Multivariate Regular Variation with Application to Financial Time Series Models

> Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen

Outline

- + Characteristics of some financial time series
 - IBM returns
 - NZ-USA exchange rate
- + Models for log-returns
 - GARCH
 - stochastic volatility
- + Regular variation
 - univariate case
 - multivariate case
- + Applications of multivariate regular variation
 - Stochastic recurrence equations (GARCH)
 - limit behavior of sample correlations

Characteristics of Some Financial Time Series

Define $X_t = \ln (P_t) - \ln (P_{t-1})$ (log returns)

heavy tailed

$$P(|X_1| > x) \sim C x^{-\alpha}, \quad 0 < \alpha < 4.$$

• uncorrelated $\hat{\rho}_{X}(h)$ near 0 for all lags h > 0 (MGD sequence)

• $|X_t|$ and X_t^2 have slowly decaying autocorrelations

 $\hat{\rho}_{|X|}(h)$ and $\hat{\rho}_{X^2}(h)$ converge to 0 *slowly* as h increases. • process exhibits 'stochastic volatility'.

Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000

Sample ACF of original data and squares for IBM 1962-2000

Hill's plot of tail index for IBM (1962-1981, 1982-2000)

Models for Log(returns)

Basic model

$$X_{t} = \ln (P_{t}) - \ln (P_{t-1}) \text{ (log returns)}$$
$$= \sigma_{t} Z_{t},$$

where

- {Z_t} is IID with mean 0, variance 1 (if exists). (e.g. N(0,1) or a *t*-distribution with ν df.)
- $\{\sigma_t\}$ is the volatility process
- σ_t and Z_t are independent.

Properties:

- $EX_t = 0$, $Cov(X_t, X_{t+h}) = 0$, h > 0 (uncorrelated if $Var(X_t) < \infty$)
- conditional heteroscedastic (condition on σ_t).

Models for Log(returns)-cont

 $X_t = \sigma_t Z_t$ (observation eqn in state-space formulation)

Two classes of models for volatility:

(i) GARCH(p,q) process (General AutoRegressive Conditional Heteroscedastic-observation-driven specification)

 $\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \dots + \alpha_p X_{t-p}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_q \sigma_{t-q}^2 .$ Special case: ARCH(1):

$$X_t^2 = (\alpha_0 + \alpha_1 X_{t-1}^2) Z_t^2$$

= $\alpha_1 Z_t^2 X_{t-1}^2 + \alpha_0 Z_t^2$
= $A_t X_{t-1}^2 + B_t$ (stochastic recursion eqn)
 $\rho_{X^2}(h) = \alpha_1^h$, if $\alpha_1^2 < 1/3$.

Models for Log(returns)-cont

GARCH(2,1): $X_t = \sigma_t Z_t, \ \sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \alpha_2 X_{t-2}^2 + \beta_1 \sigma_{t-1}^2$. Then $Y_t = (X_t^2, X_{t-1}^2, \sigma_t^2)'$ follows the SRE given by $\begin{bmatrix} X_t^2 \end{bmatrix} \begin{bmatrix} \alpha_1 Z_t^2 & \alpha_2 Z_t^2 & \beta_1 Z_t^2 \end{bmatrix} \begin{bmatrix} X_{t-1}^2 \end{bmatrix} \begin{bmatrix} \alpha_0 Z_t^2 \end{bmatrix}$

$$\begin{bmatrix} \mathbf{X}_{t} \\ \mathbf{X}_{t-1}^{2} \\ \mathbf{\sigma}_{t}^{2} \end{bmatrix} = \begin{bmatrix} \alpha_{1}\mathbf{Z}_{t} & \alpha_{2}\mathbf{Z}_{t} & \mathbf{p}_{1}\mathbf{Z}_{t} \\ 1 & 0 & 0 \\ \alpha_{1} & \alpha_{2} & \beta_{1} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{t-1} \\ \mathbf{X}_{t-2}^{2} \\ \mathbf{\sigma}_{t-1}^{2} \end{bmatrix} + \begin{bmatrix} \alpha_{0}\mathbf{Z}_{t} \\ 0 \\ 0 \end{bmatrix}$$

Questions:

- Existence of a unique stationary soln to the SRE?
- Distributional properties of the stationary distribution?
- Moment properties of the process? Finite variance?

Models for Log(returns)-cont

 $X_t = \sigma_t Z_t$ (observation eqn in state-space formulation)

(ii) stochastic volatility process (parameter-driven specification)

$$\log \sigma_t^2 = \sum_{j=-\infty}^{\infty} \psi_j \varepsilon_{t-j}, \quad \sum_{j=-\infty}^{\infty} \psi_j^2 < \infty, \{\varepsilon_t\} \sim \text{IID N}(0, \sigma^2)$$

$$\rho_{X^2}(h) = Cor(\sigma_t^2, \sigma_{t+h}^2) / EZ_1^4$$

 $P(|X|>t x)/P(|X|>t) \rightarrow x^{-\alpha} \text{ and } P(X>t)/P(|X|>t) \rightarrow p,$

or, equivalently, if

$$\begin{split} P(X>t \ x)/P(|X|>t) \to px^{-\alpha} \ \text{and} \ P(X<-t \ x)/P(|X|>t) \to qx^{-\alpha}\,, \\ \text{where} \ 0 \leq p \leq 1 \ \text{and} \ p+q=1. \end{split}$$

Equivalence:

X is RV(α) *if and only if* P(X \in t •)/P(|X|>t) $\rightarrow_{v} \mu$ (•) (\rightarrow_{v} vague convergence of measures on R\{0}). In this case, $\mu(dx) = (p\alpha x^{-\alpha-1} I(x>0) + q\alpha (-x)^{-\alpha-1} I(x<0)) dx$ Note: $\mu(tA) = t^{-\alpha} \mu(A)$.

Another formulation:

Define the ± 1 valued rv θ , $P(\theta = 1) = p$, $P(\theta = -1) = 1 - p = q$. Then

X is $RV(\alpha)$ if and only if

$$\frac{P(|X| > t x, X/|X \models S)}{P(|X| > t)} \rightarrow x^{-\alpha} P(\theta \in S)$$

or

$$\frac{P(|X| > t x, X/|X \models \bullet)}{P(|X| > t)} \rightarrow_{\nu} x^{-\alpha} P(\theta \in \bullet)$$

 $(\rightarrow_v \text{ vague convergence of measures on } \mathbf{S}^0 = \{-1, 1\}).$

Multivariate regular variation of $X=(X_1, \ldots, X_m)$: There exists a random vector $\theta \in S^{m-1}$ such that

 $\mathbf{P}(|\mathbf{X}|{>} \mathsf{t} \mathsf{x}, \mathbf{X}/|\mathbf{X}| \in \bullet)/\mathbf{P}(|\mathbf{X}|{>} \mathsf{t}) \rightarrow_{v} \mathsf{x}^{-\alpha} \mathbf{P}(\theta \in \bullet)$

 $(\rightarrow_v \text{ vague convergence on } S^{m-1}, \text{ unit sphere in } R^m)$.

- P($\theta \in \bullet$) is called the spectral measure
- α is the index of **X**.

Equivalence:

$$\frac{P(\mathbf{X} \in t\bullet)}{P(|\mathbf{X}| > t)} \rightarrow_{\nu} \mu(\bullet)$$

 μ is a measure on R^m which satisfies of x > 0 and A bounded away from 0,

$$\mu(\mathbf{xB}) = \mathbf{x}^{-\alpha}\,\mu(\mathbf{xA}).$$

Examples: Let X_1 , X_2 be positive regularly varying with index α

1. If X_1 and X_2 are iid, then $X = (X_1, X_2)$ is multivariate regularly varying with index α and spectral distribution

 $P(\theta = (0,1)) = P(\theta = (1,0)) = .5$ (mass on axes).

Interpretation: Unlikely that X_1 and X_2 are very large at the same time.

2. If $X_1 = X_2$, then $X = (X_1, X_2)$ is multivariate regularly varying with index α and spectral distribution

P($\theta = (1/sqrt(2), 1/sqrt(2))) = 1.$

<u>Another equivalence</u>? Suppose X > 0.

MRV \Leftrightarrow all linear combinations of **X** are regularly varying

i.e., if and only if

```
P(\mathbf{c}^{T}\mathbf{X} > t)/P(\mathbf{1}^{T}\mathbf{X} > t) \rightarrow w(\mathbf{c}), exists for all real-valued \mathbf{c},
```

in which case,

 $w(t\mathbf{c}) = t^{-\alpha}w(\mathbf{c}).$

 $(\Rightarrow) \text{ true (use vague convergence with } A_{\mathbf{c}} = \{\mathbf{y}: \mathbf{c}^{\mathsf{T}}\mathbf{y} > 1\}, \text{ i.e.,}$ $\frac{P(\mathbf{X} \in \mathbf{t}A_{\mathbf{c}})}{P(\mathbf{1}^{\mathsf{T}}\mathbf{X} > \mathbf{t})} = \frac{P(\mathbf{c}^{\mathsf{T}}\mathbf{X} > \mathbf{t})}{P(|\mathbf{X}| > \mathbf{t})} \frac{P(|\mathbf{X}| > \mathbf{t})}{P(\mathbf{1}^{\mathsf{T}}\mathbf{X} > \mathbf{t})} \rightarrow \frac{\mu(A_{\mathbf{c}})}{\mu(A_{\mathbf{1}})} =: w(\mathbf{c})$

(\Leftarrow) established by Basrak, Davis and Mikosch (2000) for α not an even integer—case of even integer is unknown.

Idea of argument: Define the measures

 $m_t(\bullet) = P(\mathbf{X} \in t\bullet) / P(\mathbf{1}^T \mathbf{X} > t)$

- By assumption we know that for fixed **x**, $m_t(A_x) \rightarrow \mu(A_x)$
- $\{m_t\}$ is tight: For B bded away from 0, $\sup_t m_t(B) < \infty$.
- Do subsequential limits of $\{m_t\}$ coincide?

If $m_{t'} \rightarrow_{v} \mu_{1}$ and $m_{t''} \rightarrow_{v} \mu_{2}$, then $\mu_{1}(A_{x}) = \mu_{2}(A_{x})$ for all $x \neq 0$.

Problem: Need $\mu_1 = \mu_2$ but only have equality on A_x not a π -system. Overcome this using transform theory. Applications of Multivariate Regular Variation

• Domain of attraction for sums of iid random vectors (Rvaceva, 1962). That is, when does the partial sum

$$a_n^{-1} \sum_{t=1}^n \mathbf{X}_t$$

converge for some constants a_n ?

• Domain of attraction for componentwise maxima of iid random vectors (Resnick, 1987). Limit behavior of

$$a_n^{-1} \bigvee_{t=1}^n \mathbf{X}_t$$

- Weak convergence of point processes with iid points.
- Solution to stochastic recurrence equations, $\mathbf{Y}_{t} = \mathbf{A}_{t} \mathbf{Y}_{t-1} + \mathbf{B}_{t}$
- Weak convergence of sample autocovarainces.

Point Processes With IID Vectors

<u>Theorem</u> Let $\{X_t\}$ be an iid sequence of random vectors that are multivariate regularly varying. Then we have the following point process convergence

$$N_n := \sum_{t=1}^n \varepsilon_{\mathbf{X}_t/a_n} \xrightarrow{d} N := \sum_{j=1}^\infty \varepsilon_{P_i \theta_i},$$

where $\{a_n\}$ satisfies $nP(|\mathbf{X}_t| > a_n) \rightarrow 1$, and N is a Poisson process with intensity measure μ .

- {P_i} are Poisson pts corresponding to the radial part (intensity measure $\alpha x^{-\alpha-1} (dx)$.
- $\{\theta_i\}$ are iid with the spectral distribution given by the MRV.

Applications—stochastic recurrence equations

 $\mathbf{Y}_{t} = \mathbf{A}_{t} \mathbf{Y}_{t-1} + \mathbf{B}_{t}, \quad (\mathbf{A}_{t}, \mathbf{B}_{t}) \sim \text{IID},$

 $\mathbf{A}_{t} d \times d$ random matrices, \mathbf{B}_{t} random d-vectors

Examples

ARCH(1): $X_t = (\alpha_0 + \alpha_1 X_{t-1}^2)^{1/2} Z_t$, $\{Z_t\} \sim IID$. Then the squares follow an SRE with $Y_t = X_t^2$, $A_t = \alpha_1 Z_t^2$, $B_t = \alpha_0 Z_t^2$. GARCH(2,1): $X_t = \sigma_t Z_t$, $\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \alpha_2 X_{t-2}^2 + \beta_1 \sigma_{t-1}^2$.

Then $\mathbf{Y}_t = (X_t^2, X_{t-1}^2, \sigma_t^2)'$ follows the SRE given by

$$\begin{bmatrix} X_{t}^{2} \\ X_{t-1}^{2} \\ \sigma_{t}^{2} \end{bmatrix} = \begin{bmatrix} \alpha_{1}Z_{t}^{2} & \alpha_{2}Z_{t}^{2} & \beta_{1}Z_{t}^{2} \\ 1 & 0 & 0 \\ \alpha_{1} & \alpha_{2} & \beta_{1} \end{bmatrix} \begin{bmatrix} X_{t-1}^{2} \\ X_{t-2}^{2} \\ \sigma_{t-1}^{2} \end{bmatrix} + \begin{bmatrix} \alpha_{0}Z_{t}^{2} \\ 0 \\ 0 \end{bmatrix}$$

Stochastic Recurrence Equations (cont)

Regular variation of the marginal distribution (Kesten)

Assume A and B have non-negative entries and

- $E ||A_1||^{\epsilon} < 1 \text{ for some } \epsilon > 0$
- A_1 has no zero rows a.s.
- W.P. 1, {ln $\rho(\mathbf{A}_1...,\mathbf{A}_n)$: is dense in **R** for some n, $\mathbf{A}_1...,\mathbf{A}_n > 0$ }
- There exists a $\kappa_0 > 0$ such that $E \|A\|^{\kappa_0} \ln^+ \|A\| < \infty$ and

$$\mathbf{E}\left(\min_{i=1,\dots,d}\sum_{j=1}^{d}\mathbf{A}_{ij}\right)^{\kappa_{0}} \geq d^{\kappa_{0}/2}$$

Then there exists a $\kappa_1 \in (0, \kappa_0]$ such that **all** linear combinations of **Y** are regularly varying with index κ_1 . (Also need $E |B|^{\kappa_1} < \infty$.)

Application to GARCH

<u>Proposition:</u> Let (\mathbf{Y}_t) be the soln to the SRE based on the *squares* of a GARCH model. Assume

- Top Lyapunov exponent $\gamma < 0$. (See Bougerol and Picard`92)
- Z has a positive density on $(-\infty, \infty)$ with all moments finite or $E|Z|^h = \infty$, for all $h \ge h_0$ and $E|Z|^h < \infty$ for all $h < h_0$.

• Not all the GARCH parameters vanish.

Then (\mathbf{Y}_t) is *strongly mixing* with geometric rate and all finite dimensional distributions are *multivariate regularly varying* with index κ_1 .

<u>Corollary</u>: The corresponding GARCH process is strongly mixing and has all finite dimensional distributions that are MRV with index $\kappa = 2\kappa_1$.

Application to GARCH (cont)

Remarks:

1. Kesten's result applied to an iterate of \mathbf{Y}_{t} , i.e., $\mathbf{Y}_{tm} = \widetilde{\mathbf{A}}_{t} \mathbf{Y}_{(t-1)m} + \widetilde{\mathbf{B}}_{t}$

2. Determination of κ is difficult. Explicit expressions only known in two(?) cases.

• ARCH(1): $E|\alpha_1 Z^2|^{\kappa/2} = 1.$

• GARCH(1,1): $E|\alpha_1 Z^2 + \beta_1|^{\kappa/2} = 1$ (Mikosch and $St \rightarrow ric \rightarrow$)

- For IGARCH ($\alpha_1 + \beta_1 = 1$), then $\kappa = 2 \implies$ infinite variance.
- Can estimate κ empirically by replacing expectations with sample moments.

Summary for GARCH(p,q) **κ**∈(0,2): $(\hat{\rho}_{X}(h))_{h=1,\ldots,m} \xrightarrow{d} (V_{h}/V_{0})_{h=1,\ldots,m},$ к∈(2,4): $(n^{1-2/\kappa}\hat{\rho}_X(h))_{h=1,\ldots,m} \xrightarrow{d} \gamma_X^{-1}(0)(V_h)_{h=1,\ldots,m}.$ к∈ (4,∞): $(n^{1/2}\hat{\rho}_X(h))_{h=1,\ldots,m} \xrightarrow{d} \gamma_X^{-1}(0)(G_h)_{h=1,\ldots,m}.$

Remark: Similar results hold for the sample ACF based on $|X_t|$ and X_t^2 .

Realization of GARCH Process

