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& Introduction

* properties of financial time series
* motivating example
* all-pass models and their properties

&~ Estimation

* likelihood approximation

* MLE, R-estimation, and LAD
* asymptotic results

* order selection

“"Empirical results
* simulation
= Noninvertible MA processes
e preliminaries
* a two-step estimation procedure
e Microsoft trading volume

F Summary



Financial Time Series

% Log returns, X, = 100*(In (P,) - In (P,,)), of financial assets
often exhibit:

* heavy-tailed marginal distributions
P(X{>x)~Cx™@ 0<a<4.

* |ack of serial correlation
P, () near 0 for all lags h > 0 (MGD sequence)

* |Xi| and X;? have slowly decaying autocorrelations
P (n) and p, . (h) converge to O slowly ash — oo

* process exhibits ‘stochastic volatility’
=~ Nonlinear models X, = 0,Z,, {Z;} ~ 11D(0,1)

* ARCH and its variants (Engle 82; Bollerslev, Chou, and
Kroner 1992)

* Stochastic volatility (Clark 1973; Taylor 1986)



Log returns for IBM 1/3/62 — 11/3/00 (blue = 1961-1981)
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All-pass model of order 2 (13 noise )
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All-pass Models

Causal AR polynomial: @@)=1-@z —--- —@z°, @(z) # 0 for |z|<1.

Define MA polynomial:
e(z) = —7P (p(z—l)/(pp = —(Zp —(plzp-l —.ee — (R))/ (pp

# 0 for |z|=1 (MA polynomial is non-invertible).

Model for data {X;}: @B)X,=06(B) Z,, {Z} ~ IID (non-Gaussian)
BKX; = Xk

Examples:

All-pass(1): X;=@X =Z - @1 Zy, [@[<1.
AlIPass(2): X, = @ Xer= & Xeo= Z+ O @ Zus = 10,7,



Properties:

* causal, non-invertible ARMA with MA representation

B°@(B™) =
X, = Z. = 7
t _(pp(KB) t JZ:(;LIJJ t—)

* uncorrelated (flat spectrum)
.12 . 2
‘e—lpw‘ ‘qxelw)‘ 0_2 ) 0_2

. ‘(p(e_iw)‘z 2 @2

fy (W)=

® 7ero mean
* data are dependent if noise is non-Gaussian
(e.g. Breidt & Davis 1991).

* squares and absolute values are correlated.

* X; Is heavy-tailed if noise Is heavy-tailed.




Estimation for All-Pass Models
"~ Second-order moment techniques do not work

o least squares
 Gaussian likelihood
" Higher-order cumulant methods
» Giannakis and Swami (1990)
e Chi and Kung (1995)
¥~ Non-Gaussian likelihood methods
* likelthood approximation assuming known density
e quasi-likelihood
= Other
» LAD- least absolute deviation

e R-estimation (minimum dispersion)



Approximating the likelihood
Data: (X, ..., X})

|\/|O_d€|: Xt = (plet—l oot (FOpXt—p
_(Zt—p _(P01Zt—p+1 _"'_(POpZt)/(POr
where @, Is the last non-zero coefficient among the @,;’s.

Noise: Ly = Qi py Tty 2 (X =€ Xy _"'_CPOpXt—p)’

where z, =Z, | @y,

More generally define,

Zt—p ((p) = {

0, ift=n+p,.,n+l
0z (@ +---+0,2,(P-@B)X,, ift=n,., p+1.

Note: z,(@,) is a close approximation to z, (initialization error)



Assume that Z, has density function f; and consider the vector
2=(Xyprns Koy 21 (@), 20 (9), 24(4)-. 2y 510 (9)-, 2, (G))

i\ Independent pieces /,

Joint density of z:
h(z) =h (Xioprs Xg, 202, (@), 2 (@)

. (rj fo (0,2.(9) | @, Ij N, (2,51 (@), 2, (@),

and hence the joint density of the data can be approximated by

n(x) = [I’j f(0,z(@) 0, |]

where g=max{0 <j < p: @# 0}.



Log-likelithood:
n-p
L(¢.0) =—=(n-p)In(c/| @, )+ D In f(07p,z,(¢))
t=1

where f,(z)= 071 f(z/0).

|_east absolute deviations: choose Laplace density

f(2) = %exp(—ﬁ 7))

and log-likelihood becomes
constant —(n— p)InK — Z«/_lz(cp)|/|< K=0/|q,|

Concentrated Laplacian |Ike|lh00d

|(¢) = constant —(n—p)In Z| Z,(Q) |
Maximizing I(¢) Is equivalent to mlnlmlzmg the absolute deviations

mn(cp)=Z|zt(<p)|-




Assumptions for MLE
= Assume {Z;} iid f(z2)=0~*f(0~'z) with

e 0 ascale parameter

e mean 0, variance g?2

o further smoothness assumptions (integrability,
symmetry, etc.) on f

e Fisher information:

| =g j(f'(z))Z/ f (2)dz

Results

= Let y(h) = ACVF of AR model with AR poly @,(.) and
M =Iv(- K e

" D
= \/H(CPMLE _(po) - N (01

o)
2(c°1 -1)




Further comments on MLE

Let a=(@y, . . ., @, o/lgl By, - - -, By), where By, .. ., B, are the
parameters of pdf f.

Set

= 1=ay [(F'(zBy))’/ (z:Bo)dz
= R=a {[2(F @Bo)) 1 1 (2B)dz-]
L, [ B AR
e f(z,8,) 9B,
L L1 oy ot (2B,
= ey o, o

dz (Fisher Information)



Under smoothness conditions on fwrt 3, . . ., B; we have

VN@yee ~0p) — N(O,Z),

where
21A o’ 0 0
2(ogl -1)
= 0 (K-L'1;'L)" ~KL'(l, LKLY
0 ~(I, -LKL) LK™ (I, —LK™L")®

Note: EpMLE IS asymptotically independent of 6(p+1,MLE and ﬁMLE



Asymptotic Covariance Matrix
 For LS estimators of AR(p):

N D
\/ﬁ((pLS -@) - N (O’Gzr;)
 For LAD estimators of AR(p):

" D 1 )
\/ﬁ((pLAD _(po) - N(0 T 1)

, 0]
40%£2(0) P

 For LAD estimators of AP(p):

Var(| Z, ) 2

)

Jn(g "N
n - - ]
e O RPA

e For MLE estimators of AP(p):

- D 1
\/ﬁ((pMLE ~@) - N, 2(0_2|"_1) p



Laplace: (LAD=MLE)
Var(| Z, ) 1 1

2(26°f_(0)-E|Z,)> 2 2(c?l-1)

Students t,, v >2:

LAD: — V72 12r2 v/ 2)—av -2 (v +1)/ 2)

8r2((v+1)/2)
MLE: 1A _(v-2)(v+3)
2(0°1 -1) 12
Student’s t,:
LAD: .7337
MLE: 0.5

ARE: .7337/.5=1.4674



R-Estimation:

Minimize the objective function
n-p t
S(@)= Z
(P) tZ=1:¢[n_ p+1j 0 (@)

where {z(@)} are the ordered {z,(@)}, and the weight
function ¢ satisfies:

* ¢ Is differentiable and nondecreasing on (0,1)

e ¢ iIs uniformly continuous

* (x) = —9(1x)

Remarks:
<4 R(o)
e S = t
(9) ;¢(n_p+ljzt(<p)
* For LAD, take ¢(x) = L O<x<li2,
1, 1/2 <x <1.



Assumptions for R-estimation
" Assume {Z} 1id with density function f (distr F)

e mean 0, variance g2

=~ Assume weight function ¢ Is nondecreasing and continuously
differentiable with ¢(x) = —¢(1-x)

Results
= Set .

J=[9%(s)ds, K= [F(s)d(s)ds, L= [f(F™(s))¢'(s)ds
= |f o’L >K, then

02] —K?

Jn(@, —@,) - N(O, PR

o’l.")




Further comments on R-estimation

“d(x) =x—1/2is called the Wilcoxon weight function

-1, 0<x<1/2
@ - — ) ] -
By formally choosing ¢(x) { L 12 <x<l we obtain
0°J -K’ G2 = Var(|Z, ) 21

_— = @) :
2(0°L-K)* " 220 (0)-E|Z,])* °

That is R = LAD, asymptotically.

%~ The R-estimation objective function is smoother than the LAD-
objective function and hence easier to minimize.
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Summary of asymptotics

%= Maximum likelihood:

. D 1 )
\/ﬁ((PMLE - @) - N(O, 2(02'I~ “1) Gzrpl)

&~ R-estimation

27 172
o°J—-K o)

A D
n - — N O, ~ =
\/7((pR (pO) ( 2(0_2L _K)Z P

&~ Least absolute deviations:

Var(| Z, ) 2

Yoy > 0°T,)
2(20°1,(0)-E| Z,])

~ D
N (@ — @) - N(O



Laplace: (LAD=MLE)

02 -K? _5 . _ .
20PL-K) 6 (using ¢(x) =x-1/2, Wilcoxon)
LAD=MLE: 1/2
Students t,,:
V LAD R MLE LAD/R MLE/R
3 /33 .520 500 1.411  .962

6 6.22 3.01 3.00 2.068  .997
9 16.8 7.15 7.00 2.354  .980
12 32.6 13.0 12.5 2510  .964
15 53.4 20.5 19.5 2.607  .952
20 99.6 36.8 34.5 2.707  .937
30 234 83.6 77.0 2.810 .921



Central Limit Theorem (R-estimation)

* Think of u = n2(p—q,) as an element of RP

* Define
5,(U) = Z[cb(R R +n'1’2u)j S0 80 )

where Ry(q) Is the rank of z(@) among z,(@), . . ., Z, ,(@).

e Then S, (u) — S(u) in distribution on C(RP), where

S(u) = @, | (oL - K)u'o'zrpu +u'N, N~ N(0,2(c%) -K?)| @, | o’T,),

e Hence, i
argmin S, (u) =n"" (@ —@,)
—~arg min S(u)

1/2

27 _ w2
— |(p0r | 0.2r—1N _ N(O o J K 2r—l)

, ~ = 0)
2(0°L-K)  ° 20°L=K)* @ I” "




Main ideas (R-estimation)
e Define

5,(0) = 3 0(F (2)7, (@ +n20) -3 (F,(2))2,(®,)
where F, s the df of z..

 Using a Taylor series, we have

172 0z, (@,) o & 0°z,(®,)
S O (F 2 =
SU)~n UZ( (F,(z,)) 50 j+ n u;(d)( ,(2,)) 2000 ju

S UN -’ Klg, |'o “rou
 Also,
S,(u)=S,(u)=u'c’La™T,ul| @, |+0,().
e Hence
S (U) - | @, ™ (0°L - }Z)u'o'zrpu +u'N, N~ N(0,2(c?J -K?)| @, | o°T,).



Order Selection:

Partial ACF From the previous result, if true model is of order r and

fitted model is of order p > r, then

~ Var(| Z
nl/Z(pp’LAD IR N(O, . (l 1|) ;
2(20°1,(0)—E | Z,])

where (App’LAD Is the pth element of @, ,p -

)

Procedure:

1. Fit high order (P-th order), obtain residuals and estimate scalar,
92 — Var(l Zl |)
2(20%,(0)-E|Z,])’
by empirical moments of residuals and density estimates.




2. Fit AP models of order p=1,2, ..., P via LAD and obtain p-th

coefficient (App,IO for each.

3. Choose model order r as the smallest order beyond which the

estimated coefficients are statistically insignificant.

Note: Can replace (App,pwith cApp,MLE If using MLE. In this case

for p>r
1
2(a?1 =1)

2@, e — N(O, )



AIC: 2p or not 2p?

« An approximately unbiased estimate of the Kullback-Leiber index

of fitted to true model:

o e Var(Z))  (20%,(0)
ACP)= 2LX(“”K)+<2cr2fc,(0)—E|zl|)2[ E12,] 1)'“

 Penalty term for Laplace case:

Var(|Z, |) 20°f,(0) 1p=p
(20°1,(0)-E|Z,)*\ E|Z]

 Penalty term can be estimated from the data.
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Sample realization of all-pass of order 2
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Simulation results:
* 1000 replicates of all-pass models

* model order parameter value
1 @ =5
2 ¢=.3, 9,=.4
* noise distribution is t with 3 d.f.
* sample sizes n=500, 5000

® estimation method i1s LAD



To guard against being trapped in local minima, we adopted the
following strategy.

* 250 random starting values were chosen at random. For
model of order p, k-th starting value was computed
recursively as follows:

k k k . .
1. Draw D@, @) iid uniform (-1,1).
2. For =2, ..., p, compute
OGO [ oK)
j1 j-1,1 j-1,j-1
. _ . _ k) .
- ]
k) k) k)
G| | B B

* Select top 10 based on minimum function evaluation.

* Run Hooke and Jeeves with each of the 10 starting values
and choose best optimized value.



Asymptotic Empirical
N mean stddev mean stddev %coverage rel eff*
500 @=5 .0332 4979 .0397 94.2 11.8
5000 @=.5 .0105 .4998 .0109 95.4 9.3
Asymptotic Empirical
N mean stddev mean std dev %coverage
500 @=.3 .0351 .2990 .0456 925
@=4 .0351 3965 .0447 921
5000 @=.3 .0111 .3003 .0118 955
¢=4 .0111 3990 .0117  94.7
*Efficiency relatlve to maximum absolute residual kurtosis:
—Z(Z f,‘f)j = @@L
N=pPi= N=Pp=




MLE Simulations Results using t-distr(3.0)

Asymptotic Empirical
N mean stddev mean std dev %coverage

500 @=5 .0274 4971 .0315 93.0
v=3.0 .4480 3.112 .5008 95.8

5000 @=.5 .0087 4997 .0091 93.4
v=3.0 .1417  3.008 .1533 94.0

Asymptotic Empirical
N mean stddev mean std dev %coverage

500 @=.3 .0290 .2993 .0345 90.6
=4 .0290 .3964 .0350 90.1

v=3.0 .4480 3.07/9 4722 948
5000 @=.3 .0092 .2999 .0095 940
¢=4 .0092 3999 .0094 94.6
v=3.0 .1417 3.008 .1458  95.2




R-Estimator. Minimize the objective fcn

500
5000
500

5000

=3 i3 oo
where {z,(@)} are the ordered {z,(@)}.

Empirical Empirical LAD
mean stddev  mean std dev
4978  .0315 4979  .0397
4997  .0094 4998 .0109
2988  .0374 2990 .0456
3957  .0360 3965 .0447
3007 .0101 3003 .0118
3993  .0104 3990 .0117

@.ﬁﬁﬁ.ﬁ.ﬁ
B w > w o1 oo




Noninvertible MA models with heavy tailed noise

Xt = Zt+ elzt-1+' ..+ eqzt-q’
a. {Z;} ~ ID(a) with Pareto tails

b. 8(z)=1+86,z+-..+6,7

No zeros inside the unit circle — Invertible

Some zero(s) inside the unit circle => noninvertible




Realizations of an invertible and noninvertible MA(2) processes

Model: X,=064B) Z,, {Z;} ~ ID(a = 1), where
6.(B) = (1+1/2B)(1 + 1/3B) and 6,(B) = (1 + 2B)(1 + 3B)

20
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Application of all-pass to noninvertible MA model fitting

Suppose {X;} follows the noninvertible MA model
X=6,(B) 6,(B) Z,, {Z}~1ID.

Step 1: Let {U,} be the residuals obtained by fitting a purely
Invertible MA model, i.e.,

X, =8(B)U,
= 0, (B)'éni (B)U,, (éni IS the invertible version of ©..).
eni (B)

Ut ~ = Zt
eni (B)

So

Step 2: Fit a purely causal AP model to {U,}
éni (B)Ut = eni (B)Zt



X(t)

6*10"5

10”6

2*10"5

Volumes of Microsoft (MSFT) stock traded over 755
transaction days (6/3/96 to 5/28/99)




Analysis of MSFT:
Step 1: Log(volume) follows MA(4).
X, =(1+.513B+.277B%+.270B3+.202B*) U,  (invertible MA(4))

Step 2: All-pass model of order 4 fitted to {U,} using MLE (t-dist):
(1-.628B +—.229B* +.131B° —.202B*)U,
=(1-.649B+1.135B° +3.116B° —-4.960B*)Z,. (V =6.26)

(Model using R-estimation is nearly the same.)

Conclude that {X,} follows a noninvertible MA(4) which after
refitting has the form:

X, =(1+1.34B+1.374B2+2.54B3+4.96B%) Z, , {Z}~11D 1(6.3)
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Summary: Microsoft Trading Volume

F Two-step fit of noninvertible MA(4):
e invertible MA(4): residuals not iid
o causal AP(4); residuals 1id

= Direct fit of purely noninvertible MA(4):
(1+1.34B+1.374B%+2.54B3+4,96B%)

=" For MCHP, invertible MA(4) fits.



Summary

= All-pass models and their properties
* linear time series with “nonlinear” behavior
& Estimation
e likelthood approximation
« MLE, LAD, R-estimation
e order selection
= Emprirical results
e simulation study
““Noninvertible moving average processes
e two-step estimation procedure using all-pass
 noninvertible MA(4) for Microsoft trading volume



Further Work

%" Least absolute deviations
e further simulations
e order selection
* heavy-tailed case
e other smooth objective functions (e.g., min dispersion)
“ Maximum likelthood
 Gaussian mixtures
e simulation studies
e applications
=~ Noninvertible moving average modeling
e initial estimates from two-step all-pass procedure
» adaptive procedures



