Multivariate Regular Variation with Application to Financial Time Series Models

Richard A. Davis
Colorado State University
Bojan Basrak
Eurandom
Thomas Mikosch
University of Groningen

Outline

+ Characteristics of some financial time series
- IBM returns
- NZ-USA exchange rate
+ Models for log-returns
- GARCH
- stochastic volatility
+ Regular variation
- univariate case
- multivariate case
+ Applications of multivariate regular variation
- Stochastic recurrence equations (GARCH)
- limit behavior of sample correlations

Characteristics of Some Financial Time Series

Define $\mathrm{X}_{\mathrm{t}}=\ln \left(\mathrm{P}_{\mathrm{t}}\right)-\ln \left(\mathrm{P}_{\mathrm{t}-1}\right) \quad$ (log returns)

- heavy tailed

$$
\mathrm{P}\left(\left|\mathrm{X}_{1}\right|>\mathrm{x}\right) \sim \mathrm{C} \mathrm{x}^{-\alpha}, \quad 0<\alpha<4 .
$$

- uncorrelated

$$
\hat{\rho}_{X}(h) \text { near } 0 \text { for all lags } \mathrm{h}>0(\text { MGD sequence })
$$

- $\left|\mathrm{X}_{\mathrm{t}}\right|$ and $\mathrm{X}_{\mathrm{t}}^{2}$ have slowly decaying autocorrelations
$\hat{\rho}_{|X|}(h)$ and $\hat{\rho}_{X^{2}}(h)$ converge to 0 slowly as h increases.
- process exhibits 'stochastic volatility’.

Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)

Sample ACF IBM (a) 1962-1981, (b) 1982-2000

(a) ACF of IBM (1st half)

(b) ACF of IBM (2nd half)

Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000

(b) ACF, Abs Values of IBM (2nd half)

Sample ACF of squares for IBM (a) 1961-1981, (b) 1982-2000

(a) ACF, Squares of IBM (1st half)

(b) ACF, Squares of IBM (2nd half)

Sample ACF of original data and squares for IBM 1962-2000

Plot of $\mathrm{M}_{\mathrm{t}}(4) / \mathrm{S}_{\mathrm{t}}(4)$ for IBM

Hill's plot of tail index for IBM (1962-1981, 1982-2000)

ACF of $\mathrm{X}(\mathrm{t})=\log$-returns of NZ/US exchange rate

ACF of $\mathrm{X}^{2}(\mathrm{t})$

Plot of $M_{t}(4) / S_{t}(4)$

Hill's plot of tail index

Models for Log(returns)

Basic model

$$
\begin{aligned}
\mathrm{X}_{\mathrm{t}} & =\ln \left(\mathrm{P}_{\mathrm{t}}\right)-\ln \left(\mathrm{P}_{\mathrm{t}-1}\right) \quad \text { (log returns) } \\
& =\sigma_{\mathrm{t}} \mathrm{Z}_{\mathrm{t}},
\end{aligned}
$$

where

- $\left\{Z_{t}\right\}$ is IID with mean 0 , variance 1 (if exists). (e.g. $N(0,1)$ or a t-distribution with $v \mathrm{df}$.)
- $\left\{\sigma_{\mathrm{t}}\right\}$ is the volatility process
- σ_{t} and Z_{t} are independent.

Properties:

- $\mathrm{EX}_{\mathrm{t}}=0, \operatorname{Cov}\left(\mathrm{X}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}+\mathrm{h}}\right)=0, \mathrm{~h}>0$ (uncorrelated if $\left.\operatorname{Var}\left(\mathrm{X}_{\mathrm{t}}\right)<\infty\right)$
- conditional heteroscedastic (condition on σ_{t}).

Models for Log(returns)-cont

$$
\mathrm{X}_{\mathrm{t}}=\sigma_{\mathrm{t}} \mathrm{Z}_{\mathrm{t}} \text { (observation eqn in state-space formulation) }
$$

Two classes of models for volatility:
(i) $\operatorname{GARCH}(\mathrm{p}, \mathrm{q})$ process (General AutoRegressive Conditional Heteroscedastic-observation-driven specification)
$\sigma_{\mathrm{t}}^{2}=\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{t}-1}^{2}+\cdots+\alpha_{p} \mathrm{X}_{\mathrm{t}-\mathrm{p}}^{2}+\beta_{1} \sigma_{\mathrm{t}-1}^{2}+\cdots+\beta_{q} \sigma_{\mathrm{t}-\mathrm{q}}^{2}$. Special case: ARCH(1):

$$
\begin{aligned}
\mathrm{X}_{\mathrm{t}}^{2} & =\left(\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{t}-1}^{2}\right) \mathrm{Z}_{\mathrm{t}}^{2} \\
& =\alpha_{1} \mathrm{Z}_{\mathrm{t}}^{2} \mathrm{X}_{\mathrm{t}-1}^{2}+\alpha_{0} \mathrm{Z}_{\mathrm{t}}^{2} \\
& =\mathrm{A}_{\mathrm{t}} \mathrm{X}_{\mathrm{t}-1}^{2}+\mathrm{B}_{\mathrm{t}} \quad \text { (stochastic recursion eqn) } \\
\rho_{X^{2}}(h) & =\alpha_{1}^{\mathrm{h}}, \text { if } \alpha_{1}^{2}<1 / 3 .
\end{aligned}
$$

Models for Log(returns)-cont

$\operatorname{GARCH}(2,1): \quad \mathrm{X}_{\mathrm{t}}=\sigma_{\mathrm{t}} \mathrm{Z}_{\mathrm{t}}, \quad \sigma_{\mathrm{t}}^{2}=\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{t}-1}^{2}+\alpha_{2} \mathrm{X}_{\mathrm{t}-2}^{2}+\beta_{1} \sigma_{\mathrm{t}-1}^{2}$.
Then $\mathbf{Y}_{\mathrm{t}}=\left(\mathrm{X}_{\mathrm{t}}^{2}, \mathrm{X}_{\mathrm{t}-1}^{2}, \sigma_{\mathrm{t}}^{2}\right)^{\prime}$ follows the SRE given by

$$
\left[\begin{array}{c}
\mathrm{X}_{\mathrm{t}}^{2} \\
\mathrm{X}_{\mathrm{t}-1}^{2} \\
\sigma_{\mathrm{t}}^{2}
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{1} \mathrm{Z}_{\mathrm{t}}^{2} & \alpha_{2} \mathrm{Z}_{\mathrm{t}}^{2} & \beta_{1} \mathrm{Z}_{\mathrm{t}}^{2} \\
1 & 0 & 0 \\
\alpha_{1} & \alpha_{2} & \beta_{1}
\end{array}\right]\left[\begin{array}{c}
X_{\mathrm{t}-1}^{2} \\
\mathrm{X}_{\mathrm{t}-2}^{2} \\
\sigma_{\mathrm{t}-1}
\end{array}\right]+\left[\begin{array}{c}
\alpha_{0} \mathrm{Z}_{\mathrm{t}}^{2} \\
0 \\
0
\end{array}\right]
$$

Questions:

- Existence of a unique stationary soln to the SRE?
- Distributional properties of the stationary distribution?
- Moment properties of the process? Finite variance?

Models for $\log ($ returns $)$-cont

$$
\mathrm{X}_{\mathrm{t}}=\sigma_{\mathrm{t}} \mathrm{Z}_{\mathrm{t}} \text { (observation eqn in state-space formulation) }
$$

(ii) stochastic volatility process (parameter-driven specification)

$$
\begin{aligned}
& \log \sigma_{t}^{2}=\sum_{j=-\infty}^{\infty} \psi_{j} \varepsilon_{t-j}, \sum_{j=-\infty}^{\infty} \psi_{j}^{2}<\infty,\left\{\varepsilon_{t}\right\} \sim \operatorname{IID} \mathrm{N}\left(0, \sigma^{2}\right) \\
& \rho_{X^{2}}(h)=\operatorname{Cor}\left(\sigma_{t}^{2}, \sigma_{t+h}^{2}\right) / E Z_{1}^{4}
\end{aligned}
$$

Regular Variation - univariate case

Definition: The random variable X is regularly varying with index α if

$$
\mathrm{P}(|\mathrm{X}|>\mathrm{tx}) / \mathrm{P}(|X|>\mathrm{t}) \rightarrow \mathrm{x}^{-\alpha} \text { and } \mathrm{P}(\mathrm{X}>\mathrm{t}) / \mathrm{P}(|\mathrm{X}|>\mathrm{t}) \rightarrow \mathrm{p},
$$

or, equivalently, if

$$
\mathrm{P}(\mathrm{X}>\mathrm{tx}) / \mathrm{P}(|\mathrm{X}|>\mathrm{t}) \rightarrow \mathrm{px}^{-\alpha} \text { and } \mathrm{P}(\mathrm{X}<-\mathrm{tx}) / \mathrm{P}(|\mathrm{X}|>\mathrm{t}) \rightarrow \mathrm{qx}^{-\alpha},
$$

where $0 \leq \mathrm{p} \leq 1$ and $\mathrm{p}+\mathrm{q}=1$.

Equivalence:

X is $\mathrm{RV}(\boldsymbol{\alpha})$ if and only if $\mathrm{P}(\mathrm{X} \in \mathrm{t} \bullet) / \mathrm{P}(|\mathrm{X}|>\mathrm{t}) \rightarrow_{\nu} \mu(\bullet)$
$\left(\rightarrow_{v}\right.$ vague convergence of measures on $\mathrm{R} \backslash\{0\}$). In this case,

$$
\mu(\mathrm{dx})=\left(\mathrm{p} \alpha \mathrm{x}^{-\alpha-1} \mathrm{I}(\mathrm{x}>0)+\mathrm{q} \alpha(-\mathrm{x})^{-\alpha-1} \mathrm{I}(\mathrm{x}<0)\right) \mathrm{dx}
$$

Note: $\mu(\mathrm{tA})=\mathrm{t}^{-\alpha} \mu(\mathrm{A})$.

Regular Variation - univariate case

Another formulation:

Define the ± 1 valued rv $\theta, P(\theta=1)=p, P(\theta=-1)=1-p=q$. Then

X is $\mathrm{RV}(\boldsymbol{\alpha})$ if and only if

$$
\frac{P(|\mathrm{X}|>\mathrm{tx}, \mathrm{X} /|\mathrm{X}| \in S)}{P(|\mathrm{X}|>\mathrm{t})} \rightarrow \mathrm{x}^{-\alpha} P(\theta \in S)
$$

or

$$
\frac{P(|\mathrm{X}|>\mathrm{t} \mathrm{x}, \mathrm{X} /|\mathrm{X}| \in \bullet)}{P(|\mathrm{X}|>\mathrm{t})} \rightarrow_{v} \mathrm{x}^{-\alpha} P(\theta \in \bullet)
$$

$\left(\rightarrow_{v}\right.$ vague convergence of measures on $\left.S^{0}=\{-1,1\}\right)$.

Regular Variation-multivariate case

Multivariate regular variation of $\mathbf{X}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)$: There exists a random vector $\boldsymbol{\theta} \in \mathrm{S}^{\mathrm{m}-1}$ such that

$$
\mathrm{P}(|\mathbf{X}|>\mathrm{t} \mathrm{x}, \mathbf{X} /|\mathbf{X}| \in \bullet) / \mathrm{P}(|\mathbf{X}|>\mathrm{t}) \rightarrow_{v} \mathrm{x}^{-\alpha} \mathrm{P}(\boldsymbol{\theta} \in \bullet)
$$

$\left(\rightarrow_{v}\right.$ vague convergence on $\mathrm{S}^{\mathrm{m}-1}$, unit sphere in R^{m}).
$\cdot \mathrm{P}(\boldsymbol{\theta} \in \bullet)$ is called the spectral measure

- α is the index of \mathbf{X}.

Equivalence:

$$
\frac{P(\mathbf{X} \in \mathrm{t} \bullet)}{P(|\mathbf{X}|>\mathrm{t})} \rightarrow_{v} \mu(\bullet)
$$

μ is a measure on R^{m} which satisfies of $\mathrm{x}>0$ and A bounded away from 0,

$$
\mu(x B)=x^{-\alpha} \mu(x A)
$$

Regular Variation-multivariate case

Examples: Let X_{1}, X_{2} be positive regularly varying with index α

1. If X_{1} and X_{2} are iid, then $\mathbf{X}=\left(X_{1}, X_{2}\right)$ is multivariate regularly varying with index α and spectral distribution

$$
\mathrm{P}(\boldsymbol{\theta}=(0,1))=\mathrm{P}(\boldsymbol{\theta}=(1,0))=.5 \text { (mass on axes). }
$$

Interpretation: Unlikely that X_{1} and X_{2} are very large at the same time.
2. If $X_{1}=X_{2}$, then $\mathbf{X}=\left(X_{1}, X_{2}\right)$ is multivariate regularly varying with index $\boldsymbol{\alpha}$ and spectral distribution

$$
\mathrm{P}(\theta=(1 / \mathrm{sqrt}(2), 1 / \mathrm{sqrt}(2)))=1 .
$$

Regular Variation-multivariate case

Another equivalence? Suppose $\mathbf{X}>\mathbf{0}$.
MRV \Leftrightarrow all linear combinations of \mathbf{X} are regularly varying
i.e., if and only if

$$
\mathrm{P}\left(\mathbf{c}^{\mathrm{T}} \mathbf{X}>\mathrm{t}\right) / \mathrm{P}\left(\mathbf{1}^{\mathrm{T}} \mathbf{X}>\mathrm{t}\right) \rightarrow \mathrm{w}(\mathbf{c}), \text { exists for all real-valued } \mathbf{c},
$$

in which case,

$$
\mathrm{w}(\mathrm{t} \mathbf{c})=\mathrm{t}^{-\alpha} \mathrm{w}(\mathbf{c}) .
$$

(\Rightarrow) true (use vague convergence with $\mathrm{A}_{\mathbf{c}}=\left\{\mathbf{y}: \mathbf{c}^{\mathrm{T}} \mathbf{y}>1\right\}$, i.e.,

$$
\frac{P\left(\mathbf{X} \in \mathrm{tA}_{\mathrm{c}}\right)}{P\left(\mathbf{1}^{\mathrm{T}} \mathbf{X}>\mathrm{t}\right)}=\frac{P\left(\mathbf{c}^{\mathrm{T}} \mathbf{X}>\mathrm{t}\right)}{P(|\mathbf{X}|>\mathrm{t})} \frac{P(|\mathbf{X}|>\mathrm{t})}{P\left(\mathbf{1}^{\mathrm{T}} \mathbf{X}>\mathrm{t}\right)} \rightarrow \frac{\mu\left(\mathrm{A}_{\mathrm{c}}\right)}{\mu\left(\mathrm{A}_{\mathbf{1}}\right)}=: \mathrm{w}(\mathbf{c})
$$

Regular Variation-multivariate case

(\Leftarrow) established by Basrak, Davis and Mikosch (2000) for α not an even integer-case of even integer is unknown.

Idea of argument: Define the measures

$$
\mathrm{m}_{\mathrm{t}}(\bullet)=\mathrm{P}(\mathbf{X} \in \mathrm{t} \cdot) / \mathrm{P}\left(\mathbf{1}^{\mathrm{T}} \mathbf{X}>\mathrm{t}\right)
$$

- By assumption we know that for fixed $\mathbf{x}, \mathrm{m}_{\mathrm{t}}\left(\mathrm{A}_{\mathbf{x}}\right) \rightarrow \mu\left(\mathrm{A}_{\mathbf{x}}\right)$
- $\left\{m_{t}\right\}$ is tight: For B bded away from $0, \sup _{t} m_{t}(B)<\infty$.
- Do subsequential limits of $\left\{m_{t}\right\}$ coincide?

If $\mathrm{m}_{\mathrm{t}^{\prime}} \rightarrow_{v} \mu_{1}$ and $\mathrm{m}_{\mathrm{t}^{\prime \prime}} \rightarrow_{v} \mu_{2}$, then

$$
\mu_{1}\left(\mathrm{~A}_{\mathbf{x}}\right)=\mu_{2}\left(\mathrm{~A}_{\mathbf{x}}\right) \quad \text { for all } \mathbf{x} \neq \mathbf{0} .
$$

Problem: Need $\mu_{1}=\mu_{2}$ but only have equality on $A_{\mathbf{x}}$ not a π-system. Overcome this using transform theory.

Applications of Multivariate Regular Variation

- Domain of attraction for sums of iid random vectors (Rvaceva, 1962). That is, when does the partial sum

$$
a_{n}^{-1} \sum_{t=1}^{n} \mathrm{X}_{\mathrm{t}}
$$

converge for some constants a_{n} ?

- Domain of attraction for componentwise maxima of iid random vectors (Resnick, 1987). Limit behavior of

$$
a_{n}^{-1} \stackrel{n}{\vee} \mathbf{X}_{t}
$$

- Weak convergence of point processes with iid points.
- Solution to stochastic recurrence equations, $\mathbf{Y}_{\mathrm{t}}=\mathbf{A}_{\mathrm{t}} \mathbf{Y}_{\mathrm{t}-1}+\mathbf{B}_{\mathrm{t}}$
- Weak convergence of sample autocovarainces.

Point Processes With IID Vectors

Theorem Let $\left\{\mathbf{X}_{\mathrm{t}}\right\}$ be an iid sequence of random vectors that are multivariate regularly varying. Then we have the following point process convergence

$$
N_{n}:=\sum_{t=1}^{n} \varepsilon_{\mathbf{x}_{\mathrm{t}} / a_{n}} \xrightarrow{d} N:=\sum_{j=1}^{\infty} \varepsilon_{P_{i} \theta_{i}},
$$

where $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ satisfies $\mathrm{nP}\left(\left|\mathbf{X}_{\mathrm{t}}\right|>\mathrm{a}_{\mathrm{n}}\right) \rightarrow 1$, and N is a Poisson process with intensity measure μ.

- $\left\{\mathrm{P}_{\mathrm{i}}\right\}$ are Poisson pts corresponding to the radial part (intensity measure $\alpha \mathrm{x}^{-\alpha-1}(\mathrm{dx})$.
- $\left\{\boldsymbol{\theta}_{\mathrm{i}}\right\}$ are iid with the spectral distribution given by the MRV.

Applications-stochastic recurrence equations

$$
\mathbf{Y}_{\mathrm{t}}=\mathbf{A}_{\mathrm{t}} \mathbf{Y}_{\mathrm{t}-1}+\mathbf{B}_{\mathrm{t}}, \quad\left(\mathbf{A}_{\mathrm{t}}, \mathbf{B}_{\mathrm{t}}\right) \sim \mathrm{IID}
$$

$\mathbf{A}_{\mathrm{t}} d \times d$ random matrices, \mathbf{B}_{t} random d-vectors
Examples
$\operatorname{ARCH}(1): \quad \mathrm{X}_{\mathrm{t}}=\left(\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{t}-1}\right)^{1 / 2} \mathrm{Z}_{\mathrm{t}}, \quad\left\{\mathrm{Z}_{\mathrm{t}}\right\} \sim$ IID. Then the squares follow an SRE with $Y_{t}=X_{t}^{2}, A_{t}=\alpha_{1} Z_{t}^{2}, B_{t}=\alpha_{0} Z_{t}^{2}$.
$\operatorname{GARCH}(2,1): \mathrm{X}_{\mathrm{t}}=\sigma_{\mathrm{t}} \mathrm{Z}_{\mathrm{t}}, \quad \sigma_{\mathrm{t}}^{2}=\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{t}-1}^{2}+\alpha_{2} \mathrm{X}_{\mathrm{t}-2}^{2}+\beta_{1} \sigma_{\mathrm{t}-1}^{2}$.
Then $\mathbf{Y}_{\mathrm{t}}=\left(\mathrm{X}_{\mathrm{t}}^{2}, \mathrm{X}_{\mathrm{t}-1}^{2}, \sigma_{\mathrm{t}}^{2}\right)^{\prime}$ follows the SRE given by

$$
\left[\begin{array}{c}
\mathrm{X}_{\mathrm{t}}^{2} \\
\mathrm{X}_{\mathrm{t}-1}^{2} \\
\sigma_{\mathrm{t}}^{2}
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{1} \mathrm{Z}_{\mathrm{t}}^{2} & \alpha_{2} \mathrm{Z}_{\mathrm{t}}^{2} & \beta_{1} \mathrm{Z}_{\mathrm{t}}^{2} \\
1 & 0 & 0 \\
\alpha_{1} & \alpha_{2} & \beta_{1}
\end{array}\right]\left[\begin{array}{c}
\mathrm{X}_{\mathrm{t}-1}^{2} \\
\mathrm{X}_{\mathrm{t}-2}^{2} \\
\sigma_{\mathrm{t}-1}
\end{array}\right]+\left[\begin{array}{c}
\alpha_{0} \mathrm{Z}_{\mathrm{t}}^{2} \\
0 \\
0
\end{array}\right]
$$

Stochastic Recurrence Equations (cont)

Regular variation of the marginal distribution (Kesten)

Assume \mathbf{A} and \mathbf{B} have non-negative entries and

- $\mathrm{E}\left\|\mathbf{A}_{1}\right\|^{\varepsilon}<1$ for some $\boldsymbol{\varepsilon}>0$
- \mathbf{A}_{1} has no zero rows a.s.
- W.P. 1, $\left\{\ln \rho\left(\mathbf{A}_{1} \ldots \mathbf{A}_{\mathrm{n}}\right)\right.$: is dense in \mathbf{R} for some $\left.\mathrm{n}, \mathbf{A}_{1} \ldots \mathbf{A}_{\mathrm{n}}>0\right\}$
- There exists a $\kappa_{0}>0$ such that $\mathrm{E}\|\mathrm{A}\|^{\mathrm{K}_{0}} \ln ^{+}\|\mathrm{A}\|<\infty$ and

$$
\mathrm{E}\left(\min _{\mathrm{i}=1, \ldots, \mathrm{~d}} \sum_{j=1}^{d} \mathrm{~A}_{\mathrm{ij}}\right)^{\mathrm{K}_{0}} \geq d^{\mathrm{K}_{0} / 2}
$$

Then there exists a $\kappa_{1} \in\left(0, \kappa_{0}\right]$ such that all linear combinations of \mathbf{Y} are regularly varying with index κ_{1}. (Also need $\mathrm{E}|\mathrm{B}|^{\kappa_{1}}<\infty$.)

Application to GARCH

Proposition: Let $\left(\mathbf{Y}_{\mathrm{t}}\right)$ be the soln to the SRE based on the squares of a GARCH model. Assume

- Top Lyapunov exponent $\gamma<0$. (See Bougerol and Picard`92)
- Z has a positive density on $(-\infty, \infty)$ with all moments finite or $E|Z|^{h}=\infty$, for all $h \geq h_{0}$ and $E|Z|^{h}<\infty$ for all $h<h_{0}$.
- Not all the GARCH parameters vanish.

Then $\left(\mathbf{Y}_{\mathrm{t}}\right)$ is strongly mixing with geometric rate and all finite dimensional distributions are multivariate regularly varying with index κ_{1}.

Corollary: The corresponding GARCH process is strongly mixing and has all finite dimensional distributions that are MRV with index $\mathrm{K}=2 \mathrm{~K}_{1}$.

Application to GARCH (cont)

Remarks:

1. Kesten's result applied to an iterate of \mathbf{Y}_{t}, i.e., $\mathbf{Y}_{\mathrm{tm}}=\widetilde{\mathbf{A}}_{\mathrm{t}} \mathbf{Y}_{(\mathrm{t}-1) \mathrm{m}}+\widetilde{\mathbf{B}}_{\mathrm{t}}$
2. Determination of κ is difficult. Explicit expressions only known in two(?) cases.

- $\operatorname{ARCH}(1): E\left|\alpha_{1} Z^{2}\right|^{\kappa / 2}=1$.

$$
\begin{array}{l|llll}
\alpha_{1} & .312 & .577 & 1.00 & 1.57 \\
\hline \kappa & 8.00 & 4.00 & 2.00 & 1.00
\end{array}
$$

- $\operatorname{GARCH}(1,1): \mathrm{E}\left|\alpha_{1} \mathrm{Z}^{2}+\beta_{1}\right|^{k / 2}=1$ (Mikosch and St \rightarrow ric \rightarrow)
- For IGARCH $\left(\alpha_{1}+\beta_{1}=1\right)$, then $\kappa=2 \Rightarrow$ infinite variance.
- Can estimate κ empirically by replacing expectations with sample moments.

Summary for GARCH(p,q)

$\kappa \in(0,2):$

$$
\left(\hat{\rho}_{X}(h)\right)_{h=1, \ldots, m} \xrightarrow{d}\left(V_{h} / V_{0}\right)_{h=1, \ldots, m},
$$

$\kappa \in(2,4)$:

$$
\left(n^{1-2 / \mathrm{k}} \hat{\rho}_{X}(h)\right)_{h=1, \ldots, m} \xrightarrow{d} \gamma_{X}^{-1}(0)\left(V_{h}\right)_{h=1, \ldots, m} .
$$

$\kappa \in(4, \infty):$

$$
\left(n^{1 / 2} \hat{\rho}_{X}(h)\right)_{h=1, \ldots, m} \xrightarrow{d} \gamma_{X}^{-1}(0)\left(G_{h}\right)_{h=1, \ldots, m} .
$$

Remark: Similar results hold for the sample ACF based on $\left|\mathrm{X}_{\mathrm{t}}\right|$ and $X_{t}{ }^{2}$.

Realization of GARCH Process

Fitted $\operatorname{GARCH}(1,1)$ model for NZ-USA exchange:

$$
X_{t}=\sigma_{t} Z_{t}, \quad \sigma_{t}^{2}=(6.70) 10^{-7}+.1519 X_{t-1}^{2}+.772 \sigma_{t-1}^{2}
$$

$\left(\mathrm{Z}_{\mathrm{t}}\right) \sim \mathrm{IID} \mathrm{t}$-distr with $5 \mathrm{df} . \kappa$ is approximately 3.8

ACF of Fitted GARCH(1,1) Process

ACF of squares of realization 1
ACF of squares of realization 2

ACF of 2 realizations of an $(\mathrm{ARCH})^{2}: \mathrm{X}_{\mathrm{t}}=\left(.001+.7 \mathrm{X}_{\mathrm{t}-1}\right)^{1 / 2} \mathrm{Z}_{\mathrm{t}}$

Sample ACF for GARCH and SV Models (1000 reps)

(a) $\operatorname{GARCH}(1,1)$ Model, $\mathrm{n}=10000$

(b) SV Model, $\mathrm{n}=10000$

Sample ACF for Squares of GARCH and SV (1000 reps)

(a) $\operatorname{GARCH}(1,1)$ Model, $\mathrm{n}=10000$

(b) SV Model, $\mathrm{n}=10000$

Sample ACF for Squares of GARCH and SV (1000 reps)

(c) $\operatorname{GARCH}(1,1)$ Model, $\mathrm{n}=100000$

(d) SV Model, $\mathrm{n}=100000$

