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Financial Time Series

% Log returns, X, = 100*(In (P,) - In (P,,)), of financial assets
often exhibit:

* heavy-tailed marginal distributions
P(X{>x)~Cx™@ 0<a<4.

* |ack of serial correlation
P, () near 0 for all lags h > 0 (MGD sequence)

* |Xi| and X;? have slowly decaying autocorrelations
P (n) and p, . (h) converge to O slowly ash — oo

* process exhibits ‘stochastic volatility’
=~ Nonlinear models X, = 0,Z,, {Z;} ~ 11D(0,1)

* ARCH and its variants (Engle 82; Bollerslev, Chou, and
Kroner 1992)

* Stochastic volatility (Clark 1973; Taylor 1986)
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ACF

All-pass model of order 2 (13 noise )
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All-pass Models

Causal AR polynomial: @@)=1-@z —--- —@z°, @(z) # 0 for |z|<1.

Define MA polynomial:
e(z) = —7P (p(z—l)/(pp = —(Zp —(plzp-l —.ee — (R))/ (pp

# 0 for |z|=1 (MA polynomial is non-invertible).

Model for data {X;}: @B)X,=06(B) Z,, {Z} ~ IID (non-Gaussian)
BKX; = Xk

Examples:

All-pass(1): X;=@X =Z - @1 Zy, [@[<1.
AlIPass(2): X, = @ Xer= & Xeo= Z+ O @ Zus = 10,7,



Properties:

* causal, non-invertible ARMA with MA representation

BP@(B™) >
X, = Z. = 7 .
t _(Pp(KB_l) t JZ:;JLIJJ t—)

* uncorrelated (flat spectrum)
.12 . 2
‘e—lpw‘ ‘qxelw)‘ 0_2 ) 0_2

. ‘(p(e_iw)‘z 2 @2

fy (W)=

® 7ero mean
* data are dependent if noise is non-Gaussian
(e.g. Breidt & Davis 1991).

* squares and absolute values are correlated.

* X; Is heavy-tailed if noise Is heavy-tailed.




Estimation for All-Pass Models
= Second-order moment techniques do not work

o least squares
 Gaussian likelihood
" Higher-order cumulant methods
» Giannakis and Swami (1990)
« Chi and Kung (1995)
¥~ Non-Gaussian likelihood methods
e likelthood approximation
e quasi-likelihood
» least absolute deviations

e minimum dispersion



Approximating the likelihood
Data: (X, ..., X})

Model: X, =@, X, +---+ ¢ X,
+ (Zt—p _(pOlzt—p+1 _"'_CPOpZt)/CPOr
where @, Is the last non-zero coefficient among the @,;’s.

Noise: Ly = Qi py Tty 2 (X =€ Xy _"'_CPOpXt—p)’

where z, =Z, | @y,

More generally define,

Zt—p ((p) = {

0, ift=n+p,.,n+l
0z (@ +---+0,2,(P-@B)X,, ift=n,., p+1.

Note: z,(@,) is a close approximation to z, (initialization error)



Assume that Z, has density function f; and consider the vector
2=(Xyprns Koy 21 (@), 20 (9), 24(4)-. 2y 510 (9)-, 2, (G))

i\ Independent pieces /,

Joint density of z:
h(z) =h (Xioprs Xg, 202, (@), 2 (@)

. (rj fo (0,2.(9) | @, Ij N, (2,51 (@), 2, (@),

and hence the joint density of the data can be approximated by

n(x) = [I’j f(0,z(@) 0, |]

where g=max{0 <j < p: @# 0}.



Assumptions
= Assume {Z;} iid f(z2)=0~*(0~1z) with

e 0 ascale parameter

e mean 0, variance 02
= For f known, use maximum likelihood

e further assumptions on f

e Fisher information: I =g I(f '(2))*/ f(2)dz
" For f unknown, use quasi-likelihood
&~ |_east absolute deviations

e assume f has median 0

e assume f continuous in neighborhood of 0

e act as If f = Laplace to get criterion function



Results

" Let y(h) = ACVF of AR model with AR poly @,(.) and
I = Iy(- K=

%= Maximum likelihood:

0.—2

~ D ~
\/H(CPMLE _(po) - N(0, 2(r _0_2) Gzrpl)

&~ Least absolute deviations:
Var(| Z, _
\/7((pLAD (p0) - ( 4(f| (O|; O-zrpl)




Log-likelihood: N
L(g.0)=—(n—p)In(a/]| g, ])+ f In f (079,2,(9)

where f,(z)= 071 f(z/0). .

L_east absolute deviations: choose Laplace density

f(2) = %exp(—ﬁ 7))

and log-likelihood becomes

n-p
constant —(n - p) Ink = > V2| z,(@) | / K

t=1

Concentrated Laplacian likelihood

|(¢) = constant —(n— p)In Z| Z,(Q) |
Maximizing I(¢) Is equivalent to mlnlmlzmg the absolute deviations

mn(cp)=Z|zt(<p)|-




|dentifiability?

* Minimizer may not be unique.

» Gaussian case: {Z;} iid N(0,05¢;,) = N(0,07@;,), so
L0 =g 2% = E|4(g)]
O-Oq)lp O-Oq)Op

« Consider {c;}with at least two non-zero elements and

dlc;l<eo and > cf=1

=E

Elz(@)|=E

Jian and PaV\J/if;n (1998) shjo;\o/
E| Y c,Z,|>E|Z]

j=—e

holds for Laplace, Student’s t, contaminated normal, etc.

(B (B)

E 1I\Y0
P, @ (B™)9y(B) |7 Ela@)]

» Non-Gaussian case: E|z(@)|=E




Central Limit Theorem

* Think of u = n2(¢p—q,) as an element of RP

e Define n—p
S, (W)=Y (z(@ +n"u)|-|z,(@) |

t=1
n-p

=m, (@ +n2u) =D | z,(@,) |
t=1

* Then S, (u) — S(u) in distribution on C(RP), where

swy=""QDyr ysun, NN YLDy

|(p0p| Opo

* Hence,

1/2

(EpLAD - (po)

—~arg min S(u)

argminS_(u) =n

r—l
__|(pp| ®_N ~ N(0 Var(| Z, |)02r—1)

2f_(0) 20*f10)  °




Asymptotic Results:

Theorem 1. Let {Y.} be the linear process

Y, = chzt_j,

j=—oo

where ¢,=0, > |c;|<o, {z,}~11D(0,0%), median(z,)=0,

=

g(0)>0 (g density of z,). Then
n-p

Sn = Z(l Zt'n_llet | B | Z, |)

t=1

- Var(Y,)g(0) + N

where N ~ N(0,y*(0) +2) y*(h)) and y*(h) is the covariance

function for Y, sgn(z,) i




Key Idea:

n-p

Sn = Z(' Z; 'n_l/ZYt | ) | Z; |)

t=1

n-p
-n""2 %Y, sgn(z,)
t=1

n-p
12y _
+2 Z (n Yt £ ){ 1{O<zt<n‘1’2Yt} 1{n‘1’2Yt<zt <0} }
t=1

— N +Var(Y,)g(0)



Theorem 2. On C(RP),

S, =3 (z(@ +n0)|- 2,(@) )

- S(u),
where
S(u) = f“(o)u'l'pu+u'N,
|(p0r|
N ~ N(O, 2Var(|Z |) r),

(pO r

and I 1s the covariance matrix of a causal AR(p).




Limit theory for LAD estimate. Note that

E\pLAD:(pO-I_Gn/\/H

so that U, = \/H(EPLAD — @) =argmins, (u)
— U=argminS(u).

Minimizing S, we find that the minimizer or limit random
variable is

~ - |(p0r||_|<;1
U, =+/n - - = N
=IO ~®) -~
I——l
LN N0, YArUZD) or oy

2f_(0) 20%f2(0)  °



Asymptotic Covariance Matrix
 For LS estimators of AR(p):

A D
V(@ — @) - N(0,0°T,")
 For LAD estimators of AR(p):
1 21

~ D
(@ ., — @) - N(O, 9710 oT,)
* For LAD estimators of AP(p)
Var(| Z, ) _
(@ . -@) - N0, o 12(0) o)

Laplace: Var(|Z, p_1
20°f2(0) 2
Students t,, v >2: Var(Z, ) _C*(v/2)(v-2)m_2(v-2)°

20°F2(0) 2r3((v+1)/2)  (v-1)
Student’s t,: 0.7337



Order Selection:

Partial ACF From the previous result, if true model is of order r and

fitted model is of order p > r, then

127 Var(|Z )
nl 2(pp’LAD - N (O’ 20-4 fo'2 (O)

where (App’LAD Is the pth element of @,y .

)

Procedure:

1. Fit high order (P-th order), obtain residuals and estimate scalar,
o2 = Var(Z, )
20*12(0)
by empirical moments of residuals and density estimates.




2. Fit AP models of order p=1,2, . .., P via LAD and obtain p-th

coefficient (App,IO for each.

3. Choose model order r as the smallest order beyond which the

estimated coefficients are statistically insignificant.



AlIC: 2p or not 2p?

« An approximately unbiased estimate of the Kullback-Leiber index

of fitted to true model:
Var(| Z, |)
E | Zl | 02 fo(o)

AIC(p) = —2L, (@ K) +

 Penalty term for Laplace case:

Var(| Z,|) _ 0% /2
E|Zl|02f0(0)p (o/~2)/06%(1//20)

e Estimated penalty term:

var(z@) o Var(Z,)
ave{] z () Jvar{| 2. (@) }f, ;, ) * E1Z,]0°%,(0)

P=P

P
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Sample realization of all-pass of order 2
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Estimates:
@ =.297(.0381), @, =.374(.0381)

Standard errors computed as ésqrt{(l— f[)ﬁ) / 500}
where §=.919

Order selection:

e cut-off value for PACF is 1.96*.908/sqrt(500)=.0796
e AIC(p):=-2L, (¢ K)+1.896

1 2 3 4 5

phi_p |0.289 0.374 0.009 0.011 0.01
AIC(p)2451 2346 2347 2348 2350

6 [ 38 9 10
0.047 0.034 -0.05 0.083 0.021
2348 2349 2345 2343 2345




Simulation results:
* 1000 replicates of all-pass models

* model order parameter value
1 ¢ =4
2 ¢=.3, 9,=.4
* noise distribution is t with 3 d.f.
* sample sizes n=500, 5000

® estimation method i1s LAD



To guard against being trapped in local minima, we adopted the
following strategy.

* 250 random starting values were chosen at random. For
model of order p, k-th starting value was computed
recursively as follows:

k k k) -- -
1. Draw D@, @) iid uniform (-1,1).
2. For =2, ..., p, compute
OGO [ oK)
j1 j-1,1 j-1,j-1
. _ . _ k) .
- ]
k) k) k)
G| | B B

* Select top 10 based on minimum function evaluation.

* Run Hooke and Jeeves with each of the 10 starting values
and choose best optimized value.



Asymptotic Empirical

N mean stddev mean std dev %coverage rel eff*

500 @=5 .0332 4979 .0397 94.2 11.4

5000 @=.5 .0105 .4998 .0109 95.4 9.3
Asymptotic Empirical

N mean stddev mean std dev %coverage

500 @=.3 .0351 .2990 .0456 925
¢=4 .0351 3965 .0447 92.1
5000 =3 .0111 3003 .0118 95.5
¢=4 .0111 3990 .0117  94.7

*Efficiency relative to maximum absolute residual kurtosis:

n-p 4
1 Z(Zt((p)j _3
1/2
nN=pP =

Vs




Application to financial data
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All-pass model fitted to NZ-USA exchange rates :
Order = 6, ¢,=-.367, @,=-.750, @,=-.391, ¢,=.088, ¢.=-.193, @.=-.096
(AIC had local minima at p=6 and 10)

ACF: residuals ] ACF: (residuals)?




Non-causal AR and non-invertible MA models
with heavy tailed noise

K= @ Xy~ oo s —@ Xy = 4,
a. {Z;} ~ ID(a) with Pareto tails
h. @) =1-@z- - @z

No zeros on the unit circle — stationary

No zeros inside the unit circle —  causal
Some zero(S) inside the unit circle — non-causal




Impulse Response

Causal - Low frequency




Impulse Response

Noncausal - High frequency




Impulse Response

Mixed: High (non-causal) & Low (causal) frequency




Realization of a causal AR(2), and a hon-causal AR(2)

Model: @(B)X,=2Z,, {Z} ~ ID(a = 1), where
®.(B) = (1-0.9B)(1 +0.9B) and @ (B)=(1- 1.1B)(1 + 1.1B)
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Application of all-pass to non-causal AR model fitting

Suppose {X,} follows the non-causal AR model

@.(B) ¢..(B) X=Z,, {Z}~1ID.

Step 1: Let {U,} be the residuals obtained by fitting a purely
causal AR model, i.e.,

U, = @(B)X,
=@, (B)'(ypnc (B)X,, (.{pm IS the causal version of @)

_9.(B),
@, (B)

Step 2: Fit a purely non-causal AP model to {U,}
(pnc (B)Ut = (pnc (B)Zt )
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Volumes of Microsoft (MSFT) stock traded over 754
transaction days (6/3/96 to 5/27/99)




Analysis of MSFT:
Step 1: Log(volume) follows AR(1) or AR(3).
U, =(1-.5834 B) X, (causal AR(1))

Step 2: All-pass model of order 1 fitted to {U,}:
(1-1.752B)U, =(1-.5708B)Z..

Combining the two models, we obtain the approximate non-
causal model for {X}:

(1-1.752 B)X, S

_ (1-.5708 B) >
(1-.5834B) '
Estimated residuals from all-pass model fit:
~ (1-1.752B)(1-.5834 B)
Zt o Xt
(1-.5708 B)
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Summary: Microsoft Trading Volume

=" Two-step fit of noncausal AR(1): 1-1.7522B
e causal AR(1): residuals not iid
o purely noncausal AP(1); residuals 1id
=" Direct fit of noncausal AR(1): 1-1.7141B
%" For ATML and MCHP, causal AR models fit




Summary

= All-pass models and their properties

e linear time series with “nonlinear” behavior
"~ Estimation

e likelihood approximation

« MLE and LAD

e order selection
= Emprirical results

e simulation study

» AP(6) for NZ/USA exchange rates
““Noncausal autoregressive processes

e two-step estimation procedure using all-pass

 noncausal AR(1) for Microsoft trading volume



Further Work

%~ |east absolute deviations
e further simulations
e order selection
* heavy-tailed case
e other smooth objective functions (e.g., min dispersion)
“ Maximum likelthood
 Gaussian mixtures
 simulation studies
e applications
“““Noninvertible moving average modeling
e initial estimates from two-step all-pass procedure
* adaptive procedures



