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Characteristics of some financial time series

Define Xt = ln (Pt) - ln (Pt-1)   (log returns)

• heavy tailed

P(|X1| > x) ~ C x−α,     0 < α < 4.

• uncorrelated
near 0 for all lags h > 0 (MGD sequence)

• |Xt| and Xt
2 have slowly decaying autocorrelations

converge to 0 slowly as h increases.

• process exhibits ‘stochastic volatility’.
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Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)
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Sample ACF IBM (a) 1962-1981, (b) 1982-2000
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(a) ACF of IBM (1st half)
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(b) ACF of IBM (2nd half)
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Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000
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Sample ACF of squares for IBM (a) 1961-1981, (b) 1982-2000

0 10 20 30 40

Lag

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC
F

(a) ACF, Squares of IBM (1st half)
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Hill’s plot of tail index for IBM (1962-1981, 1982-2000)
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Multiplicative models for log(returns)

Basic model

Xt = ln (Pt) - ln (Pt-1)   (log returns)
= σt Zt ,

where
• {Zt} is IID with mean 0, variance 1 (if exists). (e.g. N(0,1) or

a t-distribution with ν df.)

• {σt}is the volatility process

• σt and Zt are independent.

Properties:  

• EXt = 0, Cov(Xt, Xt+h) = 0, h>0 (uncorrelated if Var(Xt) < ∞)

• conditional heteroscedastic (condition on σt).
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Multiplicative models for log(returns)-cont

Xt = σt Zt (observation eqn in state-space formulation)

Two classes of models for volatility:

(i) GARCH(p,q) process (General AutoRegressive Conditional
Heteroscedastic-observation-driven specification)

Special case: ARCH(1):

(stochastic recursion eqn)
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Multiplicative models for log(returns)-cont

GARCH(2,1):
Then                             follows the SRE given by
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Questions:
• Existence of a unique stationary soln to the SRE?
• Regular variation of the joint distributions?
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Multiplicative models for log(returns)-cont

Xt = σt Zt (observation eqn in state-space formulation)

(ii) stochastic volatility process (parameter-driven specification)
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Question:

• Joint distributions of process regularly varying if distr of Z1 is 
regularly varying? 
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Regular variation — univariate case

Definition: The random variable X is regularly varying with index
α if

P(|X|> t x)/P(|X|>t) → x−α and P(X> t)/P(|X|>t) →p,
or, equivalently, if 

P(X> t x)/P(|X|>t) → px−α and P(X< −t x)/P(|X|>t) → qx−α ,
where 0 ≤ p ≤ 1 and p+q=1.

Equivalence:
X is RV(α)  if and only if P(X ∈ t • ) /P(|X|>t)→v µ(• ) 

(→v vague convergence of measures on RR\{0}).  In this case, 

µ(dx) = (pα x−α−1 I(x>0) + qα (-x)-α−1 I(x<0)) dx
Note: µ(tA) = t-α µ(A) for every t and A bounded away from 0.
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Regular variation — univariate case

Another formulation (polar coordinates):

Define the ± 1 valued rv θθθθ, P(θθθθ = 1) = p, P(θθθθ = −1) = 1− p = q.
Then

X is RV(α)  if and only if

or

(→v vague convergence of measures on SS0= {-1,1}). 
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Equivalence:

µ is a measure on RRm which satisfies for x > 0 and A bounded away 
from 0,       

µ(xB) = x−α µ(xA).

Regular variation—multivariate case

Multivariate regular variation of X=(X1, . . . , Xm): There exists a 
random vector θθθθ    ∈ Sm-1 such that

P(|X|> t x, X/|X| ∈ • )/P(|X|>t) →v x−α P( θθθθ ∈ • )
(→v vague convergence on SSm-1, unit sphere in Rm) .  

• P( θθθθ ∈• ) is called the spectral measure
• α is the index of X.
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1. If X1> 0 and X2 > 0 are iid RV(α), then X= (X1, X2 ) is 
multivariate regularly varying with index α and spectral 
distribution 

P( θθθθ =(0,1) ) = P( θθθθ =(1,0) ) =.5 (mass on axes).

Interpretation:  Unlikely that X1 and X2 are very large at the same 
time.
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Figure: plot of
(Xt1,Xt2) for 

realization
of 10,000.



Caracas `02 17

2. If X1 = X2 > 0, then X= (X1, X2 ) is multivariate regularly 
varying with index α and spectral distribution 

P( θθθθ = (1/√2, 1/√2) ) = 1.

AR(1): Xt= .9 Xt-1 + Zt ,  {Zt}~IID symmetric stable (1.8)

±±±±(1,.9)/sqrt(1.81), W.P.  .9898
±±±±(0,1),                   W.P.  .0102{
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Figure: plot of
(Xt,Xt+1) for 
realization
of 10,000.

Distr of θ:θ:θ:θ:
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Applications of multivariate regular variation

• Domain of attraction for sums of iid random vectors 
(Rvaceva, 1962). That is, when does the partial sum

converge for some constants an?
• Spectral measure of random stable vectors.

• Domain of attraction for componentwise maxima of iid 
random vectors (Resnick, 1987). Limit behavior of

• Weak convergence of point processes with iid points.

• Solution to stochastic recurrence equations, Y t= At Yt-1 +  Bt

• Weak convergence of sample autocovariance. 
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Operations on regularly varying vectors — products

Products (Breiman 1965). Suppose X, Y > 0 are independent with
X~RV(α) and EYα+ε < ∞ for some ε > 0.  Then XY ~ RV(α) with

P(XY > x) ~ EYα P(X > x).

Multivariate version. Suppose the random vector X is regularly 
varying and A is a matrix independent of X with 

0 < E||A||α+ε < ∞. 

Then

AX is regularly varying with index α.
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Example: SV model Xt = σt Zt

Suppose Zt ~ RV(α) and

Then Zn=(Z1,…,Zn)’ is regulary varying with index α and so is
Xn= (X1,…,Xn)’ = diag(σ1,…, σn) Zn

with spectral distribution concentrated on (±±±±1,0), (0, ±±±±1).
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of 10,000.
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Operations on regularly varying vectors — linear combinations

Linear combinations:
X ~RV(α) ⇒ all linear combinations of X are regularly varying 
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i.e., there exist α and slowly varying fcn L(.), s.t.

P(cTX> t)/(t-αL(t)) →w(c), exists for all real-valued c,

where

w(tc) = t−αw(c).

Use vague convergence with Ac={y: cTy > 1}, i.e.,

where t-αL(t) = P(|X| > t).
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Operations on regularly-varying vectors-linear combinations

Converse?
X ~RV(α) ⇐ all linear combinations of X are regularly varying? 

There exist α and slowly varying fcn L(.), s.t.

(LC)           P(cTX> t)/(t-αL(t)) →w(c), exists for all real-valued c.

Theorem. Let X be a random vector.

1. If X satisfies (LC) with α non-integer, then X is RV(α).

2. If X > 0 satisfies (LC) for non-negative c and α is non-integer, 
then X is RV(α).

3. If X > 0 satisfies (LC) with α an odd integer, then X is RV(α).
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Problem: Need but only have equality on Ac not a π-
system. In general, equality need not hold (see Ex 6.1.35 in
Meerschaert & Scheffler (2001)).

• By assumption we know that for fixed c, mt(Ac) →µ(Ac).

• {mt} is tight:  For B bded away from 0, supt mt(B) < ∞.
• Do subsequential limits of {mt} coincide?

If mt' →v µ1 and mt'' →v µ2, then
for all c ≠≠≠≠ 0.

Idea of argument: Define the measures 

mt(•)= P(X∈ t•)/ (t-αL(t))

Operations on regularly-varying vectors-linear combinations

)A()A( 21 cc µ=µ

21 µ=µ

Ac
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Solution: Need to show agreement on a nice class of fcns, eg. 
f(y)=exp{i(x,y)}.

Integrability problem. µj(tB) ≈ t -α for t around 0 and ∞.

Consider the measures for α∈ (2n−2,2n) defined by

Operations on regularly-varying vectors-linear combinations
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Using the identity, 

and setting                    

Operations on regularly-varying vectors-linear combinations
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Integrals on the right-hand side are finite and coincide.  
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For X > 0 and c > 0, use Laplace transforms. 

Problem:  For integer α this argument does not work.

Argument for α odd:

Let (N1, . . ., Nd) be a vector of iid N(0,1) rvs indep of X. Then

Operations on regularly-varying vectors-linear combinations
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Since (c,X) is RV(α) for all c≠0, the rhs can be shown to be RV 
with index α/2, a non-integer.  

A Tauberian argument shows that if N1Y is RV, then so is Y.  It 
follows, with Y = sqrt{(c2,X2)}, that X2 is regularly varying with 
index α/2.  Hence X is RV(α).
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Applications of theorem

1. Kesten (1973). Under general conditions, (LC) holds with 
L(t)=1 for stochastic recurrence equations of the form

Yt= At Yt-1+ Bt, (At , Bt) ~ IID,
At  d×d random matrices, Bt random d-vectors.

It follows that the distr of Yt, and in fact all of the finite dim’l distrs 
of Yt are regularly varying.

2. GARCH processes. Since GARCH processes can be embedded 
in a SRE, the finite dim’l distributions of GARCH are regularly 
varying. 



Caracas `02 28

Applications of theorem

Example of ARCH(1):   Xt=(α0+α1 X2
t-1)1/2Zt, {Zt}~IID. 

α found by solving  E|α1 Z2|α/2 = 1.

α1 .312 .577 1.00 1.57
α 8.00 4.00 2.00 1.00

Distr of θ:θ:θ:θ:   
      

   

P(θθθθ ∈ • ) = E{||(B,Z)||α I(arg((B,Z)) ∈ • )}/ E||(B,Z)||α

where

P(B = 1) = P(B = -1) =.5
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Example: ARCH(1) model Xt=(α0+α1 X2
t-1)1/2Zt

Figures: plots of (Xt,Xt+1) and estimated distribution of θθθθ for 
realization of 10,000.

Example of ARCH(1):   α0=1, α1=1, α=2
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Point process application

Theorem Let {Xt} be an iid sequence of random vectors satisfying 
1 of the 3 conditions in the theorem. Then

if and only if for every c ≠≠≠≠ 0

where {an} satisfies nP(| Xt|> an) →1, and N is a Poisson process 
with intensity measure µ. 

• {Pi} are Poisson pts corresponding to the radial part 
(intensity measure α x−α−1 (dx).

• {θθθθi} are iid with the spectral distribution given by the RV   
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Point process convergence

Theorem (Davis & Hsing `95, Davis & Mikosch `97).  Let {Xt} be 
a stationary sequence of random m-vectors.  Suppose

(i) finite dimensional distributions are jointly regularly varying (let 
(θθθθ−k, . . . , θθθθk) be the vector in S(2k+1)m-1 in the definition).

(ii) mixing condition A (an) or strong mixing.

(iii)

Then

exists.  If γ > 0, then
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Point process convergence(cont)

• (Pi) are points of a Poisson process on (0,∞) with intensity
function ν(dy)=γαy−α−1dy.

• , i ≥ 1, are iid point process with distribution Q, and 
Q is the weak limit of 
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Remarks:

1. GARCH and SV processes satisfy the conditions of the 
theorem.

2. Limit distribution for sample ACF follows from this theorem.  
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Summary for GARCH(p,q)

α∈(0,2):

α∈(2,4):

α∈(4,∞):

Remark:  Similar results hold for the sample ACF based on |Xt| and
Xt
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Summary for SV

α∈(0,2):

α∈(2,  ∞):
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Sample ACF for GARCH and SV Models (1000 reps)
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Sample ACF for Squares of GARCH (1000 reps)

(a) GARCH(1,1) Model, n=10000
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b) GARCH(1,1) Model, n=100000
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Sample ACF for Squares of SV (1000 reps)
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Wrap-up

• Regular variation  is a flexible tool for modeling both dependence 
and tail heaviness.

• Useful for establishing point process convergence of heavy-tailed 
time series.

• Point process theory plays a key role in establishing convergence 
for a variety of statistics such as sample ACVF and ACF.

Unresolved issues related to RV⇔ (LC)

• α = 2n?

• there is an example for which X1, X2 > 0,  and (c, X1) and (c, X2)
have the same limits for all c > 0.

• α = 2n−1 and X > 0 (not true in general).


