Applications of Multivariate Regular Variation and Point Process Theory to Financial Time Series Models

Richard A. Davis
Colorado State University
www.stat.colostate.edu/~rdavis
www.stat.colostate.edu/~rdavis/lectures/caracas02.pdf

Bojan Basrak
Eurandom
Thomas Mikosch
University of Copenhagen

Outline

Characteristics of some financial time series

- IBM returns
- Multiplicative models for log-returns (GARCH, SV)

Regular variation

- univariate case
- multivariate case
- new characterization: \mathbf{X} is $\mathrm{RV} \Leftrightarrow c^{\prime} \mathbf{X}$ is RV ?
\downarrow Applications of multivariate regular variation
- Stochastic recurrence equations (GARCH)
- Point process convergence
- Limit behavior of sample correlations
\downarrow Wrap-up

Characteristics of some financial time series

Define $X_{t}=\ln \left(P_{t}\right)-\ln \left(P_{t-1}\right) \quad$ (log returns)

- heavy tailed

$$
\mathrm{P}\left(\left|\mathrm{X}_{1}\right|>\mathrm{x}\right) \sim \mathrm{C} \mathrm{x}^{-\alpha}, \quad 0<\alpha<4 .
$$

- uncorrelated

$$
\hat{\rho}_{X}(h) \text { near } 0 \text { for all lags } \mathrm{h}>0(\text { MGD sequence })
$$

- $\left|\mathrm{X}_{\mathrm{t}}\right|$ and $\mathrm{X}_{\mathrm{t}}^{2}$ have slowly decaying autocorrelations
$\hat{\rho}_{|X|}(h)$ and $\hat{\rho}_{X^{2}}(h)$ converge to 0 slowly as h increases.
- process exhibits 'stochastic volatility'.

Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)

Sample ACF IBM (a) 1962-1981, (b) 1982-2000
(a) ACF of IBM (1st half)

(b) ACF of IBM (2nd half)

Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000

(b) ACF, Abs Values of IBM (2nd half)

Sample ACF of squares for IBM (a) 1961-1981, (b) 1982-2000

(a) ACF, Squares of IBM (1st half)
(b) ACF, Squares of IBM (2nd half)

Hill's plot of tail index for IBM (1962-1981, 1982-2000)

Multiplicative models for \log (returns)

Basic model

$$
\begin{aligned}
X_{t} & =\ln \left(P_{t}\right)-\ln \left(P_{t-1}\right) \quad \text { (log returns) } \\
& =\sigma_{t} Z_{t},
\end{aligned}
$$

where

- $\left\{Z_{t}\right\}$ is IID with mean 0 , variance 1 (if exists). (e.g. $\mathrm{N}(0,1)$ or a t-distribution with $v \mathrm{df}$.)
- $\left\{\sigma_{\mathrm{t}}\right\}$ is the volatility process
- σ_{t} and Z_{t} are independent.

Properties:

- $\mathrm{EX}_{\mathrm{t}}=0, \operatorname{Cov}\left(\mathrm{X}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}+\mathrm{h}}\right)=0, \mathrm{~h}>0$ (uncorrelated if $\operatorname{Var}\left(\mathrm{X}_{\mathrm{t}}\right)<\infty$)
- conditional heteroscedastic (condition on σ_{t}).

Multiplicative models for \log (returns)-cont

$$
X_{t}=\sigma_{t} Z_{t} \text { (observation eqn in state-space formulation) }
$$

Two classes of models for volatility:

(i) $\operatorname{GARCH}(\mathrm{p}, \mathrm{q})$ process (General AutoRegressive Conditional Heteroscedastic-observation-driven specification)

$$
\sigma_{\mathrm{t}}^{2}=\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{t}-1}^{2}+\cdots+\alpha_{p} X_{\mathrm{t}-\mathrm{p}}^{2}+\beta_{1} \sigma_{\mathrm{t}-1}^{2}+\cdots+\beta_{q} \sigma_{\mathrm{t}-\mathrm{q}}^{2} .
$$ Special case: ARCH(1):

$$
\begin{aligned}
\mathrm{X}_{\mathrm{t}}^{2} & =\left(\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{t}-1}^{2}\right) \mathrm{Z}_{\mathrm{t}}^{2} \\
& =\alpha_{1} \mathrm{Z}_{\mathrm{t}}^{2} \mathrm{X}_{\mathrm{t}-1}^{2}+\alpha_{0} \mathrm{Z}_{\mathrm{t}}^{2} \\
& =\mathrm{A}_{\mathrm{t}} \mathrm{X}_{\mathrm{t}-1}^{2}+\mathrm{B}_{\mathrm{t}} \quad \text { (stochastic recursion eqn) } \\
\rho_{X^{2}}(h) & =\alpha_{1}^{\mathrm{h}}, \text { if } \alpha_{1}^{2}<1 / 3 .
\end{aligned}
$$

Multiplicative models for \log (returns)-cont

$\operatorname{GARCH}(2,1): \quad \mathrm{X}_{\mathrm{t}}=\sigma_{\mathrm{t}} \mathrm{Z}_{\mathrm{t}}, \quad \sigma_{\mathrm{t}}^{2}=\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{t}-1}^{2}+\alpha_{2} \mathrm{X}_{\mathrm{t}-2}^{2}+\beta_{1} \sigma_{\mathrm{t}-1}^{2}$. Then $\mathbf{Y}_{\mathrm{t}}=\left(\sigma_{\mathrm{t}}^{2}, \mathrm{X}_{\mathrm{t}-1}^{2}\right)^{\prime}$ follows the SRE given by

$$
\left[\begin{array}{c}
\sigma_{t}^{2} \\
X_{t-1}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\alpha_{1} Z_{t-1}^{2}+\beta_{1} & \alpha_{2} \\
Z_{t-1}^{2} & 0
\end{array}\right]\left[\begin{array}{c}
\sigma_{t-1}^{2} \\
X_{t-2}^{2}
\end{array}\right]+\left[\begin{array}{c}
\alpha_{0} \\
0
\end{array}\right]
$$

Questions:

- Existence of a unique stationary soln to the SRE?
- Regular variation of the joint distributions?

Multiplicative models for \log (returns)-cont

$$
X_{t}=\sigma_{t} Z_{t} \text { (observation eqn in state-space formulation) }
$$

(ii) stochastic volatility process (parameter-driven specification)

$$
\begin{aligned}
& \log \sigma_{t}^{2}=\sum_{j=-\infty}^{\infty} \psi_{j} \varepsilon_{t-j}, \sum_{j=-\infty}^{\infty} \psi_{j}^{2}<\infty,\left\{\varepsilon_{t}\right\} \sim \operatorname{IID} \mathrm{N}\left(0, \sigma^{2}\right) \\
& \rho_{X^{2}}(h)=\operatorname{Cor}\left(\sigma_{t}^{2}, \sigma_{t+h}^{2}\right) / E Z_{1}^{4}
\end{aligned}
$$

Question:

- Joint distributions of process regularly varying if distr of \mathbf{Z}_{1} is regularly varying?

Regular variation - univariate case

Definition: The random variable X is regularly varying with index α if

$$
\mathrm{P}(|X|>\mathrm{tx}) / \mathrm{P}(|\mathrm{X}|>\mathrm{t}) \rightarrow \mathrm{x}^{-\alpha} \text { and } \mathrm{P}(\mathrm{X}>\mathrm{t}) / \mathrm{P}(|\mathrm{X}|>\mathrm{t}) \rightarrow \mathrm{p},
$$

or, equivalently, if

$$
\mathrm{P}(\mathrm{X}>\mathrm{tx}) / \mathrm{P}(|\mathrm{X}|>\mathrm{t}) \rightarrow \mathrm{px}^{-\alpha} \text { and } \mathrm{P}(\mathrm{X}<-\mathrm{tx}) / \mathrm{P}(|\mathrm{X}|>\mathrm{t}) \rightarrow \mathrm{qx}^{-\alpha},
$$

where $0 \leq \mathrm{p} \leq 1$ and $\mathrm{p}+\mathrm{q}=1$.

Equivalence:

X is $\mathrm{RV}(\boldsymbol{\alpha})$ if and only if $\mathrm{P}(\mathrm{X} \in \mathrm{t} \bullet) / \mathrm{P}(|\mathrm{X}|>\mathrm{t}) \rightarrow_{v} \mu(\bullet)$
$\left(\rightarrow_{v}\right.$ vague convergence of measures on $\mathrm{R} \backslash\{0\}$). In this case,

$$
\mu(\mathrm{dx})=\left(\mathrm{p} \alpha \mathrm{x}^{-\alpha-1} \mathrm{I}(\mathrm{x}>0)+\mathrm{q} \alpha(-\mathrm{x})^{-\alpha-1} \mathrm{I}(\mathrm{x}<0)\right) \mathrm{dx}
$$

Note: $\mu(\mathrm{tA})=\mathrm{t}^{-\alpha} \mu(\mathrm{A})$ for every t and A bounded away from 0 .

Regular variation - univariate case

Another formulation (polar coordinates):

Define the ± 1 valued rv $\boldsymbol{\theta}, \mathrm{P}(\boldsymbol{\theta}=1)=\mathrm{p}, \mathrm{P}(\boldsymbol{\theta}=-1)=1-\mathrm{p}=\mathrm{q}$.
Then
X is $\mathrm{RV}(\boldsymbol{\alpha})$ if and only if

$$
\frac{P(|\mathrm{X}|>\mathrm{tx}, \mathrm{X} /|\mathrm{X}| \in S)}{P(|\mathrm{X}|>\mathrm{t})} \rightarrow \mathrm{x}^{-\alpha} P(\boldsymbol{\theta} \in S)
$$

or

$$
\frac{P(|\mathrm{X}|>\mathrm{t} \mathrm{x}, \mathrm{X} /|\mathrm{X}| \in \bullet)}{P(|\mathrm{X}|>\mathrm{t})} \rightarrow_{v} \mathrm{x}^{-\alpha} P(\boldsymbol{\theta} \in \bullet)
$$

$\left(\rightarrow_{v}\right.$ vague convergence of measures on $\left.S^{0}=\{-1,1\}\right)$.

Multivariate regular variation of $\mathbf{X}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)$: There exists a random vector $\boldsymbol{\theta} \in \mathrm{S}^{\mathrm{m}-1}$ such that

$$
\mathrm{P}(|\mathbf{X}|>\mathrm{t} x, \mathbf{X} /|\mathbf{X}| \in \bullet) / \mathrm{P}(|\mathbf{X}|>\mathrm{t}) \rightarrow_{v} \mathrm{x}^{-\alpha} \mathrm{P}(\boldsymbol{\theta} \in \bullet)
$$

(\rightarrow_{v} vague convergence on $\mathrm{S}^{\mathrm{m}-1}$, unit sphere in R^{m}).

- $\mathrm{P}(\boldsymbol{\theta} \in \bullet)$ is called the spectral measure
- α is the index of \mathbf{X}.

Equivalence: $\quad P(\mathbf{X} \in \mathrm{t} \bullet)$
 $$
\frac{P(\mathbf{X} \in(\bullet)}{P(|\mathbf{X}|>\mathrm{t})} \rightarrow_{v} \mu(\bullet)
$$

μ is a measure on R^{m} which satisfies for $\mathrm{x}>0$ and A bounded away from 0 ,

$$
\mu(\mathrm{xB})=\mathrm{x}^{-\alpha} \mu(\mathrm{xA}) .
$$

Examples

1. If $X_{1}>0$ and $X_{2}>0$ are iid $R V(\alpha)$, then $X=\left(X_{1}, X_{2}\right)$ is multivariate regularly varying with index α and spectral distribution

$$
\mathrm{P}(\theta=(0,1))=\mathrm{P}(\theta=(1,0))=.5 \text { (mass on axes). }
$$

Interpretation: Unlikely that X_{1} and X_{2} are very large at the same time.

Figure: plot of $\left(\mathrm{X}_{\mathrm{t} 1}, \mathrm{X}_{\mathrm{t} 2}\right)$ for realization of 10,000 .

2. If $X_{1}=X_{2}>0$, then $\mathbf{X}=\left(X_{1}, X_{2}\right)$ is multivariate regularly varying with index α and spectral distribution

$$
\mathrm{P}(\theta=(1 / \sqrt{ } 2,1 / \sqrt{ } 2))=1 .
$$

$\operatorname{AR}(1): X_{t}=.9 X_{t-1}+Z_{t},\left\{Z_{t}\right\} \sim$ IID symmetric stable (1.8)
Distr of $\theta: \begin{cases} \pm(1, .9) / \mathrm{sqrt}(1.81), ~ W . P . ~ . ~ & 998 \\ \pm(0,1), & \text { W.P. . } 0102\end{cases}$

Applications of multivariate regular variation

- Domain of attraction for sums of iid random vectors (Rvaceva, 1962). That is, when does the partial sum

$$
a_{n}^{-1} \sum_{t=1}^{n} \mathbf{X}_{\mathrm{t}}
$$

converge for some constants a_{n} ?

- Spectral measure of random stable vectors.
- Domain of attraction for componentwise maxima of iid random vectors (Resnick, 1987). Limit behavior of

$$
a_{n}^{-1} \stackrel{n}{\vee} \mathbf{X}_{t=1}
$$

- Weak convergence of point processes with iid points.
- Solution to stochastic recurrence equations, $\mathbf{Y}_{\mathrm{t}}=\mathbf{A}_{\mathrm{t}} \mathbf{Y}_{\mathrm{t}-1}+\mathbf{B}_{\mathrm{t}}$
- Weak convergence of sample autocovariance.

Operations on regularly varying vectors - products

Products (Breiman 1965). Suppose X, Y > 0 are independent with $\mathrm{X} \sim \mathrm{RV}(\boldsymbol{\alpha})$ and $E Y^{\alpha+\varepsilon}<\infty$ for some $\varepsilon>0$. Then $\mathrm{XY} \sim \mathrm{RV}(\boldsymbol{\alpha})$ with

$$
\mathrm{P}(\mathrm{XY}>\mathrm{x}) \sim \mathrm{EY}^{\alpha} \mathrm{P}(\mathrm{X}>\mathrm{x}) .
$$

Multivariate version. Suppose the random vector \mathbf{X} is regularly varying and \mathbf{A} is a matrix independent of \mathbf{X} with

$$
0<\mathrm{E}\|\mathbf{A}\|^{\alpha+\varepsilon}<\infty .
$$

Then
$\mathbf{A X}$ is regularly varying with index α.

Example: SV model $X_{t}=\sigma_{t} Z_{t}$

Suppose $\mathrm{Z}_{\mathrm{t}} \sim \mathrm{RV}(\boldsymbol{\alpha})$ and

$$
\log \sigma_{t}^{2}=\sum_{j=-\infty}^{\infty} \psi_{j} \varepsilon_{t-j}, \quad \sum_{j=-\infty}^{\infty} \psi_{j}^{2}<\infty,\left\{\varepsilon_{t}\right\} \sim \operatorname{IID} \mathrm{N}\left(0, \sigma^{2}\right)
$$

Then $\mathbf{Z}_{\mathrm{n}}=\left(\mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{n}}\right)$ ' is regulary varying with index $\boldsymbol{\alpha}$ and so is

$$
\mathbf{X}_{\mathrm{n}}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)^{\prime}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\mathrm{n}}\right) \mathbf{Z}_{\mathrm{n}}
$$

with spectral distribution concentrated on $(\pm 1,0),(0, \pm 1)$.

Figure: plot of
$\left(\mathrm{X}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}+1}\right)$ for realization
of 10,000 .

Operations on regularly varying vectors - linear combinations

Linear combinations:

$\mathbf{X} \sim \mathrm{RV}(\boldsymbol{\alpha}) \Rightarrow$ all linear combinations of \mathbf{X} are regularly varying
i.e., there exist α and slowly varying fon $\mathrm{L}($.$) , s.t.$

$$
\mathrm{P}\left(\mathbf{c}^{\mathrm{T}} \mathbf{X}>t\right) /\left(t^{\alpha} L(t)\right) \rightarrow \mathrm{w}(\mathbf{c}), \text { exists for all real-valued } \mathbf{c}
$$

where

$$
\mathrm{w}(t \mathbf{c})=t^{-\alpha} \mathrm{w}(\mathbf{c}) .
$$

Use vague convergence with $\mathrm{A}_{\mathbf{c}}=\left\{\mathbf{y}: \mathbf{c}^{\mathrm{T}} \mathbf{y}>1\right\}$, i.e.,

$$
\frac{P\left(\mathbf{X} \in \mathrm{tA}_{\mathbf{c}}\right)}{t^{-\alpha} L(t)}=\frac{P\left(\mathbf{c}^{\mathrm{T}} \mathbf{X}>\mathrm{t}\right)}{P(|\mathbf{X}|>\mathrm{t})} \rightarrow \mu\left(\mathrm{A}_{\mathbf{c}}\right)=: \mathrm{w}(\mathbf{c})
$$

where $t^{\alpha} L(t)=\mathrm{P}(|\mathbf{X}|>t)$.

Operations on regularly-varying vectors-linear combinations

Converse?

$\mathbf{X} \sim \operatorname{RV}(\boldsymbol{\alpha}) \Leftarrow$ all linear combinations of \mathbf{X} are regularly varying?

There exist α and slowly varying fcn L (.), s.t.
(LC) $\quad \mathrm{P}\left(\mathbf{c}^{\mathrm{T}} \mathbf{X}>\mathrm{t}\right) /\left(t^{-\alpha} L(t)\right) \rightarrow \mathrm{w}(\mathbf{c})$, exists for all real-valued \mathbf{c}.

Theorem. Let \mathbf{X} be a random vector.

1. If \mathbf{X} satisfies (LC) with $\boldsymbol{\alpha}$ non-integer, then \mathbf{X} is $\operatorname{RV}(\boldsymbol{\alpha})$.
2. If $\mathbf{X}>0$ satisfies (LC) for non-negative \mathbf{c} and α is non-integer, then \mathbf{X} is $\operatorname{RV}(\boldsymbol{\alpha})$.
3. If $\mathbf{X}>0$ satisfies (LC) with $\boldsymbol{\alpha}$ an odd integer, then \mathbf{X} is $\mathrm{RV}(\boldsymbol{\alpha})$.

Operations on regularly-varying vectors-linear combinations

Idea of argument: Define the measures

$$
\mathrm{m}_{\mathrm{t}}(\bullet)=\mathrm{P}(\mathbf{X} \in \mathrm{t} \bullet) /\left(t^{\alpha} L(t)\right)
$$

- By assumption we know that for fixed $\mathbf{c}, \mathrm{m}_{\mathrm{t}}\left(\mathrm{A}_{\mathbf{c}}\right) \rightarrow \mu\left(\mathrm{A}_{\mathbf{c}}\right)$.
- $\left\{m_{t}\right\}$ is tight: For B bded away from $0, \sup _{t} m_{t}(B)<\infty$.
- Do subsequential limits of $\left\{m_{t}\right\}$ coincide? If $\mathrm{m}_{\mathrm{t}^{\prime}} \rightarrow_{\nu} \mu_{1}$ and $\mathrm{m}_{\mathrm{t}^{\prime \prime}} \rightarrow_{v} \mu_{2}$, then $\mu_{1}\left(\mathrm{~A}_{\mathbf{c}}\right)=\mu_{2}\left(\mathrm{~A}_{\mathbf{c}}\right)$ for all $\mathbf{c} \neq \mathbf{0}$.

Problem: Need $\mu_{1}=\mu_{2}$ but only have equality on $\mathrm{A}_{\mathbf{c}}$ not a π system. In general, equality need not hold (see Ex 6.1.35 in Meerschaert \& Scheffler (2001)).

Operations on regularly-varying vectors-linear combinations

Solution: Need to show agreement on a nice class of fcns, eg. $f(\mathbf{y})=\exp \{i(\mathbf{x}, \mathbf{y})\}$.
Integrability problem. $\mu_{\mathrm{j}}(t \mathbf{B}) \approx t^{-\alpha}$ for t around 0 and ∞.
Consider the measures for $\alpha \in(2 n-2,2 n)$ defined by

$$
v_{\mathrm{j}}(B)=(-1)^{n} \int_{B}\left(e^{i(1, \mathbf{y})}-e^{-i(1, \mathbf{y})}\right)^{2 n} d \mu_{\mathrm{j}}(\mathbf{y})
$$

These are finite measures satisfying:

$$
\int_{\mathbf{R}^{d}} e^{i(\mathbf{x}, \mathbf{y})} d v_{\mathrm{j}}(\mathbf{y})=(-1)^{n} \int_{\mathbf{R}^{d} k=0}^{2 n}(-1)^{k}\binom{2 n}{k} e^{i(\mathbf{x}-2 n 1+2 k 1, \mathbf{y})} d \mu_{\mathrm{j}}(\mathbf{y})
$$

However, the summands are not integrable wrt μ_{j}.

Operations on regularly-varying vectors-linear combinations

Using the identity,

$$
\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} k^{m}=0, \text { for } m=0, \ldots, 2 n-1,
$$

and setting

$$
e_{\mathrm{m}}(z)=e^{i z}-1-i z-\cdots-\frac{i^{m}}{m!} z^{m}
$$

The above integral, for $\alpha \in(2 n-1,2 n)$, can be written as

$$
\begin{aligned}
\int_{\mathbf{R}^{d}} e^{i(\mathbf{x}, \mathbf{y})} d v_{\mathrm{j}}(\mathbf{y}) & =(-1)^{n} \int_{\mathbf{R}^{d} k=0}^{2 n}(-1)^{k}\binom{2 n}{k} e_{2 n-1}(\mathbf{x}-2 n \mathbf{1}+2 k \mathbf{1}, \mathbf{y}) d \mu_{\mathrm{j}}(\mathbf{y}) \\
& =(-1)^{n} \sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} \int_{\mathbf{R}^{d}} e_{2 n-1}(\mathbf{x}-2 n \mathbf{1}+2 k \mathbf{1}, \mathbf{y}) d \mu_{\mathrm{j}}(\mathbf{y})
\end{aligned}
$$

Integrals on the right-hand side are finite and coincide.

For $\mathbf{X}>\mathbf{0}$ and $\mathbf{c}>\mathbf{0}$, use Laplace transforms.
Problem: For integer α this argument does not work.
Argument for α odd:
Let $\left(N_{1}, \ldots, N_{d}\right)$ be a vector of iid $\mathrm{N}(0,1)$ rvs indep of \mathbf{X}. Then

$$
N_{1}^{2}\left(\mathbf{c}^{2}, \mathbf{X}^{2}\right):=N_{1}^{2}\left(c_{1}^{2} X_{1}^{2}+\cdots+c_{d}^{2} X_{d}^{2}\right) \stackrel{d}{=}\left(c_{1} X_{1} N_{1}+\cdots+c_{d} X_{d} N_{d}\right)^{2}
$$

Since (\mathbf{c}, \mathbf{X}) is $R V(\boldsymbol{\alpha})$ for all $\mathbf{c} \neq \mathbf{0}$, the rhs can be shown to be RV with index $\alpha / 2$, a non-integer.

A Tauberian argument shows that if $N_{l} Y$ is RV, then so is Y. It follows, with $Y=\operatorname{sqrt}\left\{\left(\mathbf{c}^{2}, \mathbf{X}^{2}\right)\right\}$, that \mathbf{X}^{2} is regularly varying with index $\boldsymbol{\alpha} / 2$. Hence \mathbf{X} is $\operatorname{RV}(\boldsymbol{\alpha})$.

Applications of theorem

1. Kesten (1973). Under general conditions, (LC) holds with $L(t)=1$ for stochastic recurrence equations of the form

$$
\mathbf{Y}_{\mathrm{t}}=\mathbf{A}_{\mathrm{t}} \mathbf{Y}_{\mathrm{t}-1}+\mathbf{B}_{\mathrm{t}}, \quad\left(\mathbf{A}_{\mathrm{t}}, \mathbf{B}_{\mathrm{t}}\right) \sim \mathrm{IID}
$$

$\mathbf{A}_{\mathrm{t}} d \times d$ random matrices, \mathbf{B}_{t} random d-vectors.
It follows that the distr of \mathbf{Y}_{t}, and in fact all of the finite dim'l distrs of \mathbf{Y}_{t} are regularly varying.
2. GARCH processes. Since GARCH processes can be embedded in a SRE, the finite dim'l distributions of GARCH are regularly varying.

Applications of theorem

Example of $\operatorname{ARCH}(1): \quad \mathrm{X}_{\mathrm{t}}=\left(\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{t}-1}^{2}\right)^{1 / 2} \mathrm{Z}_{\mathrm{t}}, \quad\left\{\mathrm{Z}_{\mathrm{t}}\right\} \sim$ IID. α found by solving $E\left|\alpha_{1} Z^{2}\right|^{\alpha / 2}=1$.

$$
\begin{array}{l|llll}
\alpha_{1} & .312 & .577 & 1.00 & 1.57 \\
\hline \alpha & 8.00 & 4.00 & 2.00 & 1.00
\end{array}
$$

Distr of $\boldsymbol{\theta}$:
$\mathrm{P}(\boldsymbol{\theta} \in \bullet)=\mathrm{E}\left\{\|(\mathrm{B}, \mathrm{Z})\|^{\alpha} \mathrm{I}(\arg ((\mathrm{B}, \mathrm{Z})) \in \bullet)\right\} / \mathrm{E}\|(\mathrm{B}, \mathrm{Z})\|^{\alpha}$
where

$$
\mathrm{P}(\mathrm{~B}=1)=\mathrm{P}(\mathrm{~B}=-1)=.5
$$

Example: $\mathrm{ARCH}(1)$ model $\mathrm{X}_{\mathrm{t}}=\left(\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{t}-1}^{2}\right)^{1 / 2} \mathrm{Z}_{\mathrm{t}}$

Example of $\operatorname{ARCH}(1): \alpha_{0}=1, \alpha_{1}=1, \alpha=2$
Figures: plots of $\left(\mathrm{X}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}+1}\right)$ and estimated distribution of $\boldsymbol{\theta}$ for realization of 10,000 .

Point process application

Theorem Let $\left\{\mathbf{X}_{\mathrm{t}}\right\}$ be an iid sequence of random vectors satisfying 1 of the 3 conditions in the theorem. Then

$$
N_{n}:=\sum_{t=1}^{n} \varepsilon_{\mathbf{x}_{\mathrm{t}} / a_{n}} \xrightarrow{d} N:=\sum_{j=1}^{\infty} \varepsilon_{P_{i} \boldsymbol{\theta}_{i}}
$$

if and only if for every $\mathbf{c} \neq \mathbf{0}$

$$
N_{n, \mathbf{c}}:=\sum_{i=1}^{n} \varepsilon_{\mathbf{c}^{\prime} \mathbf{X}_{\mathrm{t}} / a_{n}} \xrightarrow{d} N_{\mathbf{c}}:=\sum_{j=1}^{\infty} \varepsilon_{\mathbf{c}^{\prime} P_{i} \boldsymbol{\theta}_{i}},
$$

where $\left\{a_{n}\right\}$ satisfies $n P\left(\left|\mathbf{X}_{t}\right|>a_{n}\right) \rightarrow 1$, and N is a Poisson process with intensity measure μ.

- $\left\{\mathrm{P}_{\mathrm{i}}\right\}$ are Poisson pts corresponding to the radial part (intensity measure $\alpha \mathrm{x}^{-\alpha-1}$ (dx).
- $\left\{\boldsymbol{\theta}_{\mathrm{i}}\right\}$ are iid with the spectral distribution given by the RV

Point process convergence

Theorem (Davis \& Hsing `95, Davis \& Mikosch `97). Let $\left\{\mathbf{X}_{\mathrm{t}}\right\}$ be a stationary sequence of random m-vectors. Suppose
(i) finite dimensional distributions are jointly regularly varying (let $\left(\theta_{-k}, \ldots, \theta_{k}\right)$ be the vector in $S^{(2 k+1) m-1}$ in the definition).
(ii) mixing condition $A\left(a_{n}\right)$ or strong mixing.
(iii) $\lim _{k \rightarrow \infty} \limsup _{n \rightarrow \infty} P\left(\underset{k \leq|t| \leq r_{n}}{\vee}\left|\mathbf{X}_{\mathrm{t}}\right|>a_{n} y| | \mathbf{X}_{0} \mid>a_{n} y\right)=0$.

Then

$$
\gamma=\left.\lim _{k \rightarrow \infty} E\left(\left|\theta_{0}^{(k)}\right|^{\alpha}-v_{j=1}^{k}\left|\theta_{j}^{(k)}\right|\right)_{+}|E| \theta_{0}^{(k)}\right|^{\alpha}
$$

exists. If $\gamma>0$, then

$$
N_{n}:=\sum_{t=1}^{n} \varepsilon_{\mathbf{x}_{\mathrm{t}} / a_{n}} \xrightarrow{d} N:=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \varepsilon_{P_{i} \mathbf{Q}_{\mathrm{ij}}},
$$

- $\left(\mathrm{P}_{\mathrm{i}}\right)$ are points of a Poisson process on $(0, \infty)$ with intensity function $v(d y)=\gamma \alpha y^{-\alpha-1} d y$.
- $\sum_{i=1}^{\infty} \varepsilon_{\mathbf{Q}_{\mathrm{ij}}}, \mathrm{i} \geq 1$, are iid point process with distribution Q , and

Q is the weak limit of
$\lim _{k \rightarrow \infty} E\left(\left|\theta_{0}^{(k)}\right|^{\alpha}-\stackrel{k}{v_{j}}\left|\theta_{j}^{(k)}\right|\right)_{+} I_{\bullet}\left(\sum_{|t| \leq k} \varepsilon_{\theta_{t}^{(k)}}\right) / E\left(\left|\theta_{0}^{(k)}\right|^{\alpha}-\stackrel{k}{v_{j=1}}\left|\theta_{j}^{(k)}\right|\right)_{+}$

Remarks:

1. GARCH and SV processes satisfy the conditions of the theorem.
2. Limit distribution for sample ACF follows from this theorem.

Summary for GARCH(p,q)

$\alpha \in(0,2):$

$$
\left(\hat{\rho}_{X}(h)\right)_{h=1, \ldots, m} \xrightarrow{d}\left(V_{h} / V_{0}\right)_{h=1, \ldots, m},
$$

$\alpha \in(2,4)$:

$$
\left(n^{1-2 / \alpha} \hat{\rho}_{X}(h)\right)_{h=1, \ldots, m} \xrightarrow{d} \gamma_{X}^{-1}(0)\left(V_{h}\right)_{h=1, \ldots, m} .
$$

$\alpha \in(4, \infty)$:

$$
\left(n^{1 / 2} \hat{\rho}_{X}(h)\right)_{h=1, \ldots, m} \xrightarrow{d} \gamma_{X}^{-1}(0)\left(G_{h}\right)_{h=1, \ldots, m} .
$$

Remark: Similar results hold for the sample ACF based on $\left|X_{t}\right|$ and $X_{t}{ }^{2}$.

Summary for SV

$\alpha \in(0,2): \quad(n / \ln n)^{1 / \alpha} \hat{\rho}_{X}(h) \xrightarrow{d} \frac{\left\|\sigma_{1} \sigma_{h+1}\right\|_{\alpha}}{\left\|\sigma_{1}\right\|_{\alpha}^{2}} \frac{S_{h}}{S_{0}}$.
$\alpha \in(2, \infty):$

$$
\left(n^{1 / 2} \hat{\rho}_{X}(h)\right)_{h=1, \ldots, m} \xrightarrow{d} \gamma_{X}^{-1}(0)\left(G_{h}\right)_{h=1, \ldots, m} .
$$

Sample ACF for GARCH and SV Models (1000 reps)

(a) GARCH(1,1) Model, $\mathrm{n}=10000$

(b) SV Model, $\mathrm{n}=10000$

Sample ACF for Squares of GARCH (1000 reps)

(a) $\operatorname{GARCH}(1,1)$ Model, $\mathrm{n}=10000$

b) $\operatorname{GARCH}(1,1)$ Model, $\mathrm{n}=100000$

Sample ACF for Squares of SV (1000 reps)

(c) SV Model, $\mathrm{n}=10000$

(d) SV Model, $\mathrm{n}=100000$

Wrap-up

- Regular variation is a flexible tool for modeling both dependence and tail heaviness.
- Useful for establishing point process convergence of heavy-tailed time series.
- Point process theory plays a key role in establishing convergence for a variety of statistics such as sample ACVF and ACF.

Unresolved issues related to $\mathrm{RV} \Leftrightarrow$ (LC)

- $\alpha=2 n$?
- there is an example for which $\mathbf{X}_{1}, \mathbf{X}_{2}>0$, and $\left(\mathbf{c}, \mathbf{X}_{1}\right)$ and $\left(\mathbf{c}, \mathbf{X}_{2}\right)$ have the same limits for all $\mathbf{c}>\mathbf{0}$.
- $\alpha=2 \mathrm{n}-1$ and $\mathbf{X} \ngtr 0$ (not true in general).

