Sample Autocorrelations for Financial Time Series Models

Richard A. Davis Colorado State University

Thomas Mikosch University of Copenhagen

Outline

- > Characteristics of some financial time series
 - IBM returns
 - NZ-USA exchange rate
- Linear processes
- Background results
 - Multivariate regular variation
 - Point process convergence
 - Application to sample ACVF and ACF
- > Applications
 - Stochastic recurrence equations (GARCH)
 - Stochastic volatility models

Characteristics of Some Financial Time Series

Define
$$X_t = 100*(ln (P_t) - ln (P_{t-1}))$$
 (log returns)

heavy tailed

$$P(|X_1| > x) \sim C x^{-\alpha}, \quad 0 < \alpha < 4.$$

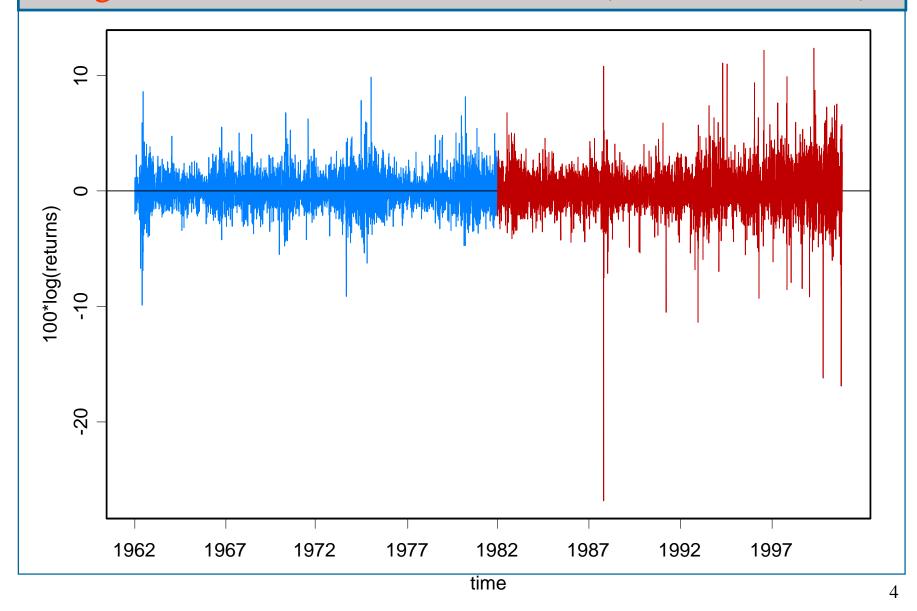
uncorrelated

$$\hat{\rho}_x(h)$$
 near 0 for all lags h > 0 (MGD sequence)

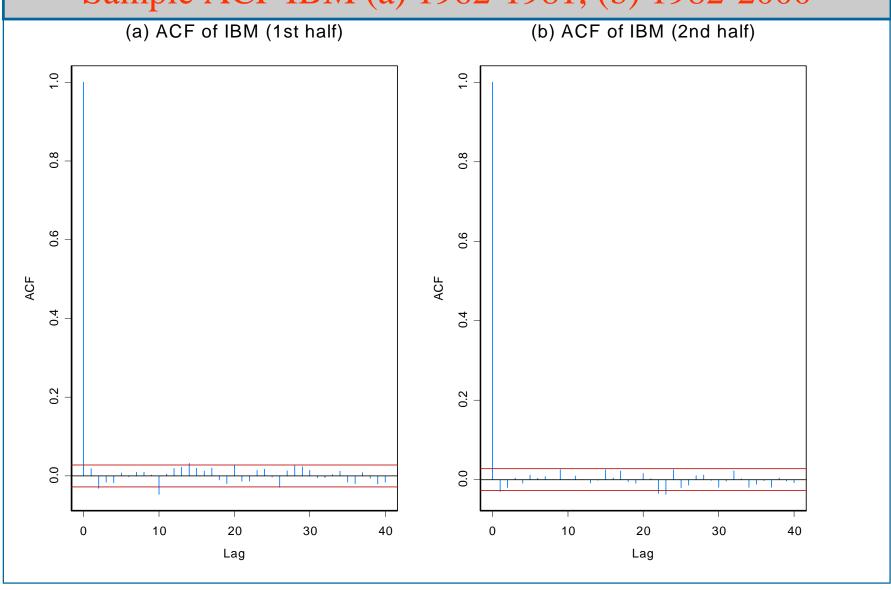
• $|X_t|$ and X_t^2 have slowly decaying autocorrelations

$$\hat{\rho}_{|X|}(h)$$
 and $\hat{\rho}_{X^2}(h)$ converge to 0 *slowly* as h increases.

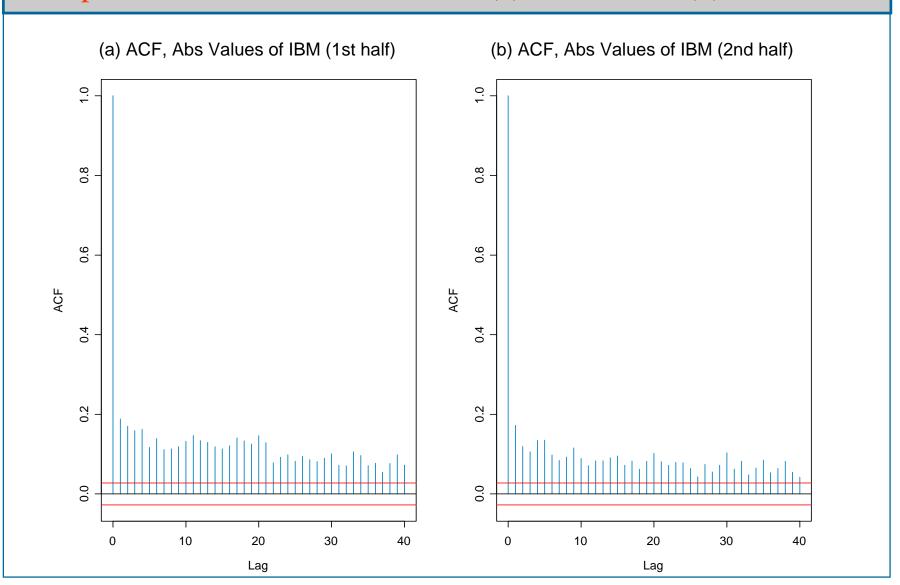
• process exhibits 'stochastic volatility'.



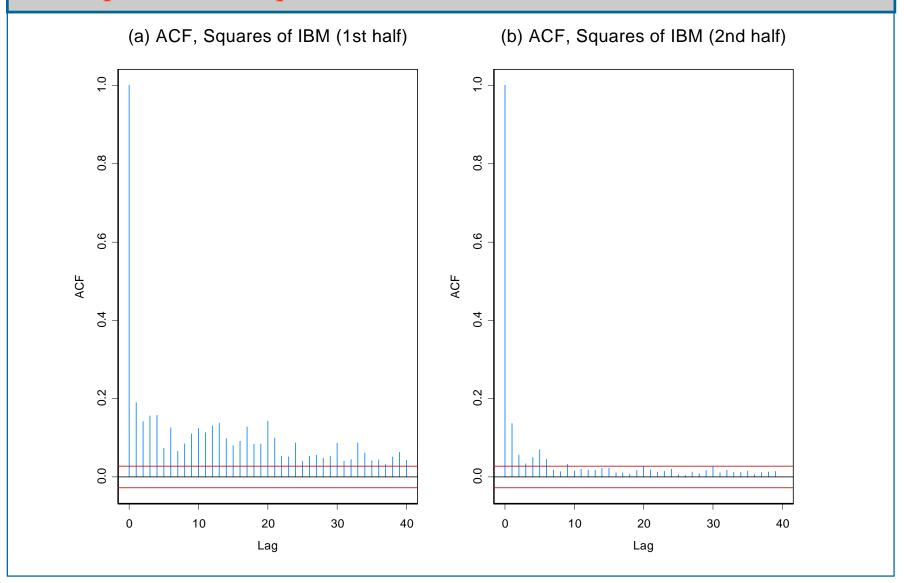
Sample ACF IBM (a) 1962-1981, (b) 1982-2000



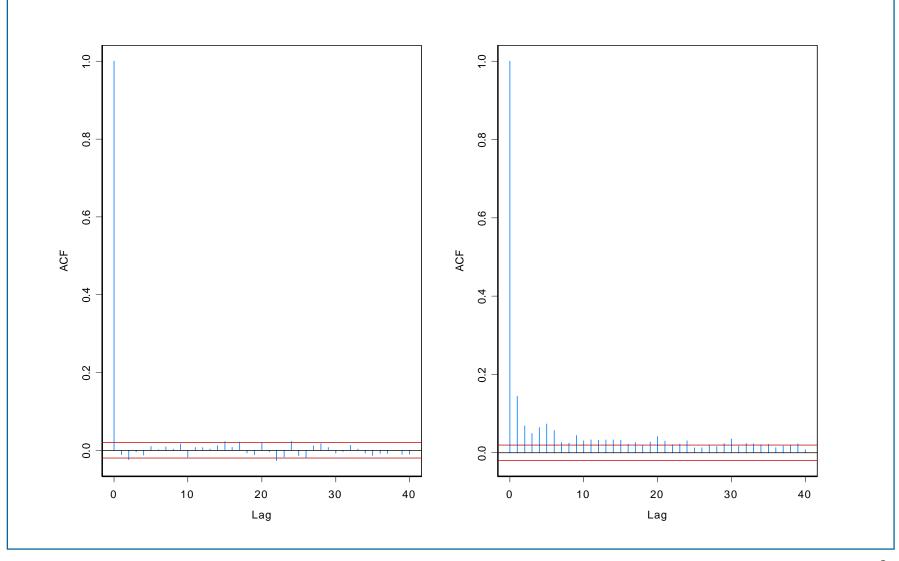
Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000

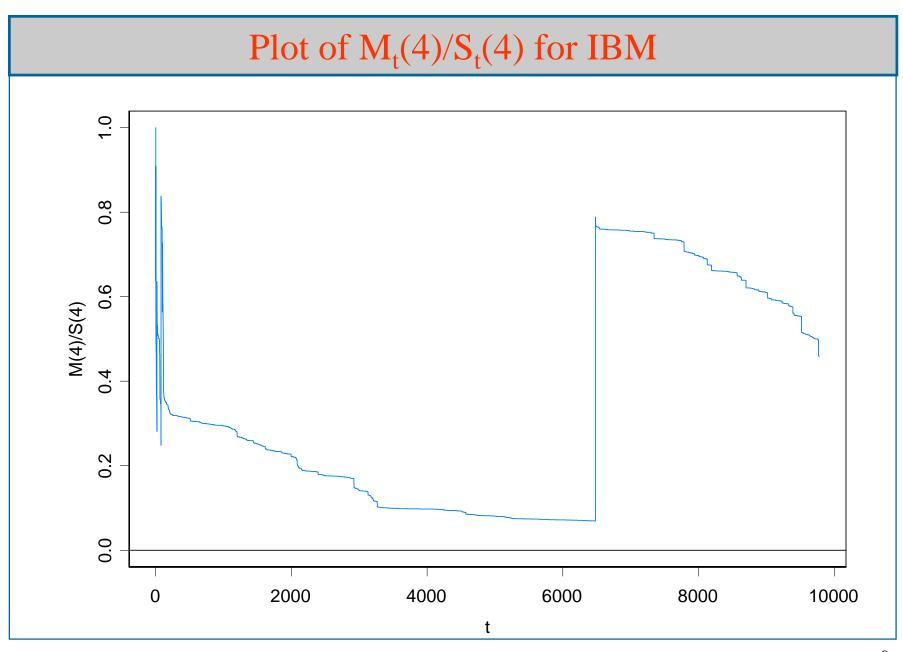


Sample ACF of squares for IBM (a) 1961-1981, (b) 1982-2000

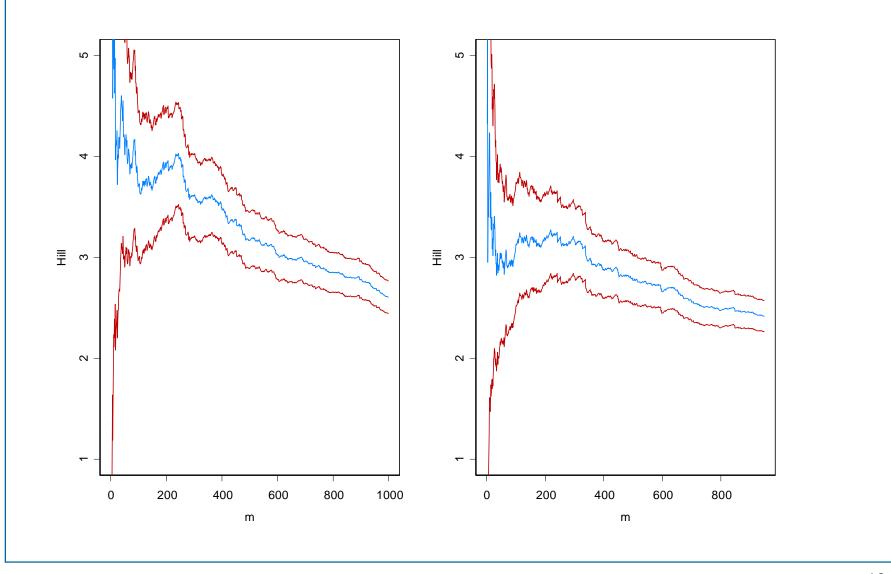


Sample ACF of original data and squares for IBM 1962-2000

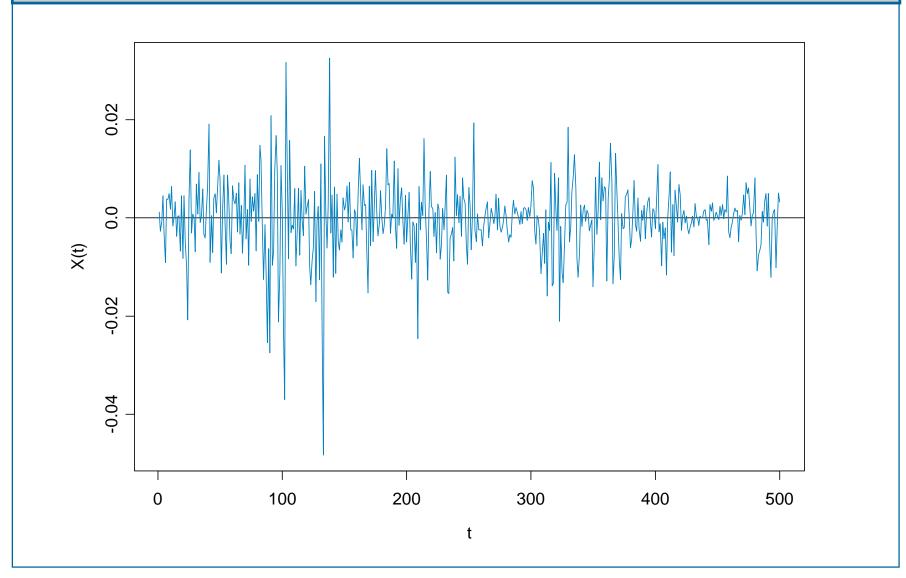




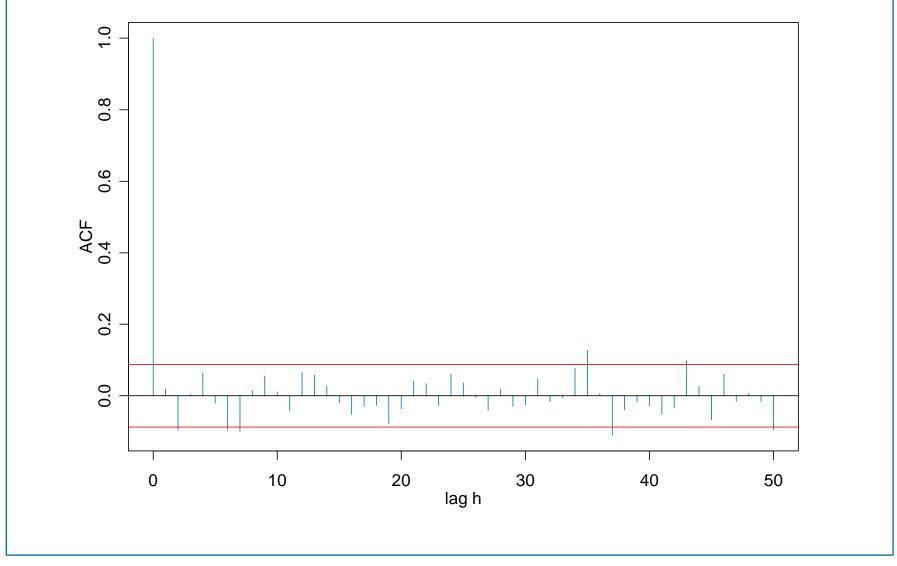
Hill's plot of tail index for IBM (1962-1981, 1982-2000)

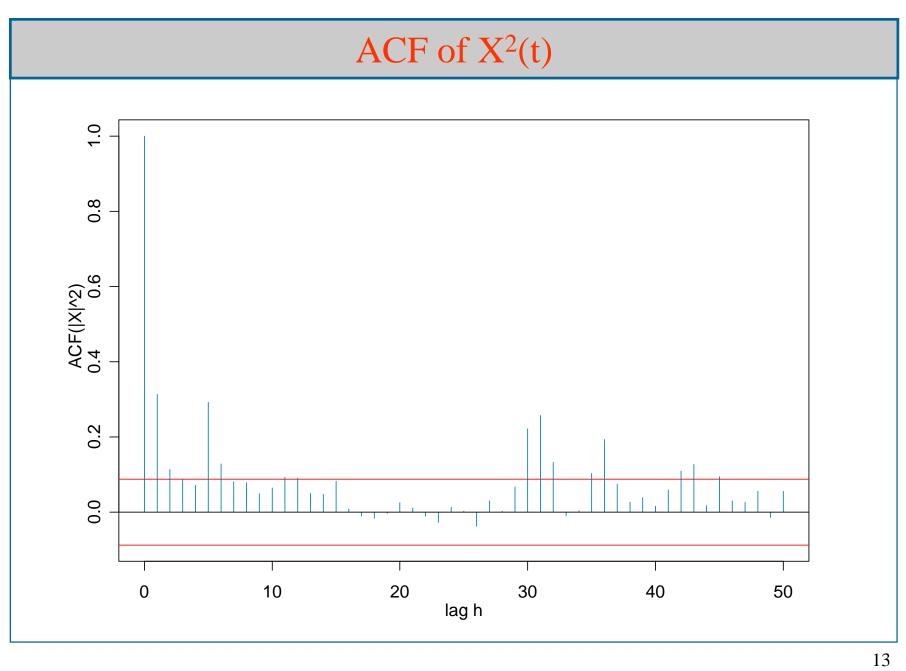


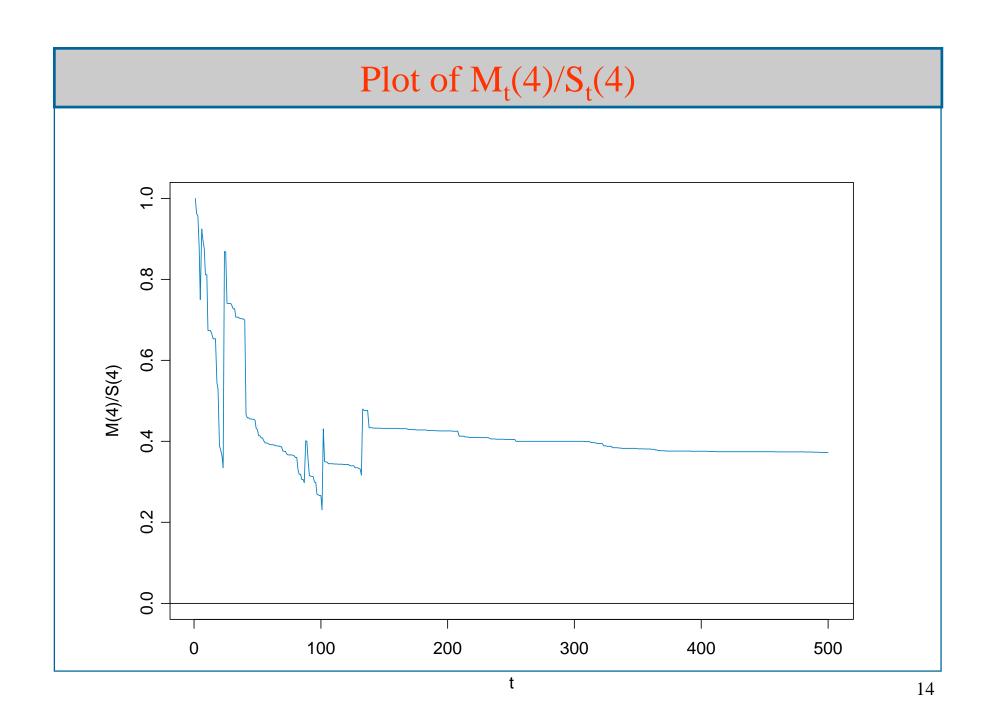
500-daily log-returns of NZ/US exchange rate

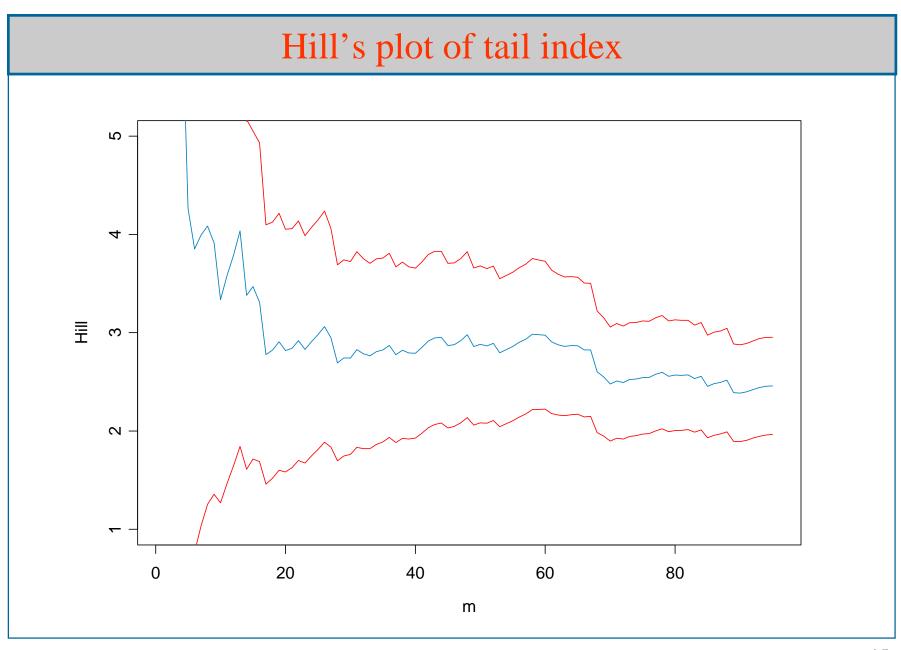


ACF of X(t)=log-returns of NZ/US exchange rate









Models for Log(returns)

Basic model

$$X_{t} = 100*(ln (P_{t}) - ln (P_{t-1}))$$
 (log returns)
$$= \sigma_{t} Z_{t},$$

where

- $\{Z_t\}$ is IID with mean 0, variance 1 (if exists). (e.g. N(0,1) or a *t*-distribution with ν df.)
- $\{\sigma_t\}$ is the volatility process
- σ_t and Z_t are independent.

Models for Log(returns)-cont

 $X_t = \sigma_t Z_t$ (observation eqn in state-space formulation)

Examples of models for volatility:

(i) GARCH(p,q) process (observation-driven specification)

$$\sigma_{t}^{2} = \alpha_{0} + \alpha_{1} X_{t-1}^{2} + \dots + \alpha_{p} X_{t-p}^{2} + \beta_{1} \sigma_{t-1}^{2} + \dots + \beta_{q} \sigma_{t-q}^{2}.$$

Special case: ARCH(1), $X_t^2 = (\alpha_0 + \alpha_1 X_{t-1}^2) Z_t^2$.

$$\rho_{v^2}(h) = \alpha_1^h$$
, if $\alpha_1^2 < 1/3$.

(ii) stochastic volatility process (parameter-driven specification)

$$\log \sigma_t^2 = \sum_{j=-\infty}^{\infty} \psi_j \varepsilon_{t-j}, \ \sum_{j=-\infty}^{\infty} \psi_j^2 < \infty, \{\varepsilon_t\} \sim \text{IID N}(0, \sigma^2)$$

$$\rho_{X^2}(h) = Cor(\sigma_t^2, \sigma_{t+h}^2) / EZ_1^4$$

Linear Processes

Model: $X_t = \sum_{j=-\infty} \psi_j Z_{t-j} \{Z_t\} \sim IID, P(|Z_t| > x) \sim Cx^{-\alpha}, 0 < \alpha < 2.$

Properties:

- $P(|X_t|>x) \sim C_2 x^{-\alpha}$
- Define $\rho(h) = \sum_{j=-\infty}^{\infty} \psi_j \psi_{j+h} / \sum_{j=-\infty}^{\infty} \psi_j^2$.

Case $\alpha > 2$:

$$n^{1/2}(\hat{\rho}(h) - \rho(h)) \xrightarrow{d} \sum_{j=1}^{\infty} (\rho(h+j) + \rho(h-j) - 2\rho(j)\rho(h)) N_j, \{N_t\} \sim IIDN$$

Case $0 < \alpha < 2$:

$$\begin{split} &(\text{n} \, / \, \text{ln n})^{1/\alpha} \, (\, \hat{\rho}(\textbf{h}) - \rho(\textbf{h})) \, \stackrel{d}{\to} \, \sum_{j=1}^{\infty} \, \left(\rho(\textbf{h}+\textbf{j}) + \rho(\textbf{h}-\textbf{j}) - 2\rho(\textbf{j})\rho(\textbf{h}) \right) \, S_{\textbf{j}} / \, S_{\textbf{0}}, \\ & \{ S_{\textbf{t}} \} \text{\sim} \text{IID stable } (\alpha), \, S_{\textbf{0}} \, \, \text{stable } (\alpha/2) \end{split}$$

Background Results—multivariate regular variation

Multivariate regular variation of $X=(X_1, \ldots, X_m)$: There exists a random vector $\theta \in S^{m-1}$ such that

$$P(|\mathbf{X}| > t \ x, \ \mathbf{X}/|\mathbf{X}| \in \bullet)/P(|\mathbf{X}| > t) \rightarrow_{v} x^{-\alpha} P(\theta \in \bullet)$$

 $(\rightarrow_{\nu} \text{ vague convergence on } S^{m-1})$.

- P($\theta \in \bullet$) is called the spectral measure
- α is the index of **X**.

Equivalence: There exist positive constants a_n and a measure μ ,

$$nP(X/a_n \in \bullet) \rightarrow_{\nu} \mu(\bullet)$$

In this case, one can choose a_n and μ such that

$$\mu((\mathbf{x}, \infty) \times B) = \mathbf{x}^{-\alpha} \mathbf{P}(\boldsymbol{\theta} \in B)$$

Background Results—multivariate regular variation

Another equivalence?

 $MRV \Leftrightarrow all linear combinations of X are regularly varying$

i.e., if and only if

$$P(\mathbf{c}^T\mathbf{X}>t)/P(\mathbf{1}^T\mathbf{X}>t) \rightarrow w(\mathbf{c})$$
, exists for all real-valued \mathbf{c} ,

in which case,

$$w(t\mathbf{c}) = t^{-\alpha}w(\mathbf{c}).$$

(⇒) true

(⇐) established by Basrak, Davis and Mikosch (2000) for α not an even integer—case of even integer is unknown.

Background Results—point process convergence

Theorem (Davis & Hsing `95, Davis & Mikosch `97). Let $\{X_t\}$ be a stationary sequence of random vectors. Suppose

- (i) finite dimensional distributions are jointly regularly varying (let $(\theta_{-k}, \ldots, \theta_k)$ be the vector in $S^{(2k+1)m-1}$ in the definition).
- (ii) mixing condition $A(a_n)$ or strong mixing.

(iii)
$$\lim_{k\to\infty} \limsup_{n\to\infty} P(\bigvee_{k\leq |t|\leq r_n} |\mathbf{X}_t| > a_n y | \mathbf{X}_0| > a_n y) = 0.$$

Then

$$\gamma = \lim_{k \to \infty} E(|\theta_0^{(k)}|^{\alpha} - \bigvee_{j=1}^{k} |\theta_j^{(k)}|)_+ / E |\theta_0^{(k)}|^{\alpha}$$

exists. If $\gamma > 0$, then

$$N_n := \sum_{t=1}^n \varepsilon_{\mathbf{X}_t/a_n} \xrightarrow{d} N := \sum_{i=1}^\infty \sum_{j=1}^\infty \varepsilon_{P_i \mathbf{Q}_{ij}},$$

Background Results—point process convergence(cont)

where

- (P_i) are points of a Poisson process on $(0,\infty)$ with intensity function $v(dy) = \gamma \alpha y^{-\alpha 1} dy$.
- $\sum_{j=1}^{\epsilon} \epsilon_{Q_{ij}}$, $i \ge 1$, are iid point process with distribution Q, and Q is the weak limit of

$$\lim_{k\to\infty} E(|\theta_0^{(k)}|^{\alpha} - \bigvee_{j=1}^k |\theta_j^{(k)}|)_+ I_{\bullet}(\sum_{|t|\leq k} \varepsilon_{\theta_t^{(k)}}) / E(|\theta_0^{(k)}|^{\alpha} - \bigvee_{j=1}^k |\theta_j^{(k)}|)_+$$

Background Results—application to ACVF & ACF

Set-up: Let $\{X_t\}$ be a stationary sequence and set

$$\mathbf{X}_t = \mathbf{X}_t(\mathbf{m}) = (\mathbf{X}_t, \ldots, \mathbf{X}_{t+m}).$$

Suppose X_t satisfies the conditions of previous theorem. Then

$$N_n := \sum_{t=1}^n \varepsilon_{\mathbf{X}_t/a_n} \xrightarrow{d} N := \sum_{i=1}^\infty \sum_{j=1}^\infty \varepsilon_{P_i \mathbf{Q}_{ij}},$$

Sample ACVF and ACF:

$$\hat{\gamma}_X(h) = n^{-1} \sum_{t=1}^{n-h} X_t X_{t+h}, \ h \ge 0, \quad \text{ACVF}$$

$$\hat{\rho}_X(h) = \hat{\gamma}_X(h) / \hat{\gamma}_X(h), \ h \ge 1, \quad \text{ACF}$$

If $EX_0^2 < \infty$, then define $\gamma_X(h) = EX_0X_h$ and $\rho_X(h) = \gamma_X(h)/\gamma_X(0)$.

Background Results—application to ACVF & ACF

(i) If $\alpha \in (0,2)$, then

$$(na_n^{-2}\hat{\gamma}_X(h))_{h=0,\dots,m} \xrightarrow{d} (V_h)_{h=0,\dots,m}$$
$$(\hat{\rho}_X(h))_{h=1,\dots,m} \xrightarrow{d} (V_h/V_0)_{h=1,\dots,m},$$

where

$$V_h = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P_i^2 Q_{ij}^{(0)} Q_{ij}^{(h)}, \quad h = 0, \dots, m.$$

(ii) If $\alpha \in (2,4)$ + additional condition, then

$$\left(na_n^{-2}(\hat{\gamma}_X(h) - \gamma_X(h))\right)_{h=0,\dots,m} \xrightarrow{d} \left(V_h\right)_{h=0,\dots,m}
\left(na_n^{-2}(\hat{\rho}_X(h) - \rho_X(h))\right)_{h=1,\dots,m} \xrightarrow{d} \gamma_X^{-1}(0)\left(V_h - \rho_X(h)V_0\right)_{h=1,\dots,m}.$$

Applications—stochastic recurrence equations

$$\mathbf{Y}_{t} = \mathbf{A}_{t} \mathbf{Y}_{t-1} + \mathbf{B}_{t}, \quad (\mathbf{A}_{t}, \mathbf{B}_{t}) \sim \text{IID},$$

 $\mathbf{A}_{\mathsf{t}} \ d \times d$ random matrices, \mathbf{B}_{t} random d-vectors

Examples

ARCH(1): $X_t = (\alpha_0 + \alpha_1 X_{t-1}^2)^{1/2} Z_t$, $\{Z_t\} \sim IID$. Then the squares

follow an SRE with $Y_t = X_t^2$, $A_t = \alpha_1 Z_t^2$, $B_t = \alpha_0 Z_t^2$.

GARCH(2,1):
$$X_t = \sigma_t Z_t$$
, $\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \alpha_2 X_{t-2}^2 + \beta_1 \sigma_{t-1}^2$.

Then $\mathbf{Y}_t = (X_t^2, X_{t-1}^2, \sigma_t^2)'$ follows the SRE given by

$$\begin{bmatrix} X_{t}^{2} \\ X_{t-1}^{2} \\ \sigma_{t}^{2} \end{bmatrix} = \begin{bmatrix} \alpha_{1}Z_{t}^{2} & \alpha_{2}Z_{t}^{2} & \beta_{1}Z_{t}^{2} \\ 1 & 0 & 0 \\ \alpha_{1} & \alpha_{2} & \beta_{1} \end{bmatrix} \begin{bmatrix} X_{t-1}^{2} \\ X_{t-2}^{2} \\ \sigma_{t-1}^{2} \end{bmatrix} + \begin{bmatrix} \alpha_{0}Z_{t}^{2} \\ 0 \\ 0 \end{bmatrix}$$

Stochastic Recurrence Equations (cont)

Examples (tricks)

GARCH(1,1):
$$X_t = \sigma_t Z_t$$
, $\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2$.

Although this process does not have a 1-dimensional SRE representation, the process σ_t^2 does. Iterating, we have

$$\begin{split} \sigma_t^2 &= \alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2 = \alpha_0 + \alpha_1 \sigma_{t-1}^2 Z_{t-1}^2 + \beta_1 \sigma_{t-1}^2 \\ &= (\alpha_1 Z_{t-1}^2 + \beta_1) \sigma_{t-1}^2 + \alpha_0. \end{split}$$

Bilinear(1):
$$X_t = aX_{t-1} + bX_{t-1}Z_{t-1} + Z_t$$
, $\{Z_t\} \sim IID$
 $= Y_{t-1} + Z_t$, $Y_t = A_tY_{t-1} + B_t$, $A_t = a + bZ_t$, $B_t = A_tZ_t$

Stochastic Recurrence Equations (cont)

$$\mathbf{Y}_{t} = \mathbf{A}_{t} \mathbf{Y}_{t-1} + \mathbf{B}_{t}, \quad (\mathbf{A}_{t}, \mathbf{B}_{t}) \sim \text{IID}$$

Existence of stationary solution

- E $\ln^+ || \mathbf{A}_1 || < \infty$
- E $\ln^+ \| \mathbf{B}_1 \| < \infty$
- inf n⁻¹ E ln $\| \mathbf{A}_1 \dots \mathbf{A}_n \| =: \gamma < 0 \ (\gamma \text{top Lyapunov exponent})$

Ex. (d=1) E $\ln |\mathbf{A}_1| < 0$.

Strong mixing

If $E ||A_1||^{\epsilon} < \infty$, $E |B_1|^{\epsilon} < \infty$ for some $\epsilon > 0$, then the SRE (Y_t) is geometrically ergodic \Rightarrow strong mixing with geometric rate (Meyn and Tweedie `93).

Stochastic Recurrence Equations (cont)

Regular variation of the marginal distribution (Kesten)

Assume A and B have non-negative entries and

- $\mathbb{E} \|\mathbf{A}_1\|^{\varepsilon} < 1 \text{ for some } \varepsilon > 0$
- A_1 has no zero rows a.s.
- W.P. 1, $\{\ln \rho(\mathbf{A}_1...\mathbf{A}_n): \text{ is dense in } \mathbf{R} \text{ for some } n, \mathbf{A}_1...\mathbf{A}_n > 0\}$
- There exists a $\kappa_0 > 0$ such that $E||A||^{\kappa_0} \ln^+ ||A|| < \infty$ and

$$E\left(\min_{i=1,\dots,d}\sum_{j=1}^{d}A_{ij}\right)^{\kappa_0} \geq d^{\kappa_0/2}$$

Then there exists a $\kappa_1 \in (0, \kappa_0]$ such that **all** linear combinations of **Y** are regularly varying with index κ_1 . (Also need $E \mid B \mid^{\kappa_1} < \infty$.)

Application to GARCH

Proposition: Let (Y_t) be the soln to the SRE based on the *squares* of a GARCH model. Assume

- Top Lyapunov exponent γ < 0. (See Bougerol and Picard`92)
- Z has a positive density on $(-\infty, \infty)$ with all moments finite or $E|Z|^h = \infty$, for all $h \ge h_0$ and $E|Z|^h < \infty$ for all $h < h_0$.
- Not all the GARCH parameters vanish.

Then (\mathbf{Y}_t) is *strongly mixing* with geometric rate and all finite dimensional distributions are *multivariate regularly varying* with index κ_1 .

Corollary: The corresponding GARCH process is strongly mixing and has all finite dimensional distributions that are MRV with index $\kappa = 2\kappa_1$.

Application to GARCH (cont)

Remarks:

- 1. Kesten's result applied to an iterate of \mathbf{Y}_{t} , i.e., $\mathbf{Y}_{tm} = \widetilde{\mathbf{A}}_{t} \mathbf{Y}_{(t-1)m} + \widetilde{\mathbf{B}}_{t}$
- 2. Determination of κ is difficult. Explicit expressions only known in two(?) cases.
 - ARCH(1): $E|\alpha_1 Z^2|^{\kappa/2} = 1$.

- GARCH(1,1): $E|\alpha_1|^{\kappa/2} = 1$ (Mikosch and Starica)
- For IGARCH $(\alpha_1 + \beta_1 = 1)$, then $\kappa = 2 \Rightarrow$ infinite variance.
- Can estimate κ empirically by replacing expectations with sample moments.

Summary for GARCH(p,q)

 $\kappa \in (0,2)$:

$$(\hat{\rho}_X(h))_{h=1,\ldots,m} \xrightarrow{d} (V_h/V_0)_{h=1,\ldots,m},$$

 $\kappa \in (2,4)$:

$$(n^{1-2/\kappa}\hat{\rho}_X(h))_{h=1,\ldots,m} \xrightarrow{d} \gamma_X^{-1}(0)(V_h)_{h=1,\ldots,m}.$$

 $\kappa \in (4, \infty)$:

$$(n^{1/2}\hat{\rho}_X(h))_{h=1,\ldots,m} \xrightarrow{d} \gamma_X^{-1}(0)(G_h)_{h=1,\ldots,m}.$$

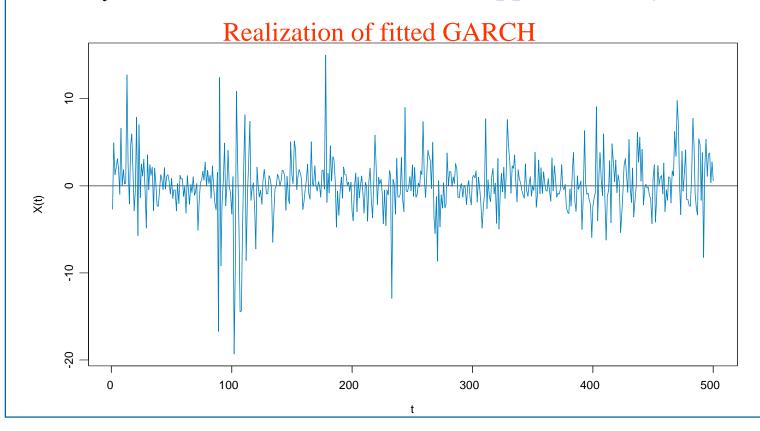
Remark: Similar results hold for the sample ACF based on $|X_t|$ and X_t^2 .

Realization of GARCH Process

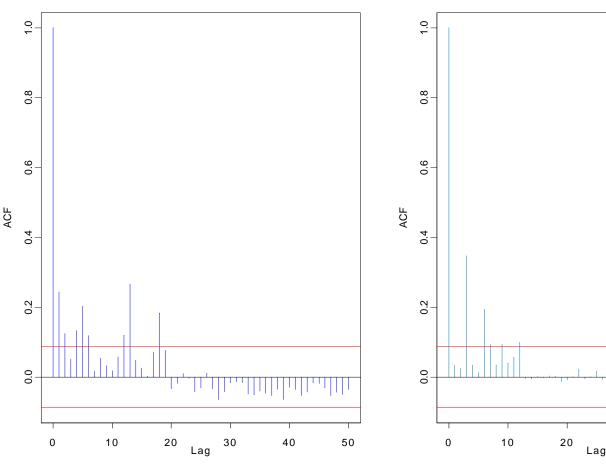
Fitted GARCH(1,1) model for NZ-USA exchange:

$$X_{t} = \sigma_{t} Z_{t}, \quad \sigma_{t}^{2} = (6.70)10^{-7} + .1519 X_{t-1}^{2} + .772 \sigma_{t-1}^{2}$$

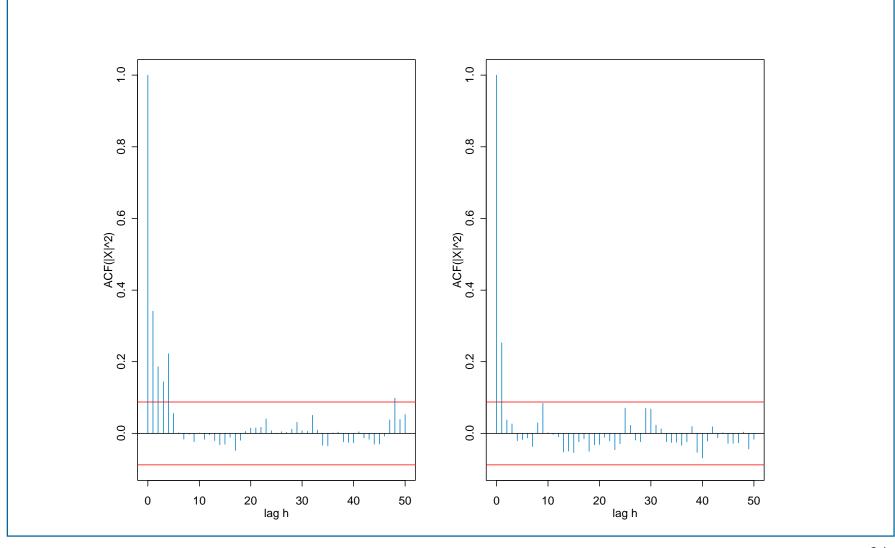
 $(Z_t) \sim IID$ t-distr with 5 df. κ is approximately 3.8



ACF of Fitted GARCH(1,1) Process



ACF of 2 realizations of an (ARCH)²: X_t =(.001+.7 X_{t-1})^{1/2} Z_t



ACF of 2 realizations of an |ARCH|: $X_t=(.001+X_{t-1})^{1/2}Z_t$ 1.0 9.0 ACF(|X|^2) 0.4 ACF(|X|^2) 0.4 0.2 0.0 40 50 lag h 35

Stochastic Volatility Models

SVM: $X_t = \sigma_t Z_t$

- $(Z_t) \sim IID$ with mean 0 (if it exists)
- (σ_t) is a stationary process (2 log σ_t is a linear process) given by

$$\log \sigma_t^2 = \sum_{j=-\infty}^{\infty} \psi_j \varepsilon_{t-j}, \ \sum_{j=-\infty}^{\infty} \psi_j^2 < \infty, (\varepsilon_t) \sim \text{IID N}(0, \sigma^2)$$

Heavy tails: Assume Z_t has Pareto tails with index α , i.e.,

$$P(|Z_t| > z) \sim C z^{-\alpha} \Rightarrow P(|X_t| > z) \sim C E\sigma^{\alpha} z^{-\alpha}$$
.

Then if
$$\alpha \in (0,2)$$
,
$$(n/\ln n)^{1/\alpha} \hat{\rho}_X(h) \xrightarrow{d} \frac{\|\sigma_1 \sigma_{h+1}\|_{\alpha}}{\|\sigma_1\|_{\alpha}^2} \frac{S_h}{S_0}.$$

Other powers:

1. Absolute values: $\alpha \in (1,2)$,

$$\begin{split} E|X_{t}| &= E|\sigma_{t}|E|Z_{t}|, \ E|X_{t}X_{t+h}| = (E|\sigma_{t}\,\sigma_{t+h}|)(E|Z_{t}|E|Z_{t+h}|) \\ Cov(|X_{t}|\,, |X_{t+h}|) &= Cov(\sigma_{t}\,, \sigma_{t+h})(E|Z|)^{2} \\ Cor(|X_{t}|\,, |X_{t+h}|) &= Cor(\sigma_{t}\,, \sigma_{t+h})(E|Z|)^{2}/EZ^{2} \\ &= 0 \ (?). \end{split}$$

 $n(n \ln n)^{-1/\alpha} (\hat{\gamma}_{|X|}(h) - \gamma_{|X|}(h)) \xrightarrow{d} \|\sigma_1 \sigma_{h+1}\|_{\alpha} S_h$

We obtain

$$(n/\ln n)^{1/\alpha} \hat{\rho}_{|X|}(h) \xrightarrow{d} \frac{\left\|\sigma_1 \sigma_{h+1}\right\|_{\alpha}}{\left\|\sigma_1\right\|_{\alpha}^2} \frac{S_h}{S_0}.$$

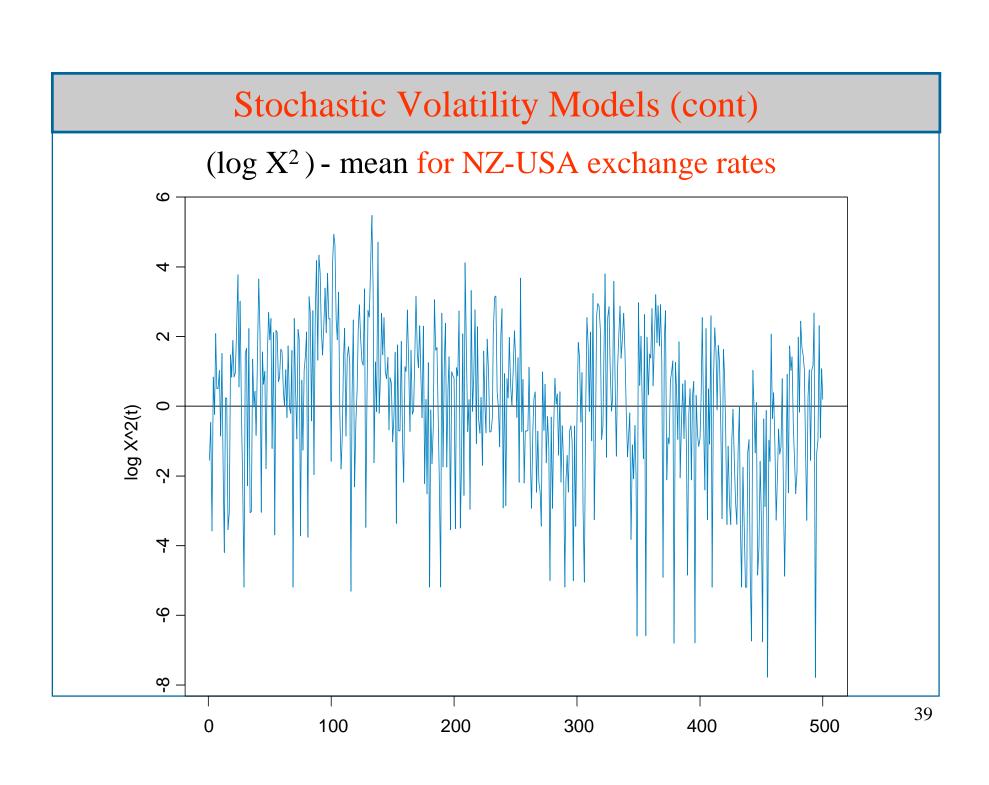
2. Higher order: $\alpha \in (0,2)$

The squares are again a SV process and the results of the previous proposition apply. Namely,

$$(n/\ln n)^{2/\alpha} \hat{\rho}_{X^2}(h) \xrightarrow{d} \frac{\left\|\sigma_1^2 \sigma_{h+1}^2\right\|_{\alpha/2}}{\left\|\sigma_1^2\right\|_{\alpha/2}^2} \frac{S_h}{S_0}.$$

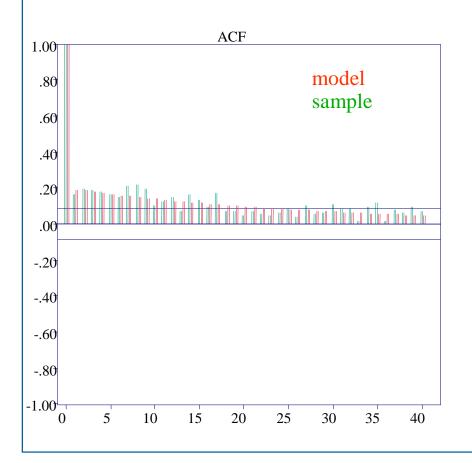
In particular,

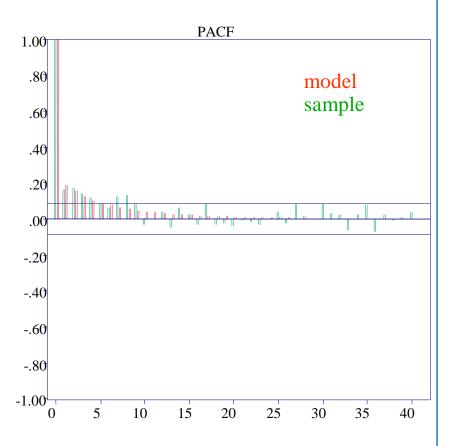
$$\hat{\rho}_{X^2}(h) \xrightarrow{P} 0.$$



ACF/PACF for ($\log X^2$) suggests ARMA (1,1) model:

$$\mu$$
= -11.5403, Y_t = .9646 Y_{t-1} + ε_t -.8709 ε_{t-1} , (ε_t)~WN(0,4.6653)





The ARMA (1,1) model for log X^2 leads to the SV model

$$X_t = \sigma_t Z_t$$

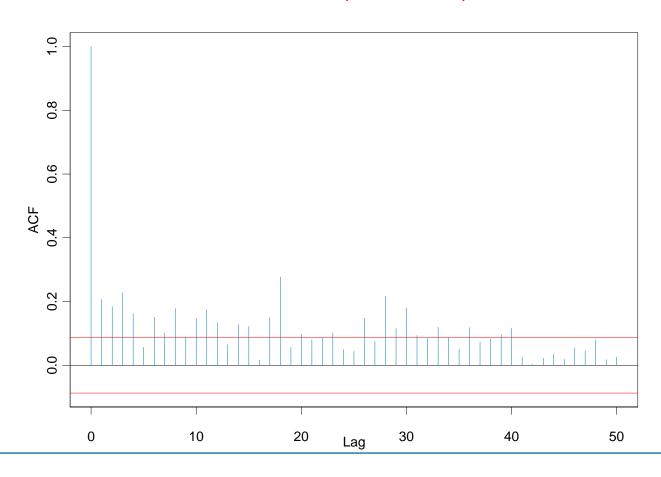
with

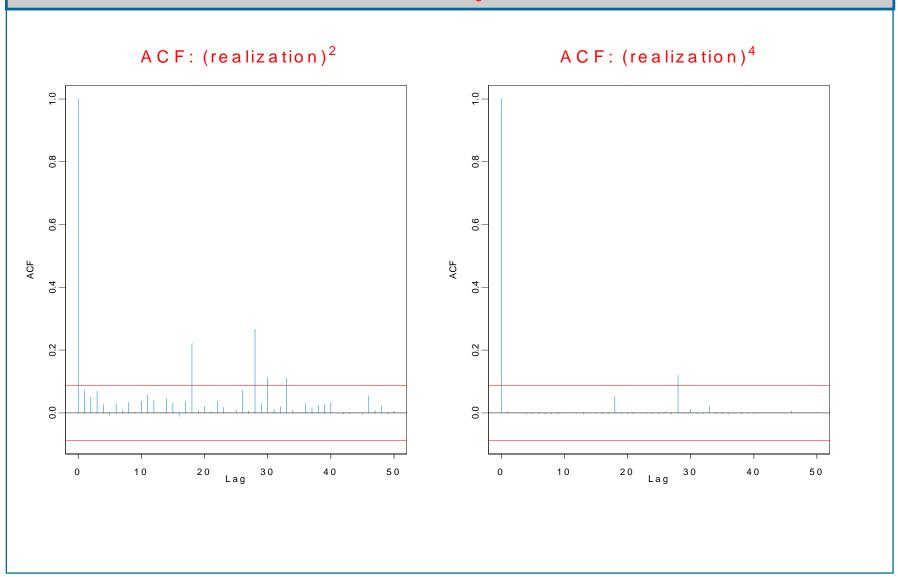
2 ln
$$\sigma_t = -11.5403 + v_t + \varepsilon_t$$

 $v_t = .9646 v_{t-1} + \gamma_t$, $(\gamma_t) \sim WN(0,.07253)$
 $(\varepsilon_t) \sim WN(0,4.2432)$.

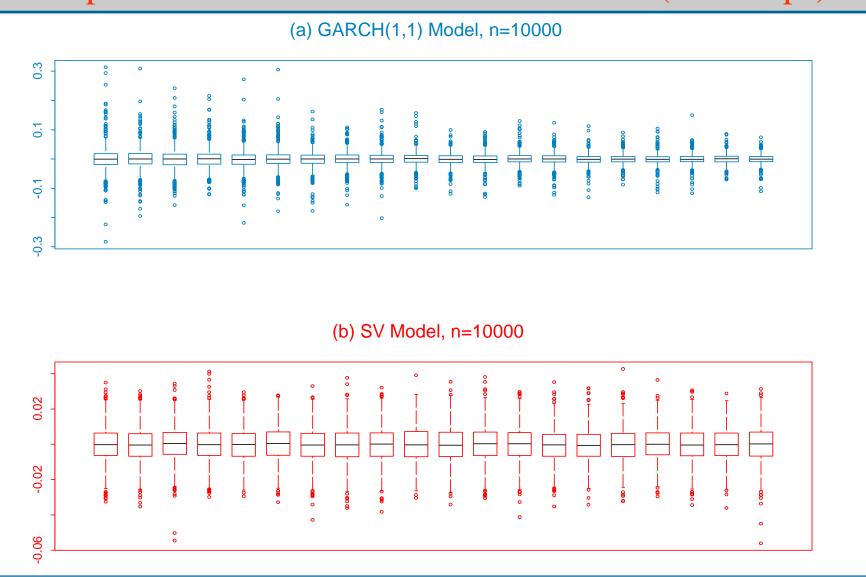
Simulation of SVM model: Took ε_t to be distributed according to log of a t random variable with 3 df (suitable normalized).

ACF: abs(realization)

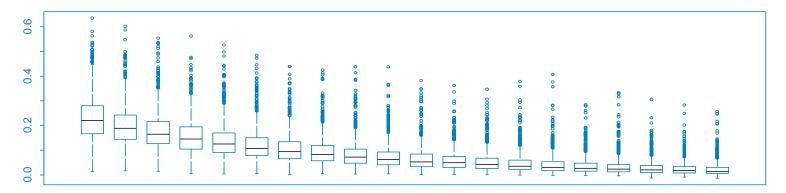




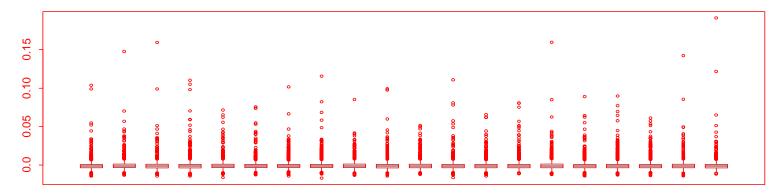
Sample ACF for GARCH and SV Models (1000 reps)



Sample ACF for Squares of GARCH and SV (1000 reps)



(b) SV Model, n=10000



Sample ACF for Squares of GARCH and SV (1000 reps)

