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+ Regular variation
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+ Applications of multivariate regular variation
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Characteristics of Some Financial Time Series

Define X,=In (Py) - In (P.,) (log returns)

* heavy tailed

P(X{>x)~Cx% O0<a<4.

* uncorrelated
p, (h) near O for all lags h>0 (MGD sequence)

* |X{| and X% have slowly decaying autocorrelations

P (h) andp.(h) converge to O slowly as h increases.

* process exhibits ‘stochastic volatility’.




Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)
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Sample ACF IBM (a) 1962-1981, (b) 1982-2000
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Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000
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Sample ACF of squares for IBM (a) 1961-1981, (b) 1982-2000
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Sample ACF of original data and squares for IBM 1962-2000
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Plot of M,(4)/S,(4) for IBM
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Hill’s plot of tail index for IBM (1962-1981, 1982-2000)
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500-daily log-returns of NZ/US exchange rate
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ACF of X(t)=log-returns of NZ/US exchange rate
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ACF of X2(t)
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Plot of M,(4)/S,(4)
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Hill’s plot of tail index
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Models for Log(returns)

Basic model

X;=In(P)-In(P.) (logreturns)
=0, Z,
where

* {Z,} is 11D with mean 0O, variance 1 (if exists). (e.g. N(0,1) or
a t-distribution with v df.)

* {o,}is the volatility process

* 0, and Z, are independent.
Properties:
* EX, =0, Cov(X, Xu) =0, h>0 (uncorrelated if Var(X,) < o)

e conditional heteroscedastic (condition on o).
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Models for Log(returns)-cont

X, =0, Z, (observation eqn in state-space formulation)

Two classes of models for volatility:

(i) GARCH(p,q) process (General AutoRegressive Conditional
Heteroscedastic-observation-driven specification)

Gtz =0, * G1Xt2-1 teeet apxtz-p + Bthz-l LA chtz-q -
Special case: ARCH(1):
Xt = (ay +0a,X{,)Z;
= 0, Z{ X, + Az
=A X% +B, (stochastic recursion eqn)

p,.(h)y=a;, if a} <1/3.
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Models for Log(returns)-cont

GARCH(2,1): X, =0,Z, 0. =a,+0,X;, +0,X;, +B,07, .
Then Y, = (X?, X2,,0?)" follows the SRE given by

X |oZE a,Z8 BZE|XE | |aZP

X: = 1 0 0 [ X, |+] O

_Gtz_ B al az [31 __O-f-l_ B O ]
Questions:

e Existence of a unigue stationary soln to the SRE?
e Distributional properties of the stationary distribution?
« Moment properties of the process? Finite variance?




Models for Log(returns)-cont

X, =0, Z, (observation eqn in state-space formulation)

(i) stochastic volatility process (parameter-driven specification)
logo? = > wie i, D Wi <o {g}~I1IDN(0,0?)
j:—oo j:—oo

p,.(h)=Cor(c;,0;,,)/ EZ;

19




Regular Variation — univariate case

Definition: The random variable X is regularly varying with index
aif

P(IX|> t X)/P(|X|>t) - x™@ and P(X> t)/P(|X[>t) - p,
or, equivalently, If
P(X>t xX)/P(IX|>t) — px~@ and P(X< -t x)/P(|X|>t) - gx@,
where 0 < p <1 and p+qg=1.
Equivalence:
XisRV(a) ifand only if P(X Ote) /P(X[>t) -, 1(*)
(-, vague convergence of measures on R\{0}). In this case,
u(dx) = (pa xa11(x>0) + qa (-x)°L 1(x<0)) dx
Note: H(tA) =t u(A).
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Regular Variation — univariate case

Another formulation:

Definethe £ 1 valuedrv 0, P(@=1)=p,P@=-1) =1-p=aq.
Then
X 1s RV(a) if and only if

P(IX|>tx X/|X[S)
P(IX[>t)

- X P(60S)

or

P(| X|>tx, X/| X [He)
P(X|>1)

L XUP(00e)

(-, vague convergence of measures on S°= {-1,1}).
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Regular Variation—multivariate case

Multivariate regular variation of X=(X,, ..., X, ): There exists a

random vector O O S™! such that
P(X|>tx, X/|X| T )/P(X]>t) -, x“P(O [+ )
(-, vague convergence on S™!, unit sphere in R™) .

* P( O [« ) iscalled the spectral measure
* o is the index of X.

Equivalence: P(X Ote)

P(|X|>t) v |J( )
LL IS @ measure on R™ which satisfies of x > 0 and A bounded away
from O,

H(XB) = X" u(XA).
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Regular Variation—multivariate case

Examples: Let X;, X, be positive regularly varying with index a

1. If Xy and X,are 1id, then X= (X, X, ) is multivariate reqularly
varying with index a and spectral distribution

P(8=(0,1))=P(08=(1,0))=.5 (mass on axes).

Interpretation: Unlikely that X; and X, are very large at the
same time.

2. 1T X, = X,, then X= (X, X,) Is multivariate regularly varying
with index a and spectral distribution

P( 0= (1/sqrt(2), 1/sqrt(2)) ) = 1.
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Regular Variation—multivariate case

Another equivalence? Suppose X > 0.

MRV < all linear combinations of X are regularly varying

l.e., If and only If

P(cTX>1t)/P(1TX>1) - w(c), exists for all real-valued c,
In which case,

w(tc) = t7ow(c).
(=) true (use vague convergence with A={y: cly > 1}, i.e.,

P(XOtA) _P(c'™X>1t) P(IX[>t)  H(A.) _ (e
PATX>t) P(X|>t) PATX>t) WA,
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Regular Variation—multivariate case

(L) established by Basrak, Davis and Mikosch (2000) for a not an
even integer—case of even integer is unknown.

Idea of argument: Define the measures
m,(¢)= P(XOte)/P(1TX> 1)
* By assumption we know that for fixed x, m,(A,) - H(A,)
* {m} is tight: For B bded away from 0, sup,m,(B) < co.
* Do subsequential limits of {m,} coincide?
If m, -, 4, and m. -, H,, then
W(A,) =W (A,) forallx#0.
Problem: Need p, =M, but only have equality on A, not a Tesystem.
Overcome this using transform theory.
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Applications of Multivariate Regular Variation

* Domain of attraction for sums of iid random vectors
(Rvaceva, 1962). That is, when does the partial sum
n

-1
a, 2%,
t=1
converge for some constants an?

* Domain of attraction for componentwise maxima of iid
random vectors (Resnick, 1987). Limit behavior of

n
-1
a, t|=jlxt
* Weak convergence of point processes with iid points.

e Solution to stochastic recurrence equations, Y = A, Y., + B,

* Weak convergence of sample autocovarainces.
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Point Processes With 11D Vectors

Theorem Let {X} be an i1id sequence of random vectors that are
multivariate regularly varying. Then we have the following point
process convergence

n oo
|\In ::Zﬁxt/an 1 N ::ZSF’iei’
t=1 j=1

where {a,} satisfies nP(| X/>a,) —1, and N is a Poisson process
with intensity measure L.

 {P;} are Poisson pts corresponding to the radial part (intensity

measure o X 91 (dx).

* {6.} are iid with the spectral distribution given by the MRV.
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Applications—stochastic recurrence equations

YEA Yt By (A, By) ~ 11D,
A, dxd random matrices, B,random d-vectors
Examples
ARCH(1): X=(agta, X2 )Yz, {Z}~1ID. Then the squares
follow an SREwithY, =X?, A =a,Z;, B, =0,Z;.
GARCH(Z’l) Xt = O-tZt’ 0-1.? = aO + alx'?-l t GZXiZ +Blo-t2-1 .
Then Y, =(X?,X?,,a07)" follows the SRE given by

X0 ezt 0,z BZE| XE| ez
1 0 0 [ X, |+] O
O-t2 al GZ Bl Gt-l O

1
[
[
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Stochastic Recurrence Equations (cont)

Reqgular variation of the marqginal distribution (Kesten)

Assume A and B have non-negative entries and
°E||A]|lE<1forsomee>0
* A, has no zero rows a.s.
* W.P. 1, {Inp(A,... A,):isdense in R for some n, A,... A, >0}

* There exists a K, > 0 such that EJ|A[ In”

AH <o and

Then there exists a K, (0, K] such that all linear combinations of
Y are regularly varying with index K,. (Also need E|[B[*<o )
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Application to GARCH

Proposition: Let (Y,) be the soln to the SRE based on the squares of
a GARCH model. Assume

* Top Lyapunov exponent y < 0. (See Bougerol and Picard 92)

* Z has a positive density on (—oo, o) with all moments finite or
E|Z|'= oo, for all h = hyand E|Z|"< oo for all h <h,.

* Not all the GARCH parameters vanish.

Then (YY) Is strongly mixing with geometric rate and all finite
dimensional distributions are multivariate regularly varying with
Index K.

Corollary: The corresponding GARCH process is strongly mixing
and has all finite dimensional distributions that are MRV with
Index K = 2K;.

30




Application to GARCH (cont)

Remarks:

1. Kesten’s result applied to an iterate of Y., 1.e., Y, = ,&tY(t_l)m + I§t

2. Determination of K is difficult. Explicit expressions only known

In two(?) cases.
* ARCH(1): E|a, zZ3¥?=1.

a,] .312 577 1.00 157
K | 8.00 4.00 200 1.00

* GARCH(1,1): E|a, Z?+ 3,|¥2 = 1 (Mikosch and St->ric>)
* For IGARCH (a, + 3; = 1), then kK = 2 = infinite variance.

* Can estimate kK empirically by replacing expectations with
sample moments.
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Summary for GARCH(p,q)

K[(0,2):

KI(2,4):

K[(4,00):

ps=—""

(f)x (h))hzl,...,m 1% (Vh /Vo)hzl,...,m’

=

B M)y T2 VOV

(2B () o T VHO) G oot o

Remark: Similar results hold for the sample ACF based on | X and

X2
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Realization of GARCH Process

Fitted GARCH(1,1) model for NZ-USA exchange:

X(®)

X, =0,Z,, o’=(6.70)107 +.1519X?, +.7720%,

(Z,) ~ 11D t-distr with 5 df. K is approximately 3.8
Realization of fitted GARCH
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ACF of Fitted GARCH(1,1) Process
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ACF of 2 realizations of an (ARCH)?: X,=(.001+.7 X, ) Z,
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Sample ACF for GARCH and SV Models (1000 reps)
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Sample ACF for Squares of GARCH and SV (1000 reps)
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Sample ACF for Squares of GARCH and SV (1000 reps)

(c) GARCH(1,1) Model, n=100000
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