Maximum Likelihood and R-Estimation for Allpass Time Series Models

Richard A. Davis

Department of Statistics Colorado State University

http://www.stat.colostate.edu/~rdavis/lectures/

Joint work with

Beth Andrews, Colorado State University

Jay Breidt, Colorado State University

Introduction

- properties of financial time series
- motivating example
- all-pass models and their properties

Estimation

- likelihood approximation
- MLE, R-estimation, and LAD
- asymptotic results
- order selection

Empirical results

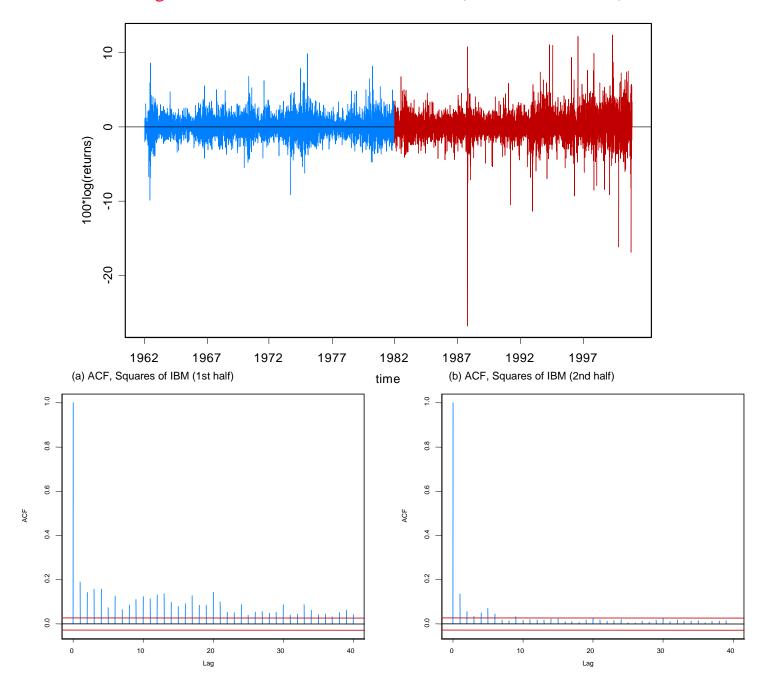
- simulation
- Noninvertible MA processes
 - preliminaries
 - a two-step estimation procedure
 - Microsoft trading volume

Summary

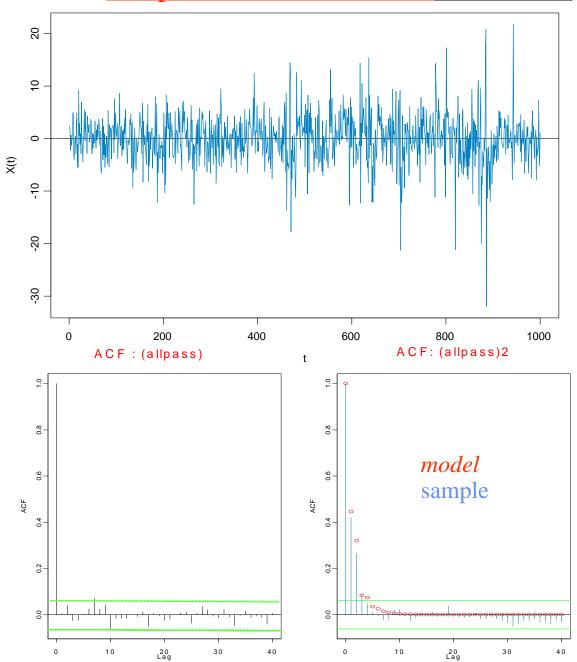
Financial Time Series

- Log returns, $X_t = 100*(\ln{(P_t)} \ln{(P_{t-1})})$, of financial assets often exhibit:
 - heavy-tailed marginal distributions $P(|X_1| > x) \sim C x^{-\alpha}, \quad 0 < \alpha < 4.$
 - lack of serial correlation $\hat{\rho}_X(h)$ near 0 for all lags h > 0 (MGD sequence)
 - $|X_t|$ and X_t^2 have slowly decaying autocorrelations $\hat{\rho}_{|X|}(h)$ and $\hat{\rho}_{X^2}(h)$ converge to 0 *slowly* as $h \to \infty$
 - process exhibits 'stochastic volatility'
- Nonlinear models $X_t = \sigma_t Z_t$, $\{Z_t\} \sim IID(0,1)$
 - ARCH and its variants (Engle `82; Bollerslev, Chou, and Kroner 1992)
 - Stochastic volatility (Clark 1973; Taylor 1986)

Log returns for IBM 1/3/62 - 11/3/00 (blue = 1961-1981)



All-pass model of order 2 (t3 noise)



All-pass Models

Causal AR polynomial: $\phi(z)=1-\phi_1z-\cdots-\phi_pz^p$, $\phi(z)\neq 0$ for $|z|\leq 1$.

Define MA polynomial:

$$\theta(z) = -z^p \phi(z^{-1})/\phi_p = -(z^p - \phi_1 z^{p-1} - \cdots - \phi_p)/\phi_p$$

 $\neq 0$ for $|z| \ge 1$ (MA polynomial is non-invertible).

Model for data
$$\{X_t\}$$
: $\phi(B)X_t = \theta(B)Z_t$, $\{Z_t\} \sim IID$ (non-Gaussian)
$$B^kX_t = X_{t-k}$$

Examples:

All-pass(1):
$$X_t - \phi X_{t-1} = Z_t - \phi^{-1} Z_{t-1}$$
, $|\phi| < 1$.

All-pass(2):
$$X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} = Z_t + \phi_1 / \phi_2 Z_{t-1} - 1 / \phi_2 Z_{t-2}$$

Properties:

• causal, non-invertible ARMA with MA representation

$$X_{t} = \frac{B^{p} \phi(B^{-1})}{-\phi_{p} \phi(B)} Z_{t} = \sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$$

• uncorrelated (flat spectrum)

$$f_X(\omega) = \frac{\left|e^{-ip\omega}\right|^2 \left|\phi(e^{i\omega})\right|^2}{\phi_p^2 \left|\phi(e^{-i\omega})\right|^2} \frac{\sigma^2}{2\pi} = \frac{\sigma^2}{\phi_p^2 2\pi}$$

- zero mean
- data are dependent if noise is non-Gaussian (e.g. Breidt & Davis 1991).
- squares and absolute values are correlated.
- X_t is heavy-tailed if noise is heavy-tailed.

Estimation for All-Pass Models

- Second-order moment techniques do not work
 - least squares
 - Gaussian likelihood
- Higher-order cumulant methods
 - Giannakis and Swami (1990)
 - Chi and Kung (1995)
- Non-Gaussian likelihood methods
 - likelihood approximation assuming known density
 - quasi-likelihood
- To Other
 - LAD- least absolute deviation
 - R-estimation (minimum dispersion)

Approximating the likelihood

 $\underline{\text{Data:}}\ (X_1,\ldots,X_n)$

Model:
$$X_t = \phi_{01} X_{t-1} + \dots + \phi_{0p} X_{t-p}$$

 $-(Z_{t-p} - \phi_{01} Z_{t-p+1} - \dots - \phi_{0p} Z_t) / \phi_{0r}$

where ϕ_{0r} is the last non-zero coefficient among the ϕ_{0i} 's.

Noise:
$$z_{t-p} = \phi_{01} z_{t-p+1} + \dots + \phi_{0p} z_t - (X_t - \phi_{01} X_{t-1} - \dots - \phi_{0p} X_{t-p}),$$

where $z_t = Z_t / \phi_{0r}$.

More generally define,

$$z_{t-p}(\phi) = \begin{cases} 0, & \text{if } t = n+p, ..., n+1, \\ \phi_1 z_{t-p+1}(\phi) + \dots + \phi_p z_t(\phi) - \phi(B) X_t, & \text{if } t = n, ..., p+1. \end{cases}$$

Note: $z_t(\phi_0)$ is a close approximation to z_t (initialization error)

Assume that Z_t has density function f_{σ} and consider the vector

$$\mathbf{z} = (\underbrace{X_{1-p}, ..., X_0, z_{1-p}(\phi), ..., z_0(\phi)}_{\text{independent pieces}}, \underbrace{z_1(\phi), ..., z_{n-p+1}(\phi), ..., z_n(\phi)}_{\text{independent pieces}})'$$

Joint density of **z**:

$$h(\mathbf{z}) = h_1(X_{1-p}, ..., X_0, z_{1-p}(\phi), ..., z_0(\phi))$$

$$\bullet \left(\prod_{t=1}^{n-p} f_{\sigma}(\phi_q z_t(\phi)) | \phi_q | \right) h_2(z_{n-p+1}(\phi), ..., z_n(\phi)),$$

and hence the joint density of the data can be approximated by

$$h(\mathbf{x}) = \left(\prod_{t=1}^{n-p} f_{\sigma}(\phi_q z_t(\phi)) | \phi_q | \right)$$

where $q=\max\{0 \le j \le p: \phi_j \ne 0\}.$

Log-likelihood:

$$L(\phi, \sigma) = -(n-p)\ln(\sigma/|\phi_q|) + \sum_{t=1}^{n-p} \ln f(\sigma^{-1}\phi_q z_t(\phi))$$

where $f_{\sigma}(z) = \sigma^{-1} f(z/\sigma)$.

Least absolute deviations: choose Laplace density

$$f(z) = \frac{1}{\sqrt{2}} \exp(-\sqrt{2} |z|)$$

and log-likelihood becomes

constant
$$-(n-p)\ln \kappa - \sum_{t=1}^{n-p} \sqrt{2} |z_t(\phi)| / \kappa, \ \kappa = \sigma / |\phi_q|$$

Concentrated Laplacian likelihood

$$l(\mathbf{\phi}) = \text{constant} - (n-p) \ln \sum_{t=1}^{n-p} |z_t(\mathbf{\phi})|$$

Maximizing $l(\phi)$ is equivalent to minimizing the absolute deviations

$$m_{\mathrm{n}}(\boldsymbol{\phi}) = \sum_{t=1}^{n-p} |z_{t}(\boldsymbol{\phi})|.$$

Assumptions for MLE

- Assume $\{Z_t\}$ iid $f_{\sigma}(z) = \sigma^{-1} f(\sigma^{-1} z)$ with
 - σ a scale parameter
 - mean 0, variance σ^2
 - further smoothness assumptions (integrability, symmetry, etc.) on *f*
 - Fisher information:

$$\widetilde{I} = \sigma^{-2} \int (f'(z))^2 / f(z) dz$$

Results

The Let $\gamma(h) = ACVF$ of AR model with AR poly $\phi_0(.)$ and

$$\Gamma_p = [\gamma(j-k)]_{j,k=1}^p$$

$$\sqrt{n} (\hat{\phi}_{\text{MLE}} - \phi_0) \xrightarrow{D} N(0, \frac{1}{2(\sigma^2 \widetilde{I} - 1)} \sigma^2 \Gamma_p^{-1})$$

Further comments on MLE

Let $\alpha = (\phi_1, \dots, \phi_p, \sigma/|\phi_p|, \beta_1, \dots, \beta_q)$, where β_1, \dots, β_q are the parameters of pdf f.

Set

$$\hat{\mathbf{I}} = \sigma_0^{-2} \int (f'(z; \boldsymbol{\beta_0}))^2 / f(z; \boldsymbol{\beta_0}) dz$$

$$\hat{\mathbf{K}} = \alpha_{0,p+1}^{-2} \left\{ \int z^2 (f'(z; \boldsymbol{\beta_0}))^2 / f(z; \boldsymbol{\beta_0}) dz - 1 \right\}$$

$$L = -\alpha_{0,p+1}^{-1} \int z \frac{f'(z;\beta_0)}{f(z;\beta_0)} \frac{\partial f(z;\beta_0)}{\partial \beta_0} dz$$

$$I_f(\beta_0) = \int \frac{1}{f(z;\beta_0)} \frac{\partial f(z;\beta_0)}{\partial \beta_0} \frac{\partial f^T(z;\beta_0)}{\partial \beta_0} dz \quad \text{(Fisher Information)}$$

Under smoothness conditions on f wrt β_1, \ldots, β_q we have

$$\sqrt{n}(\hat{\boldsymbol{\alpha}}_{\text{MLE}} - \boldsymbol{\alpha}_0) \stackrel{D}{\longrightarrow} N(0, \Sigma^{-1}),$$

where

$$\Sigma^{-1} = \begin{bmatrix} \frac{1}{2(\sigma_0^2 \hat{I} - 1)} \sigma^2 \Gamma_p^{-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & (\hat{K} - L' I_f^{-1} L)^{-1} & -\hat{K}^{-1} L' (I_f - L\hat{K}^{-1} L')^{-1} \\ \mathbf{0} & -(I_f - L\hat{K}^{-1} L')^{-1} L\hat{K}^{-1} & (I_f - L\hat{K}^{-1} L')^{-1} \end{bmatrix}$$

Note: $\hat{\phi}_{\text{MLE}}$ is asymptotically independent of $\hat{\alpha}_{\text{p+1,MLE}}$ and $\hat{\beta}_{\text{MLE}}$

Asymptotic Covariance Matrix

• For LS estimators of AR(p):

$$\sqrt{n}(\hat{\boldsymbol{\phi}}_{LS} - \boldsymbol{\phi}_0) \stackrel{D}{\longrightarrow} N(0, \boldsymbol{\sigma}^2 \boldsymbol{\Gamma}_p^{-1})$$

For LAD estimators of AR(p):

$$\sqrt{n}(\hat{\boldsymbol{\phi}}_{\text{LAD}} - \boldsymbol{\phi}_0) \stackrel{D}{\rightarrow} N(0, \frac{1}{4\sigma^2 f^2(0)} \sigma^2 \Gamma_p^{-1})$$

• For LAD estimators of AP(p):

$$\sqrt{n}(\hat{\boldsymbol{\phi}}_{\text{LAD}} - \boldsymbol{\phi}_0) \xrightarrow{D} N(0, \frac{\text{Var}(|Z_1|)}{2(2\sigma^2 f_{\sigma}(0) - E|Z_1|)^2} \sigma^2 \Gamma_p^{-1})$$

• For MLE estimators of AP(p):

$$\sqrt{n}(\hat{\boldsymbol{\phi}}_{\text{MLE}} - \boldsymbol{\phi}_0) \stackrel{D}{\longrightarrow} N(0, \frac{1}{2(\boldsymbol{\sigma}^2 \hat{I} - 1)} \boldsymbol{\sigma}^2 \boldsymbol{\Gamma}_p^{-1})$$

Laplace: (LAD=MLE)

$$\frac{\operatorname{Var}(|Z_1|)}{2(2\sigma^2 f_{\sigma}(0) - E|Z_1|)^2} = \frac{1}{2} = \frac{1}{2(\sigma^2 \hat{I} - 1)}$$

Students t_v , v > 2:

LAD:
$$\frac{(\nu-2)}{8\Gamma^2((\nu+1)/2)}(\pi(\nu-1)^2\Gamma^2(\nu/2)-4(\nu-2)\Gamma^2((\nu+1)/2))$$

MLE:
$$\frac{1}{2(\sigma^2 \hat{I} - 1)} = \frac{(\nu - 2)(\nu + 3)}{12}$$

Student's t₃:

LAD: .7337

MLE: 0.5

ARE: .7337/.5=1.4674

R-Estimation:

Minimize the objective function

$$S(\phi) = \sum_{t=1}^{n-p} \phi \left(\frac{t}{n-p+1} \right) z_{(t)}(\phi)$$

where $\{z_{(t)}(\phi)\}\$ are the ordered $\{z_{(t)}(\phi)\}\$, and the weight function ϕ satisfies:

- ϕ is differentiable and nondecreasing on (0,1)
- φ' is uniformly continuous

$$\bullet \ \varphi(x) = -\varphi(1-x)$$

Remarks:

•
$$S(\phi) = \sum_{t=1}^{n-p} \phi \left(\frac{R_t(\phi)}{n-p+1} \right) z_t(\phi)$$

•
$$S(\phi) = \sum_{t=1}^{n-p} \phi \left(\frac{R_t(\phi)}{n-p+1} \right) z_t(\phi)$$

• For LAD, take $\phi(x) = \begin{cases} -1, & 0 < x < 1/2, \\ 1, & 1/2 < x < 1. \end{cases}$

Assumptions for R-estimation

- Assume $\{Z_t\}$ iid with density function f(distr F)
 - mean 0, variance σ^2
- Assume weight function φ is nondecreasing and continuously differentiable with $\varphi(x) = -\varphi(1-x)$

Results

Set
$$\tilde{J} = \int_{0}^{1} \varphi^{2}(s) ds$$
, $\tilde{K} = \int_{0}^{1} F^{-1}(s) \varphi(s) ds$, $\tilde{L} = \int_{0}^{1} f(F^{-1}(s)) \varphi'(s) ds$

 \mathfrak{T} If $\sigma^2 \widetilde{L} > \widetilde{K}$, then

$$\sqrt{n}(\hat{\boldsymbol{\phi}}_{R} - \boldsymbol{\phi}_{0}) \xrightarrow{D} N(0, \frac{\boldsymbol{\sigma}^{2}\widetilde{J} - \widetilde{K}^{2}}{2(\boldsymbol{\sigma}^{2}\widetilde{L} - \widetilde{K})^{2}} \boldsymbol{\sigma}^{2} \Gamma_{p}^{-1})$$

Further comments on R-estimation

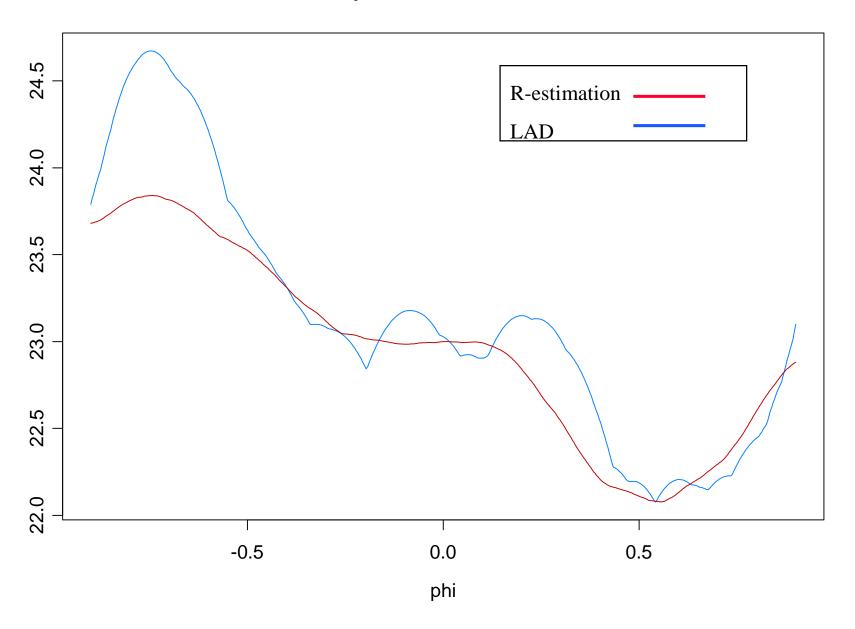
- $\varphi(x) = x-1/2$ is called the Wilcoxon weight function
- By formally choosing $\varphi(x) = \begin{cases} -1, & 0 < x < 1/2, \\ 1, & 1/2 < x < 1. \end{cases}$ we obtain

$$\frac{\sigma^2 \widetilde{J} - \widetilde{K}^2}{2(\sigma^2 \widetilde{L} - \widetilde{K})^2} \sigma^2 \Gamma_p^{-1} = \frac{\operatorname{Var}(|Z_1|)}{2(2\sigma^2 f_{\sigma}(0) - E|Z_1|)^2} \sigma^2 \Gamma_p^{-1}.$$

That is R = LAD, asymptotically.

The R-estimation objective function is smoother than the LADobjective function and hence easier to minimize.

Objective Functions



Summary of asymptotics

Maximum likelihood:

$$\sqrt{n}(\hat{\boldsymbol{\phi}}_{\text{MLE}} - \boldsymbol{\phi}_0) \stackrel{D}{\rightarrow} N(0, \frac{1}{2(\boldsymbol{\sigma}^2 \widetilde{I} - 1)} \boldsymbol{\sigma}^2 \boldsymbol{\Gamma}_p^{-1})$$

R-estimation

$$\sqrt{n}(\hat{\boldsymbol{\phi}}_{R} - \boldsymbol{\phi}_{0}) \stackrel{D}{\rightarrow} N(0, \frac{\boldsymbol{\sigma}^{2}\widetilde{J} - \widetilde{K}^{2}}{2(\boldsymbol{\sigma}^{2}\widetilde{L} - \widetilde{K})^{2}} \boldsymbol{\sigma}^{2} \Gamma_{p}^{-1})$$

Least absolute deviations:

$$\sqrt{n}(\hat{\boldsymbol{\phi}}_{\text{LAD}} - \boldsymbol{\phi}_0) \xrightarrow{D} N(0, \frac{\text{Var}(|Z_1|)}{2(2\sigma^2 f_{\sigma}(0) - E|Z_1|)^2} \sigma^2 \Gamma_p^{-1})$$

Laplace: (LAD=MLE)

R:
$$\frac{\sigma^2 \widetilde{J} - \widetilde{K}^2}{2(\sigma^2 \widetilde{L} - \widetilde{K})^2} = \frac{5}{6}$$
 (using $\varphi(x) = x - 1/2$, Wilcoxon)

LAD=MLE: 1/2

Students t_v:

ν	LAD	R	MLE	LAD/R	MLE/R
3	.733	.520	.500	1.411	.962
6	6.22	3.01	3.00	2.068	.997
9	16.8	7.15	7.00	2.354	.980
12	32.6	13.0	12.5	2.510	.964
15	53.4	20.5	19.5	2.607	.952
20	99.6	36.8	34.5	2.707	.937
30	234	83.6	77.0	2.810	.921

Central Limit Theorem (R-estimation)

- Think of $\mathbf{u} = n^{1/2}(\phi \phi_0)$ as an element of \mathbb{R}^p
- Define

$$S_n(\mathbf{u}) = \sum_{t=1}^{n-p} \left(\varphi(\frac{R_t(\phi_0 + n^{-1/2}\mathbf{u})}{n-p+1}) z_t(\phi_0 + n^{-1/2}\mathbf{u}) \right) - \sum_{t=1}^{n-p} \left(\varphi(\frac{R_t(\phi_0)}{n-p+1}) z_t(\phi_0) \right),$$

where $R_t(\phi)$ is the rank of $z_t(\phi)$ among $z_1(\phi), \ldots, z_{n-p}(\phi)$.

• Then $S_n(\mathbf{u}) \to S(\mathbf{u})$ in distribution on $C(\mathbb{R}^p)$, where

$$S(\mathbf{u}) = |\phi_{0r}|^{-1} (\sigma^2 \widetilde{L} - \widetilde{K}) \mathbf{u}' \sigma^{-2} \Gamma_p \mathbf{u} + \mathbf{u}' \mathbf{N}, \ \mathbf{N} \sim N(\mathbf{0}, 2(\sigma^2 \widetilde{J} - \widetilde{K}^2)) |\phi_{0r}|^{-2} \sigma^{-2} \Gamma_p),$$

• Hence,

$$\arg \min S_n(\mathbf{u}) = n^{1/2} (\hat{\boldsymbol{\phi}}_R - \boldsymbol{\phi}_0)$$

$$\Rightarrow \arg \min S(\mathbf{u})$$

$$= -\frac{|\boldsymbol{\phi}_{0r}|}{2(\sigma^2 \widetilde{L} - \widetilde{K})} \sigma^2 \Gamma_p^{-1} \mathbf{N} \sim N(\mathbf{0}, \frac{\sigma^2 \widetilde{J} - \widetilde{K}^2}{2(\sigma^2 \widetilde{L} - \widetilde{K})^2 |\boldsymbol{\phi}_{0r}|^2} \sigma^2 \Gamma_p^{-1})$$

Main ideas (R-estimation)

Define

$$\widetilde{S}_n(\mathbf{u}) = \sum_{t=1}^{n-p} \varphi(F_z(z_t)) z_t(\phi_0 + n^{-1/2}\mathbf{u}) - \sum_{t=1}^{n-p} \varphi(F_z(z_t)) z_t(\phi_0),$$

where F_z is the df of z_t .

• Using a Taylor series, we have

$$\widetilde{S}_{n}(\mathbf{u}) \sim n^{-1/2}\mathbf{u}' \sum_{t=1}^{n-p} \left(\mathbf{\phi}(F_{z}(z_{t})) \frac{\partial z_{t}(\mathbf{\phi}_{0})}{\partial \mathbf{\phi}} \right) + 2^{-1}n^{-1}\mathbf{u}' \sum_{t=1}^{n-p} \left(\mathbf{\phi}(F_{z}(z_{t})) \frac{\partial^{2}z_{t}(\mathbf{\phi}_{0})}{\partial \mathbf{\phi}\partial \mathbf{\phi}'} \right) \mathbf{u}$$

$$\rightarrow \mathbf{u}' \mathbf{N} - \mathbf{u}' \widetilde{K} |\mathbf{\phi}_{0r}|^{-1} \mathbf{\sigma}^{-2} \Gamma_{p} \mathbf{u}$$

Also,

$$S_n(\mathbf{u}) - \widetilde{S}_n(\mathbf{u}) = \mathbf{u}' \sigma^2 \widetilde{L} \sigma^{-2} \Gamma_p \mathbf{u} / |\phi_{0r}| + o_p(1).$$

Hence

$$S_n(\mathbf{u}) \underset{D}{\longrightarrow} |\phi_{0r}|^{-1} (\sigma^2 \widetilde{L} - \widetilde{K}) \mathbf{u}' \sigma^{-2} \Gamma_p \mathbf{u} + \mathbf{u}' \mathbf{N}, \ \mathbf{N} \sim N(\mathbf{0}, 2(\sigma^2 \widetilde{J} - \widetilde{K}^2)) |\phi_{0r}|^{-2} \sigma^{-2} \Gamma_p).$$

Order Selection:

Partial ACF From the previous result, if true model is of order \mathbf{r} and fitted model is of order $\mathbf{p} > \mathbf{r}$, then

$$n^{1/2}\hat{\Phi}_{p,LAD} \to N(0, \frac{\text{Var}(|Z_1|)}{2(2\sigma^2 f_{\sigma}(0) - E|Z_1|)^2})$$

where $\hat{\phi}_{p,LAD}$ is the pth element of $\hat{\phi}_{LAD}$.

Procedure:

1. Fit high order (P-th order), obtain residuals and estimate scalar,

$$\theta^{2} = \frac{\text{Var}(|Z_{1}|)}{2(2\sigma^{2} f_{\sigma}(0) - E|Z_{1}|)^{2}}$$

by empirical moments of residuals and density estimates.

- 2. Fit AP models of order p=1,2,...,P via LAD and obtain p-th coefficient $\hat{\phi}_{p,p}$ for each.
- 3. Choose model order \mathbf{r} as the smallest order beyond which the estimated coefficients are statistically insignificant.

Note: Can replace $\hat{\phi}_{p,p}$ with $\hat{\phi}_{p,MLE}$ if using MLE. In this case for p > r $n^{1/2} \hat{\phi}_{p,MLE} \to N(0, \frac{1}{2(\sigma^2 \hat{I} - 1)}).$

AIC: 2p or not 2p?

• An approximately unbiased estimate of the Kullback-Leiber index of fitted to true model:

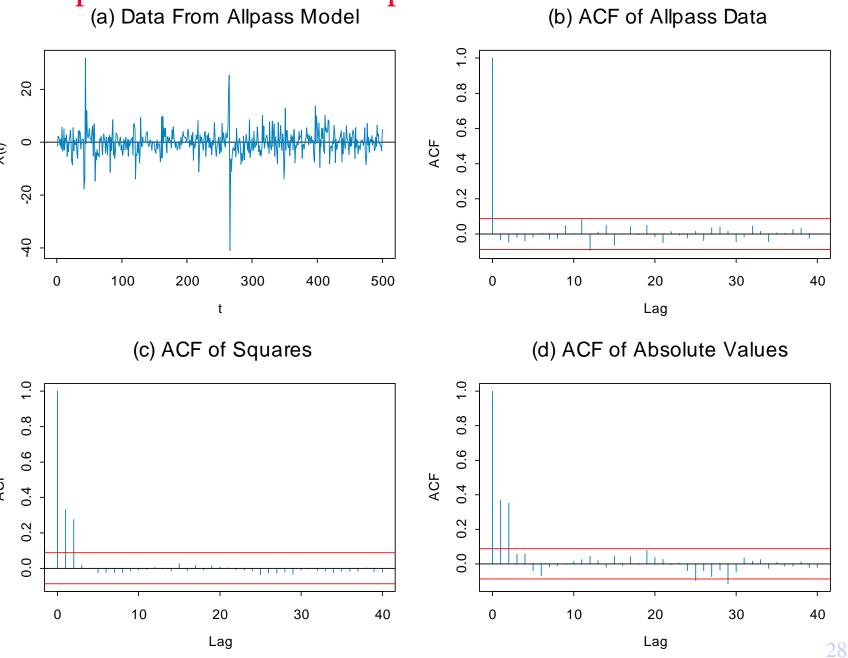
$$AIC(p) := -2L_X(\hat{\phi}, \hat{\kappa}) + \frac{\text{Var}(|Z_1|)}{(2\sigma^2 f_{\sigma}(0) - E|Z_1|)^2} \left(\frac{2\sigma^2 f_{\sigma}(0)}{E|Z_1|} - 1 \right) p$$

Penalty term for Laplace case:

$$\frac{\text{Var}(|Z_1|)}{(2\sigma^2 f_{\sigma}(0) - E|Z_1|)^2} \left(\frac{2\sigma^2 f_{\sigma}(0)}{E|Z_1|} - 1\right) p = p$$

• Penalty term can be estimated from the data.

Sample realization of all-pass of order 2



Simulation results:

- 1000 replicates of all-pass models
- model order parameter value

1

2

 $\phi_1 = .5$

 $\phi_1 = .3, \phi_2 = .4$

- noise distribution is t with 3 d.f.
- sample sizes n=500, 5000
- estimation method is LAD

To guard against being trapped in local minima, we adopted the following strategy.

- 250 random starting values were chosen at *random*. For model of order p, k-th starting value was computed recursively as follows:
 - 1. Draw $\phi_{11}^{(k)}, \phi_{22}^{(k)}, ..., \phi_{nn}^{(k)}$ iid uniform (-1,1).
 - 2. For j=2, ..., p, compute

$$\begin{bmatrix} \boldsymbol{\phi}_{j1}^{(k)} \\ \vdots \\ \boldsymbol{\phi}_{j,j-1}^{(k)} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\phi}_{j-1,1}^{(k)} \\ \vdots \\ \boldsymbol{\phi}_{j-1,j-1}^{(k)} \end{bmatrix} - \boldsymbol{\phi}_{jj}^{(k)} \begin{bmatrix} \boldsymbol{\phi}_{j-1,j-1}^{(k)} \\ \vdots \\ \boldsymbol{\phi}_{j-1,1}^{(k)} \end{bmatrix}$$

- Select top 10 based on minimum function evaluation.
- Run Hooke and Jeeves with each of the 10 starting values and choose best optimized value.

	Asymptotic		En	npirical		
N	mean	std dev	mean	std dev	%coverage	rel eff*
500	$\phi_1 = .5$.0332	.4979	.0397	94.2	11.8
5000	$\phi_1 = .5$.0105	.4998	.0109	95.4	9.3

	Asymptotic		Empirical		
N	mean	std dev	mean	std dev	%coverage
500	ϕ_1 =.3	.0351	.2990	.0456	92.5
	$\phi_2 = .4$.0351	.3965	.0447	92.1
5000	$\phi_1 = .3$.0111	.3003	.0118	95.5
	$\phi_2 = .4$.0111	.3990	.0117	94.7

*Efficiency relative to maximum absolute residual kurtosis:

$$\left| \frac{1}{n-p} \sum_{t=1}^{n-p} \left(\frac{z_t(\phi)}{v_2^{1/2}} \right)^4 - 3 \right|, \quad v_2 = \frac{1}{n-p} \sum_{t=1}^{n-p} (z_t(\phi) - \overline{z}(\phi))^2$$

MLE Simulations Results using t-distr(3.0)

	Asymptotic		Empirical			
N	mean	std dev	mean	std dev	%coverage	
500	$\phi_1 = .5$.0274	.4971	.0315	93.0	
	ν=3.0	.4480	3.112	.5008	95.8	
5000	ϕ_1 =.5	.0087	.4997	.0091	93.4	
	v=3.0	.1417	3.008	.1533	94.0	

	Asymptotic		Empirical		
N	mean	std dev	mean	std dev	%coverage
500	$\phi_1 = .3$.0290	.2993	.0345	90.6
	$\phi_2 = .4$.0290	.3964	.0350	90.1
	v=3.0	.4480	3.079	.4722	94.8
5000	$\phi_1 = .3$.0092	.2999	.0095	94.0
	$\phi_2 = .4$.0092	.3999	.0094	94.6
	v=3.0	.1417	3.008	.1458	95.2

R-Estimator: Minimize the objective fcn

$$S(\phi) = \sum_{t=1}^{n-p} \left(\frac{t}{n-p+1} - \frac{1}{2} \right) z_{(t)}(\phi)$$

where $\{z_{(t)}(\phi)\}$ are the ordered $\{z_t(\phi)\}$.

		Empi	rical	Empir	ical LAD
N		mean	std dev	mean	std dev
500	$\phi_1 = .5$.4978	.0315	.4979	.0397
5000	ϕ_1 =.5	.4997	.0094	.4998	.0109
500	$\phi_1 = .3$.2988	.0374	.2990	.0456
	$\phi_2 = .4$.3957	.0360	.3965	.0447
5000	$\phi_1 = .3$.3007	.0101	.3003	.0118
	$\phi_2 = .4$.3993	.0104	.3990	.0117

Noninvertible MA models with heavy tailed noise

$$X_{t} = Z_{t} + \theta_{1} Z_{t-1} + \cdots + \theta_{q} Z_{t-q},$$

a. $\{Z_t\} \sim \text{IID}(\alpha)$ with Pareto tails

b.
$$\theta(z) = 1 + \theta_1 z + \cdots + \theta_q z^q$$

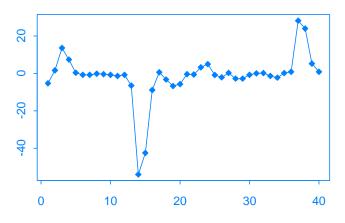
No zeros inside the unit circle \implies invertible

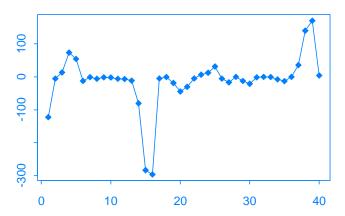
Some zero(s) inside the unit circle \Rightarrow noninvertible

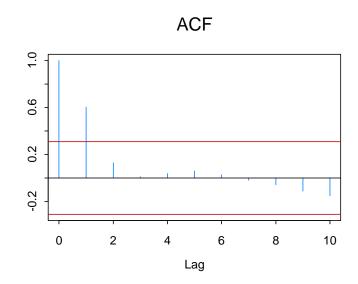
Realizations of an invertible and noninvertible MA(2) processes

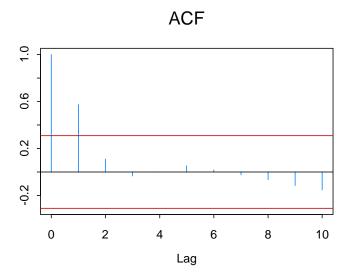
Model: $X_t = \theta_*(B) Z_t$, $\{Z_t\} \sim IID(\alpha = 1)$, where

$$\theta_i(B) = (1 + 1/2B)(1 + 1/3B)$$
 and $\theta_{ni}(B) = (1 + 2B)(1 + 3B)$









Application of all-pass to noninvertible MA model fitting

Suppose $\{X_t\}$ follows the noninvertible MA model

$$X_t = \theta_i(B) \theta_{ni}(B) Z_t$$
, $\{Z_t\} \sim IID$.

Step 1: Let $\{U_t\}$ be the residuals obtained by fitting a purely invertible MA model, i.e.,

$$X_{t} = \hat{\theta}(B)U_{t}$$

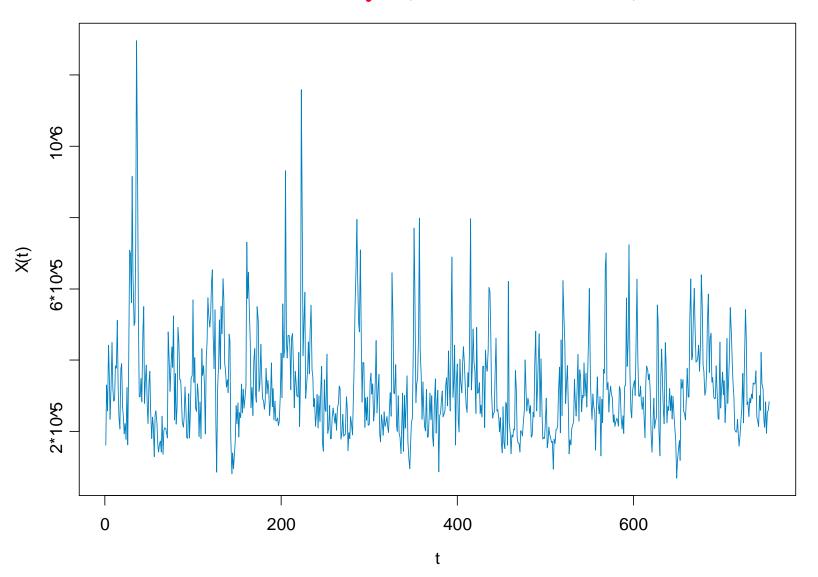
$$\approx \theta_{i}(B)\tilde{\theta}_{ni}(B)U_{t}, \quad (\tilde{\theta}_{ni} \text{ is the invertible version of } \theta_{ni}).$$

So
$$U_t \approx \frac{\theta_{ni}(B)}{\widetilde{\theta}_{ni}(B)} Z_t$$

Step 2: Fit a purely causal AP model to $\{U_t\}$

$$\widetilde{\theta}_{ni}(B)U_{t} = \theta_{ni}(B)Z_{t}.$$

Volumes of Microsoft (MSFT) stock traded over 755 transaction days (6/3/96 to 5/28/99)



Analysis of MSFT:

Step 1: Log(volume) follows MA(4).

$$X_t = (1+.513B+.277B^2+.270B^3+.202B^4) U_t$$
 (invertible MA(4))

Step 2: All-pass model of order 4 fitted to $\{U_t\}$ using MLE (t-dist):

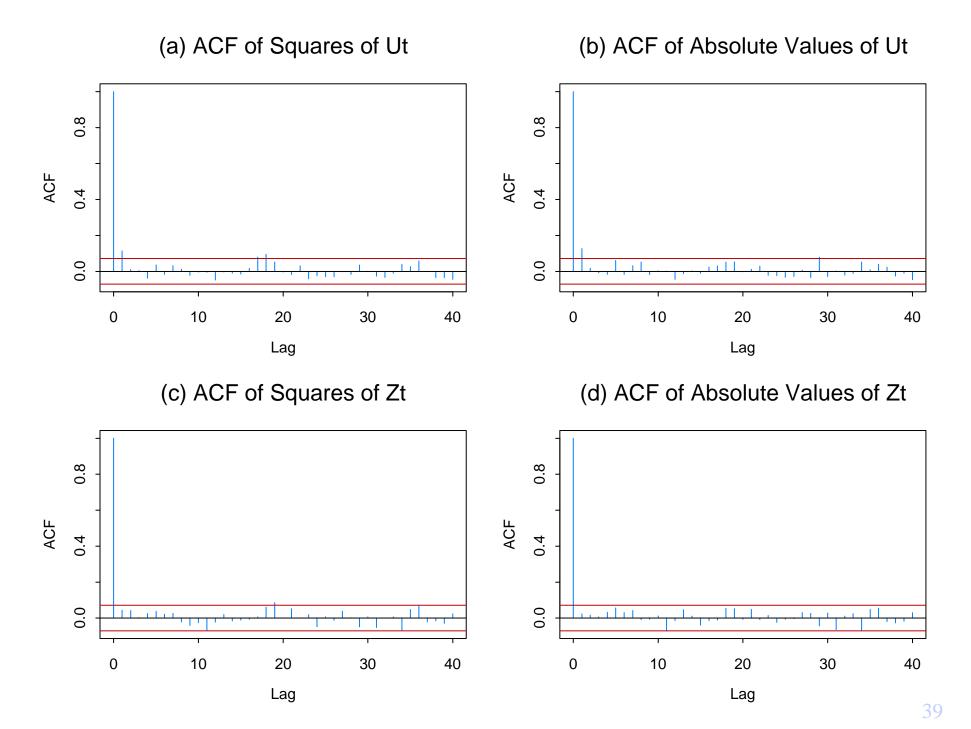
$$(1 - .628B + -.229B^{2} + .131B^{3} - .202B^{4})U_{t}$$

$$= (1 - .649B + 1.135B^{2} + 3.116B^{3} - 4.960B^{4})Z_{t}. (\hat{v} = 6.26)$$

(Model using R-estimation is nearly the same.)

Conclude that $\{X_t\}$ follows a noninvertible MA(4) which after refitting has the form:

$$X_t = (1+1.34B+1.374B^2+2.54B^3+4.96B^4) Z_t, \{Z_t\} \sim IID t(6.3)$$



Summary: Microsoft Trading Volume

- Two-step fit of noninvertible MA(4):
 - invertible MA(4): residuals not iid
 - causal AP(4); residuals iid
- Direct fit of purely noninvertible MA(4): (1+1.34B+1.374B²+2.54B³+4.96B⁴)
- For MCHP, invertible MA(4) fits.

Summary

- All-pass models and their properties
 - linear time series with "nonlinear" behavior
- Estimation
 - likelihood approximation
 - MLE, LAD, R-estimation
 - order selection
- Emprirical results
 - simulation study
- Noninvertible moving average processes
 - two-step estimation procedure using all-pass
 - noninvertible MA(4) for Microsoft trading volume

Further Work

- Least absolute deviations
 - further simulations
 - order selection
 - heavy-tailed case
 - other smooth objective functions (e.g., min dispersion)
- Maximum likelihood
 - Gaussian mixtures
 - simulation studies
 - applications
- Noninvertible moving average modeling
 - initial estimates from two-step all-pass procedure
 - adaptive procedures