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Outline
+ Characteristics of some financial time series

� IBM returns
� NZ-USA exchange rate

+ Models for log-returns
� GARCH 
� stochastic volatility

+ Regular variation
� univariate case
� multivariate case

+ Applications of multivariate regular variation
� Stochastic recurrence equations (GARCH)
� limit behavior of sample correlations
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Characteristics of Some Financial Time Series

Define Xt = ln (Pt) - ln (Pt-1)   (log returns)

• heavy tailed

P(|X1| > x) ~ C x−α,     0 < α < 4.

• uncorrelated
near 0 for all lags h > 0 (MGD sequence)

• |Xt| and Xt
2 have slowly decaying autocorrelations

converge to 0 slowly as h increases.

• process exhibits ‘stochastic volatility’.

)(ˆ hXρ

  )(ˆ and  )(ˆ 2|| hh XX ρρ



4

Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)
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Sample ACF IBM (a) 1962-1981, (b) 1982-2000
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(a) ACF of IBM (1st half)
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(b) ACF of IBM (2nd half)
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Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000
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(a) ACF, Abs Values of IBM (1st half)
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Sample ACF of squares for IBM (a) 1961-1981, (b) 1982-2000

0 10 20 30 40

Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC
F

(a) ACF, Squares of IBM (1st half)
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(b) ACF, Squares of IBM (2nd half)
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Sample ACF of original data and squares for IBM 1962-2000

0 10 20 30 40

Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC
F

0 10 20 30 40

Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC
F



9

Plot of Mt(4)/St(4) for IBM
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Hill’s plot of tail index for IBM (1962-1981, 1982-2000)

0 200 400 600 800 1000

m

1
2

3
4

5

H
ill

0 200 400 600 800

m

1
2

3
4

5

H
ill



11

500-daily log-returns of NZ/US exchange rate
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ACF of X(t)=log-returns of NZ/US exchange rate
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ACF of X2(t)
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Plot of Mt(4)/St(4)
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Hill’s plot of tail index

m

H
ill

0 20 40 60 80

1
2

3
4

5



16

Models for Log(returns)
Basic model

Xt = ln (Pt) - ln (Pt-1)   (log returns)
= σt Zt ,

where
• {Zt} is IID with mean 0, variance 1 (if exists). (e.g. N(0,1) or

a t-distribution with ν df.)

• {σt}is the volatility process

• σt and Zt are independent.

Properties:  

• EXt = 0, Cov(Xt, Xt+h) = 0, h>0 (uncorrelated if Var(Xt) < ∞)

• conditional heteroscedastic (condition on σt).
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Models for Log(returns)-cont
Xt = σt Zt (observation eqn in state-space formulation)

Two classes of models for volatility:

(i) GARCH(p,q) process (General AutoRegressive Conditional
Heteroscedastic-observation-driven specification)

Special case: ARCH(1):

(stochastic recursion eqn)
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Models for Log(returns)-cont

GARCH(2,1):
Then                                   follows the SRE given by

Questions:
• Existence of a unique stationary soln to the SRE?
• Distributional properties of the stationary distribution?
• Moment properties of the process? Finite variance?
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Models for Log(returns)-cont
Xt = σt Zt (observation eqn in state-space formulation)

(ii) stochastic volatility process (parameter-driven specification)
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Regular Variation — univariate case
Definition: The random variable X is regularly varying with index
α if

P(|X|> t x)/P(|X|>t) → x−α and P(X> t)/P(|X|>t) →p,
or, equivalently, if 

P(X> t x)/P(|X|>t) → px−α and P(X< −t x)/P(|X|>t) → qx−α ,
where 0 ≤ p ≤ 1 and p+q=1.
Equivalence:

X is RV(α)  if and only if P(X ∈ t • ) /P(|X|>t)→v µ(• ) 
(→v vague convergence of measures on RR\{0}).  In this case, 

µ(dx) = (pα x−α−1 I(x>0) + qα (-x)-α−1 I(x<0)) dx
Note: µ(tA) = t-α µ(A).



21

Regular Variation — univariate case
Another formulation:

Define the ± 1 valued rv θ, P(θ = 1) = p, P(θ = −1) = 1− p = q.
Then

X is RV(α)  if and only if

or

(→v vague convergence of measures on SS0= {-1,1}). 
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Regular Variation—multivariate case
Multivariate regular variation of X=(X1, . . . , Xm): There exists a 
random vector θθθθ 

  

 ∈ Sm-1 such that

P(|X|> t x, X/|X| ∈ • )/P(|X|>t) →v x−α P( θθθθ ∈ • )
(→v vague convergence on Sm-1, unit sphere in Rm) .  

• P( θθθθ ∈• ) is called the spectral measure
• α is the index of X.

Equivalence:

µ is a measure on Rm which satisfies of x > 0 and A bounded away 
from 0,       

µ(xB) = x−α µ(xA).
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Regular Variation—multivariate case
Examples: Let X1, X2 be positive regularly varying with index α

1. If X1 and X2 are iid, then X= (X1, X2 ) is multivariate regularly 
varying with index α and spectral distribution 

P( θθθθ =(0,1) ) = P( θθθθ =(1,0) ) =.5 (mass on axes).

Interpretation:  Unlikely that X1 and X2 are very large at the 
same time.

2. If X1 = X2, then X= (X1, X2 ) is multivariate regularly varying 
with index α and spectral distribution 

P( θθθθ = (1/sqrt(2), 1/sqrt(2)) ) = 1.
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Regular Variation—multivariate case
Another equivalence? Suppose X > 0.
MRV ⇔ all linear combinations of X are regularly varying 

i.e., if and only if

P(cTX> t)/P(1TX> t) →w(c), exists for all real-valued c,

in which case,

w(tc) = t−αw(c).

(⇒) true (use vague convergence with Ac={y: cTy > 1}, i.e.,
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Regular Variation—multivariate case
(⇐ ) established by Basrak, Davis and Mikosch (2000) for α not an 
even integer—case of even integer is unknown. 

Idea of argument: Define the measures 

mt(•)= P(X∈ t•)/P(1TX> t)

• By assumption we know that for fixed x, mt(Ax) →µ(Ax)

• {mt} is tight:  For B bded away from 0, supt mt(B) < ∞.

• Do subsequential limits of {mt} coincide?

If mt' →v µ1 and mt'' →v µ2, then

for all x ≠≠≠≠ 0.

Problem: Need but only have equality on Ax not a π-system.

Overcome this using transform theory.

)A()A( 21 xx µ=µ

21 µ=µ
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Applications of Multivariate Regular Variation
• Domain of attraction for sums of iid random vectors 
(Rvaceva, 1962). That is, when does the partial sum

converge for some constants an?

• Domain of attraction for componentwise maxima of iid 
random vectors (Resnick, 1987). Limit behavior of

• Weak convergence of point processes with iid points.

• Solution to stochastic recurrence equations, Y t= At Yt-1 + Bt

• Weak convergence of sample autocovarainces. 
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Point Processes With IID Vectors
Theorem Let {Xt} be an iid sequence of random vectors that are 
multivariate regularly varying. Then  we have the following point 
process convergence

where {an} satisfies nP(| Xt|> an) →1, and N is a Poisson process 
with intensity measure µ. 

• {Pi} are Poisson pts corresponding to the radial part (intensity 
measure α x−α−1 (dx).

• {θθθθi} are iid with the spectral distribution given by the MRV.
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Applications—stochastic recurrence equations

Yt= At Yt-1+ Bt, (At , Bt) ~ IID,
At  d×d random matrices, Bt random d-vectors

Examples
ARCH(1):   Xt=(α0+α1 X2

t-1)1/2Zt, {Zt}~IID. Then the squares 
follow  an  SRE with

GARCH(2,1):
Then                                   follows the SRE given by
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Stochastic Recurrence Equations (cont)

Regular variation of the marginal distribution (Kesten)

Assume A and B have non-negative entries and

• E ||A1||ε < 1 for some ε > 0

• A1 has no zero rows a.s.

• W.P. 1, {ln ρ(A1… An): is dense in R R for some n, A1… An >0}

• There exists a κ0 > 0 such that                              and 

Then there exists a κ1∈ (0, κ0] such that all linear combinations of
Y are regularly varying with index κ1.  (Also need               .)
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Application to GARCH
Proposition: Let (Yt) be the soln to the SRE based on the squares of 
a GARCH model.  Assume 

• Top Lyapunov exponent γ < 0. (See Bougerol and Picard`92)

• Z has a positive density on (−∞, ∞) with all moments finite or
E|Z|h = ∞, for all h ≥ h0 and E|Z|h < ∞ for all h < h0 .

• Not all the GARCH parameters vanish.

Then (Yt) is strongly mixing with geometric rate and all finite 
dimensional distributions are multivariate regularly varying with 
index κ1.

Corollary: The corresponding GARCH process is strongly mixing 
and has all finite dimensional distributions that are MRV with 
index κ = 2κ1.
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Application to GARCH (cont)
Remarks:
1. Kesten’s result applied to an iterate of Yt , i.e., 

2. Determination of κ is difficult.  Explicit expressions only known 
in two(?) cases. 

• ARCH(1): E|α1 Z2|κ/2 = 1.

α1 .312 .577 1.00 1.57
κ 8.00 4.00 2.00 1.00

• GARCH(1,1): E|α1 Z2+ β1|κ/2 = 1 (Mikosch and St�ric�)

• For IGARCH (α1 + β1 = 1), then κ = 2 ⇒ infinite variance.

• Can estimate κ empirically by replacing expectations with 
sample moments.

t1)m-(tttm
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Summary for GARCH(p,q)

κ∈(0,2):

κ∈(2,4):

κ∈(4,∞):

Remark:  Similar results hold for the sample ACF based on |Xt| and
Xt
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Realization of GARCH Process
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ACF of Fitted GARCH(1,1) Process
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ACF of 2 realizations of an (ARCH)2: Xt=(.001+.7 Xt-1)1/2 Zt
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Sample ACF for GARCH and SV Models (1000 reps)
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Sample ACF for Squares of GARCH and SV (1000 reps)
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Sample ACF for Squares of GARCH and SV (1000 reps)
0.

0
0.

2
0.

4
0.

6

(c) GARCH(1,1) Model, n=100000

0.
0

0.
01

0.
02

0.
03

0.
04

(d) SV Model, n=100000


