G5 =N (n > i +2j,
t=1 t=1
has an approx N(0,1) distribution. Test does not perform well.

a 100 .050 .025
P(Q>z,,) .036 .010 .004
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Adjustments to Test Statistic

Standardized Pearson residuals: €, = Y —Hy

) \/ﬁt(l_ht) |

where h, is the tt diagonal value of the “hat” matrix.

Brannas and Johansson (1994) test statistic: based on a local
alternative hypothesis against a neg binomial alternative.

Z[(Yt - ﬁt )2 _Yt T ﬁtﬁt]
= ] 1/2
{22115}
t=1

(S, Is the version adapted by Dean and Lawless (1989) and
generally worked best.)

S =

a
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Zeger’s estimates of autocovariances

Zeger (1988) proposed the following estimates of the ACVF of the
latent process

n

6;, = [Y -{i,) ut]/Z
t=1

n-h n-h
Vs,z (h) = (Yt - ﬁt )(Yt+h - ﬁt+h)/2ﬁtﬁt h
t=1 t=1

psz(h) ysZ(h)/GsZ
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Bias Adjustments to Zeger’s estimates

Letting [3, denote the true parameter value, write

=, exp(x] (B B,))

Using the theorem, B B, is approximately distributed as N(0,G,),

where G,= Q"+ Q,, 1 Q,,, Q2. [, has an approximate log-
normal distributlon W|th mean and second moment,

E(L,) = E[exp(x! (B-B,))) = 1 exp(x[G . /2)
e (02) = EEexp@xT (B-B,)) = 12 exp@XTG x,)
Thus both first and second moments have positive bias. A nearly

unbiased estimate of . Is then
i, exp(=x;G,X, /2)

12/23/2001 Modelling Time Series of Counts
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Bias Adjustments to Zeger’s estimates (cont)

Using these results, a biased adjustment of the variance of the latent

processis
A A _oJTA TA TA A
Z [(Yt _ ut )2 + p‘tze 2X; G, X4 (eZXt GpXi _ zexthxt/Z + 1)_ ut]
A2 — t=1
Ge,UB - '

n
A9 TG
2 :utze 2Xy GpX¢
- . . . =1 . . .
where the limiting covariance matrix is estimated by

I.n

+Q1Q, Q]

N I.n?

n
Ve ¥ _ T/\
Q| n o thxt Ut’
t=1
L min(n—h,n)

éll,n = Z ZXtXLhﬁtﬁHhVe,Z (h)

h=—L t=max(1-h,1)
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Simulation Results (linear regression function)

Autocovariance estimates of a log-normal AR(1) latent process
with @ =.9, variance .6931 and reg functionl+t/n (n=100).

Means SD
Lag | True Zeg Z.UB Zeqg Z.UB

1.00 .50 .70 30 .63
87 .40 .58 27 .56
A5 .31 438 24 51
66 24 39 21 .46
28 .19 32 19 41
o1 14 26 17 .36
45 10 21 15 .33

o OTh Wik O
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Simulation Results (cont)

Autocorrelation estimates of a log-normal AR(1) latent process
with ¢ =.9, variance .6931 and regression function 1+t/n (n=100).

Means SD
Lag | True Zeg Z.UB Zeqg Z.UB
1 87 .79 81 A7 .16
2 /5 .60 .64 20 .19
3 66 .45 50 23 .22
4 H8 .38 40 24 .23
5 bl .33 .30 25 .24
6 45 21 23 25 .25
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Simulation Results (cosine regression function)

Autocovariance estimates of a log-normal AR(1) latent process
with ¢ =.9, variance .6931 and reg functionl+cos(2mt/12) (n=100).

Means SD
Lag | True Zeg Z.UB Zeqg Z.UB

1.00 .73 106 | .44 .87
87 .61 90 39 .79
A5 .52 /3 36 .72
66 .45 .68 33 .66
28 .38 29 30 .61
o1 .33 92 28 .56
45 .21 46 26 .53

o OTh Wik O
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Simulation Results (cont)

Autocorrelation estimates of a log-normal AR(1) latent process
with ¢ =.9, variance .6931 and reg functionl+cos(2mt/12) (n=100).

Means SD
Lag | True Zeg Z.UB Zeqg Z.UB

87 .82 .84 15 14
A5 .69 71 17 .16
66 .58 .60 19 .18
28 .49 ol 20 .19
o1 42 44 21 21
45 .35 .38 22 .22

O Ol h wiN k-
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Optimaly Weighted Estimates

Consider weighted estimates of the variance of the latent process of
the form

62, = Y W2E /Y W2, E =y, -7/, -]
=1 =1

This estimate Is approximately unbiased for any latent process.
Choose weights to minimize variance of the estimate when latent
process is I1D.

Optimal weights: W,? =1/Var(E,) given by complicated formula!

Zeger estimates: W2, =2
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Variance Formulas for Optimal Estimates

Suppose
H=g(t/n)=exp(x," B)-
Then under an 11D Iatent process assumption )
nVar(y,,. (h) =1, : j g%(x)(c2g(x) +1) dx/[ Jo? (x)dxj

1

nVar (¥, .- (1) = Loy =1/ [9% (x)(a2g(x) +1)*dx

Scenario sqrt(l) sart(lop)
1 u(x)=e'™P og2=77 131 120

2. u(x) =e'™P g2 =154 212 184
3. u(x) =e*™P g2 =77 149  .105
4. u(x) =P g>=154 275 173

Clearly, 1,= 1,,and for the polio data regression function f7(t)B,

12/23/2001 Modelling Time Series of Counts
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Tests for Zero Autocorrelation in Latent Process

Use Box-Pierce or Ljung-Box portmanteau tests applied to
correlation estimates of residuals.

Pearson residuals: e, = (Y, —f,)//f, nearly D if latent
process is I1D.

n—-h n
ACF of Pearson residuals: B, (h) = ee,, /> &
t=1 t=1
L
Ljung-Box statistic: H, = ps(h)/Var(p,(h)) has a chi-square

o : h= .
distribution with L degrees of freedom under H,: no spatial
correlation .
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Tests for Zero Autocorrelation in Latent Process (cont)

Lack of power of H;, for some alternatives: To see this note,

1
fer v
Ep,(h) = —2 p.(h) -0, as o -0

1
o’ + je”x)ﬁdx
0

while  Var(p,(h)) =n™, for o2 small. This problem arises in the
analysis of the asthma data (see later).
L

Alternative LB estimate: H, 5 = > p3 5 (h)/Var(, s (h))
h=1

Relative performance of test statistics depend on regression fcn.
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A Simulation Illustration

Model: Y, | &, X, OP(g, exp(x" B)), where
® X, B is the estimated regression function from polio data
®Ineg =aqa,, where (a,+0%2) = @(a,_,+ 0°%/2) +n,,
{nJ~11D N(O, o*(1-¢)), with @ =.82,0%=.57.
® Sample size is n=168
® 1000 reps.

Results: H,was rejected 97.7% using test based on S, (a = .05).
88% of these cases rejected 0 correlation in latent process
using Hy g (78% using Hp)

A True Mean SD Min Max %<1
Peus@ .78 79 24 .05 2.19 84%
0,s(l) .82 .82 21 .06 2.0 84%
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Application to Sydney Asthma Count Data

Data: Yy, ..., Yyu daily asthma presentations in a Campbelltown
hospital.

Preliminary analysis identified.
® no upward or downward trend

® a triple peaked annual cycle modelled by pairs of the form
cos(21kt/365), sin(21kt/365), k=1,2,3,4,5,8.

® day of the week effect modelled by separate indicator
variables for Sundays and Monday (increase in admittance on
these days compared to Tues-Sat).

® Of the meteorological variables (max/min temp, humidity)
and pollution variables (ozone, NO, NO,), only humidity at
lags of 12-20 days appears to have an association.
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Application to Sydney Asthma Count Data (cont)

6
Humidity variable: H, = %th_lz_i
i=0

where h, is the residual from an annual cycle harmonic model fit to
the daily average of humidity at 0900 and 1500 hours.

GLM analysis: GLM Theorem
N\
Effect B s.e.  S.e.
Sunday 230 .051 .055
Monday 236 .051 .055
H, 210 .048 .066

t-ratios for humidity are 4.41 and 3.19

12/23/2001 Modelling Time Series of Counts
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Application to Sydney Asthma Count Data (cont)

Test for presence of latent process: S, was 3.30 (highly significant)

Tests of correlation in latent process:
Degrees of freedom

Test statistic 5 10 15
H, us 44.63(2e-08) 74.86(5e-12) 81.32(4e-11)
H, 10.78(.056) 25.60(.004) 26.83(.030)
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Application to Sydney Asthma Count Data (cont)

ACVF and ACV estimates.

lag h
0

o~ DN -

6

Yz

054
041
.030
.038
023
025
020

Yzus

067
053
041
.050
033
.036
.030

S.€.

209
224
224
224
224
224

Pzus

1.00
79
.62
14
.90
04
45

Pe
1.000
047
021
055
033
026
025

Note: (1461)-°=.026 implies ACF for Pearson residuals are

barely significant at lags 1 and 3? The small values of ACF can be
1.934

partially explained by

E(D,(1) =

05471 +1.934

(.76) =.0718

12/23/2001
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Asthma Counts With Estimated Trend Function
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Observation Driven Models

Count Data: Y,,...,Y

n

Let H, = (Y&, X®) be information contained in the past of the
observed count process and the past and present of the regressor
variables.

Zeger & Qagqish (1988) models: Assume Y, | H, is Poisson with

mean . where 5 _max(Y ) Yi

Model 1:  p, :exp(xtTB)ﬂ - } , >0,
=1 [ exp(xt—iB)

. T | Yt—i +C "
Model 2: g, =exp(X, B)|_| o B e c>0,
=1 t—i

P
Model 3. Hy =exp{B+> vY.).
=1
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Observation Driven Models (cont)

Remarks:
® Z&Q argue that model 1 is preferred on their three desiderata.
® Model 3 cannot be stationary (if p=1 and y,<0).

® In Model 2 in the case p=1, c is interpreted as an immigration
rate adding to counts at every time point.

® Estimation of ¢ in both Models 1 & 2 is problematic.
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New Observation Driven Model

For A > 0, define
€ = (Yt ‘Ht)/UtA

and assume that )
logh, =W, = X/B+> Be,_.
i=1

Since the conditional mean L, Is based on the whole past, the model
Is no longer Markov. Nevertheless, this specification could lead to

stationary solutions, although the stability theory appears difficult.

12/23/2001 Modelling Time Series of Counts
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Properties of the New Model

Assuming that A =.5, we have

Var(W,) :Var(_zpleiet_i) = Zp:ef,

E(W,) =E(e")

X; B+Var (W, )/2

so that

=€

which holds approximately if W, is nearly Gaussian.

It follows that the intercept term can be adjusted in order for E(p,)
to be interpretable as exp(x"3).

12/23/2001 Modelling Time Series of Counts
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Properties of the New Model (cont)

The model proposed here is

1. Easily interpretable on the linear predictor scale and on the scale
of the mean p, with the regression parameters directly interpretable
as the amount by which the mean of the count process at time t will
change for a unit change in the regressor variable.

2. An approximately unbiased plot of the [, can be generated by
R P
i, =exp(W, =5)_87).
3. Is easy to predict with. -

4. Provides a mechanism for adjusting the inference about the
regression parameter [3 for a form of serial dependence.

5. Generalizable to ARMA type lag structure.
6. Estimation (approx MLE) is easy to carry out.
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Asthma Data w/ Deterministic Part of Mean Fcn
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Asthma Data; Deterministic Part + AR In Pearson Resid
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