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Characteristics of Some Financial Time Series

Define X, = 100*(In (P, - In (P,;)) (log returns)

* heavy tailed

P(X{>x)~Cx% O0<a<4.

* uncorrelated
p, (h) near O for all lags h>0 (MGD sequence)

* |X{| and X? have slowly decaying autocorrelations

P (h) andp.(h) converge to O slowly as h increases.

* process exhibits ‘stochastic volatility’.




Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)
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Sample ACF IBM (a) 1962-1981, (b) 1982-2000
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Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000
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Sample ACF of squares for IBM (a) 1961-1981, (b) 1982-2000
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Sample ACF of original data and squares for IBM 1962-2000
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Plot of M,(4)/S,(4) for IBM
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Hill’s plot of tail index for IBM (1962-1981, 1982-2000)
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500-daily log-returns of NZ/US exchange rate
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ACF of X(t)=log-returns of NZ/US exchange rate
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ACF of X2(t)
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Plot of M,(4)/S,(4)
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Hill’s plot of tail index
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Models for Log(returns)

Basic model

X, =100*(In (P, - In (P.,)) (log returns)
=0y 4y,

where

* {Z,} is 11D with mean 0O, variance 1 (if exists). (e.g. N(0,1) or

a t-distribution with v df.)
* {o,}is the volatility process

* 0, and Z, are independent.

16




Models for Log(returns)-cont

X, =0, Z, (observation eqn in state-space formulation)

Examples of models for volatility:

(1) GARCHY(p,q) process (observation-driven specification)
O; =0y +0,X¢, +--+0 X +B,0p, +---+B,0p, -
Special case: ARCH(1), X? =(a, +a,X?,)Z:.
p,.(h)y=a;, if a} <1/3.
(i1) stochastic volatility process (parameter-driven specification)

log o’ = ijgt_j, wa <o0,{£}~ IIDN(0,0?%)
J==® J==®

p,.(h)=Cor(a?,0%,)/ EZ}

17




L inear Processes

Model: X, = > @.Z., {Z}~1ID, P(| Z{>x) ~ Cx™%, 0<a<2.

Properties: o

* P(| X{>x) ~C, x™@
 Define p(h) = W,/ S0’

j=—0 =

Case a > 2:
d 00
n"(p(h) - ph)) - D (ph+)+p(h-i)-2p@)p(h)) N;, {N3~11DN

Case0<a<?2: =

(n/Inm)¥* (B(h) - p(h)) Z (p(h+))+p(h-1)-2p(0)p(h)) S;/ S,
{S}~1ID stable (a), S, stable (a/2)
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Background Results—multivariate regular variation

Multivariate regular variation of X=(X,, ..., X, ): There exists a

random vector 8 [0 S™! such that
P(X|>tx, X/ X| & )P(X>t) -, xP(O [ )
(-, vague convergence on S™1) .
* P(0O [ ) is called the spectral measure
e 0 IS the index of X.
Equivalence: There exist positive constants a, and a measure J,
P(X/a, B ) -, u(*)
In this case, one can choose a,and L such that
H((X, ) xB) =x*P(6 LB)
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Background Results—multivariate regular variation

Another equivalence?

MRV < all linear combinations of X are regularly varying

l.e., iIf and only if

P(c™X>1t)/P(1TX>1) - w(c), exists for all real-valued c,
In which case,

w(tc) = t7ow(c).

(=) true

(1) established by Basrak, Davis and Mikosch (2000) for a not an

even integer—case of even integer is unknown.
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Background Results—point process convergence

Theorem (Davis & Hsing 95, Davis & Mikosch "97). Let {X} be
a stationary sequence of random vectors. Suppose

(1) finite dimensional distributions are jointly regularly varying (let
0., ..., 0,) be the vector in S@k+m-1in the definition).

(1) mixing condition A (a,) or strong mixing.

(i limlimsupP( O |X, 1>a,y||X,]>a,y) =0.

n_ oo k<lt|<r,
Then )
— |i k K k
y=limE( 6 [* - 0165 |). /E| 6 [

exists. 1f y>0, then

Nn = Zext/an _d_) N = Z ZePiQij’
t=1 -
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Background Results—point process convergence(cont)

where

* (P;) are points of a Poisson process on (0,00) with intensity
function v(dy)=yay°-1dy.

° ZSQU , 121, are 1id point process with distribution Q, and
—
Q is the weak limit of

k k
limE (6" " — D167 ). 1. gy)/E(6L7 I ~ T8 ),

Koo it)<k
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Background Results—application to ACVF & ACF

Set-up: Let {X} be a stationary sequence and set
X=X(m) = (X . -+, Xiapm)-

Suppose X, satisfies the conditions of previous theorem. Then

n o oo
:tzlaxt/an _d_) N ::Z ngiQij’

izl  j=1

Sample ACVF and ACF:

Yx (h)—n‘lzx X..,h=0 — ACVF
Py (h) = Vx(h)/yx(h) h>1 ACF

IT EX,% < o0, then define yy(h) =EX X, and py(h)=yy(h)/ yy(0).
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Background Results—application to ACVF & ACF

(i) If al0,2), then
(nan_ZVX (h))hzo,...,m DEE’ (Vh)h:O,...,m
(ﬁx (h))hzl,...,m D]j" (Vh /Vo)h:l,...,m’

where

(i) If al(2,4) + additional condition, then

(a2 () =y (M) o, o T2 )
(e By () —py (M), - T YOV, Py (Vo)

S

p~=—"
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Applications—stochastic recurrence equations

YEA Yt By (A, By) ~ 11D,
A, dxd random matrices, B,random d-vectors
Examples
ARCH(1): X=(agta, X2 )Yz, {Z}~1ID. Then the squares
follow an SREwithY, =X?, A =a,Z;, B, =0,Z;.
GARCH(Z’]'): Xt = Gtzt’ Gtz =, t O(lxtz-l t azxtz-z +Blct2-1 -
Then Y, =(X?,X?,,a07)" follows the SRE given by

X0 ezt 0,z BZE| XE| ez
1 0 0 [ X, |+] O
O-t2 al GZ Bl Gt-l O

1
[
[
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Stochastic Recurrence Equations (cont)

Examples (tricks)

GARCH(1,1): X, =0,Z, o =a,+a,X: +B,0;, .

Although this process does not have a 1-dimensional SRE
. 2 .

representation, the process O; does. Iterating, we have

2 _ 2 2 _ 2 —2 2
O, =0y + Glxt-l + Blo-t-l = U, + alo-t-lzt-l + Blo-t-l
— 2 2
- (alzt-l + Bl)ct-l + 0.
Bilinear(1): X=aX_+bX_Z,+7Z, {Z}~1ID

=Yt 4,
Y, =AY, +B, A=at+bZ, B=AZ
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Stochastic Recurrence Equations (cont)

YEA Yt By (A, B) ~1ID
Existence of stationary solution
*Eln*|| A, <o
* EIn*|| By|| < o0

*infntEIn||A,... A ||=y<O0 (y-top Lyapunov exponent)
Ex. (d=1) EIn|A, <O0.
Strong mixing
If E||A||f < oo, E|B,|t <o for some € >0, then the SRE (Y,)

IS geometrically ergodic = strong mixing with geometric rate
(Meyn and Tweedie 93).
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Stochastic Recurrence Equations (cont)

Reqgular variation of the marqginal distribution (Kesten)

Assume A and B have non-negative entries and
°E||A]|lE<1forsomee>0
* A, has no zero rows a.s.
* W.P. 1, {Inp(A,... A,):isdense in R for some n, A,... A, >0}

* There exists a K, > 0 such that EJ|A[ In”

AH <o and

Then there exists a K, (0, K] such that all linear combinations of
Y are regularly varying with index K,. (Also need E|[B[*<o )

28




Application to GARCH

Proposition: Let (Y,) be the soln to the SRE based on the squares of
a GARCH model. Assume

* Top Lyapunov exponent y < 0. (See Bougerol and Picard 92)

* Z has a positive density on (—oo, o) with all moments finite or
E|Z|'= oo, for all h = hyand E|Z|"< oo for all h <h,.

* Not all the GARCH parameters vanish.

Then (YY) Is strongly mixing with geometric rate and all finite
dimensional distributions are multivariate regularly varying with
Index K.

Corollary: The corresponding GARCH process is strongly mixing
and has all finite dimensional distributions that are MRV with
Index K = 2K;.
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Application to GARCH (cont)

Remarks:

1. Kesten’s result applied to an iterate of Y., 1.e., Y, = ,&tY(t_l)m + I§t

2. Determination of K is difficult. Explicit expressions only known

In two(?) cases.
* ARCH(1): E|a, zZ3¥?=1.

a,] .312 577 1.00 157
K | 8.00 4.00 200 1.00

* GARCH(1,1): E|a, Z?+ 3,|¥2 = 1 (Mikosch and Starica)
* For IGARCH (a, + 3; = 1), then kK = 2 =infinite variance.

* Can estimate kK empirically by replacing expectations with
sample moments.
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Summary for GARCH(p,q)

K[(0,2):

KI(2,4):

K[(4,00):

ps=—""

(f)x (h))hzl,...,m 1% (Vh /Vo)hzl,...,m’

=

B M)y T2 VOV

(2B () o T VHO) G oot o

Remark: Similar results hold for the sample ACF based on | X and

X2
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Realization of GARCH Process

Fitted GARCH(1,1) model for NZ-USA exchange:

X(®)

X, =0,Z,, o’=(6.70)107 +.1519X?, +.7720%,

(Z,) ~ 11D t-distr with 5 df. K is approximately 3.8
Realization of fitted GARCH

I I I I I
0 100 200 300 400 500
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ACF of Fitted GARCH(1,1) Process
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ACF of 2 realizations of an (ARCH)?: X,=(.001+.7 X, ) Z,
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ACF of 2 realizations of an JARCH|: X,=(.001+ X, )¥?Z,
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Stochastic Volatility Models

SVM: X&=0,Z,
° (Z,) ~ 1D with mean O (if it exists)

* (oy) Is a stationary process (2 log o, is a linear process) given
by

logo? = itpjet_j, itpf <o, (g,) ~ 11D N(0, %)

j:—oo j:—oo

Heavy tails: Assume Z, has Pareto tails with index a, I.e.,
P(1Z|>2)~Cz %= P(| X|>2z)~CEc*z™

Then if al(0,2) |,

(n/Inn)"*p, (h) (% 0.0,

O(Sh
. S

o]




Stochastic Volatility Models (cont)

Other powers:
1. Absolute values: al(1,2),
E|X;| = Elo\|E|Z|, E|X;Xun|= (ElO; O NEIZ,|E|Z. ])

Cov(IX], [Xel) = COV(G,, ) (EIZ )2
Cor(IX{, [Xn) = COr(G,, Gyu) (EIZ )2/ EZ2

=0 (?)
We obtain
. n(ninn) ™ (§,(h) =y () 2 [0,0,.4] S,
(n/Inn)f"“p,, () O3 H010h+21 « S
Ho-l‘a SO
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Stochastic Volatility Models (cont)

2. Higher order: al(0,2)

The squares are again a SV process and the results of the previous
proposition apply. Namely,

a/2 “~h

(n/Inn)f"*p. . (h) O3

o

al/2
In particular,

p..(h)E O
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Stochastic Volatility Models (cont)

log X72(t)

(log X?) - mean for NZ-USA exchange rates
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Stochastic Volatility Models (cont)

ACF/PACF for (log X?) suggests ARMA (1,1) model:
pu=-11.5403, Y,=.9646Y,, + ¢ —.8709 g, , (¢)WN(0,4.6653)
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Stochastic Volatility Models (cont)

The ARMA (1,1) model for log X2 leads to the SV model

X= 0y Z,
with

2Ino,=-11.5403 + v, + &,
v,=.9646 v, ; +V,, (YOWN(O0,.07253)
(g) LMWN(0,4.2432).
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Stochastic Volatility Models (cont)

Simulation of SVM model: Took g, to be distributed according to

log of at random variable with 3 df (suitable normalized).
ACF: abs(realization)
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Stochastic Volatility Models (cont)
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Sample ACF for GARCH and SV Models (1000 reps)
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Sample ACF for Squares of GARCH and SV (1000 reps)
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Sample ACF for Squares of GARCH and SV (1000 reps)

(c) GARCH(1,1) Model, n=100000
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