Applications of Multivariate Regular Variation and Point
Process Theory to Financial Time Series Models

Richard A. Davis

Colorado State University

www.stat.colostate.edu/~rdavis
www.stat.colostate.edu/~rdavis/lectures/caracas02.pdf

Bojan Basrak
Eurandom

Thomas Mikosch
University of Copenhagen

Caracas 02



Outline

&= Characteristics of some financial time series
e |[BM returns
* Multiplicative models for log-returns (GARCH, SV)

%~ Regular variation

* univariate case

e multivariate case

e new characterization: X isRV < ¢’ XIisRV ?
L1 Applications of multivariate regular variation

e Stochastic recurrence equations (GARCH)

* Point process convergence

* Limit behavior of sample correlations
L1 Wrap-up

Caracas 02




Characteristics of some financial time series

Define X, =In (P) - In (P,,) (log returns)

* heavy tailed

P(X{>%x)~Cx™% O0<a<4.

* uncorrelated
P, (h) near O for all lags h >0 (MGD sequence)

* |X{| and X?> have slowly decaying autocorrelations

P (h) andp_.(h) converge to O slowly as h increases.

* process exhibits ‘stochastic volatility’.
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Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)
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Sample ACF IBM (a) 1962-1981, (b) 1982-2000
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Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000
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Sample ACF of squares for IBM (a) 1961-1981, (b) 1982-2000

(a) ACF, Squares of IBM (1st half) (b) ACF, Squares of IBM (2nd half)
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Hill’s plot of tail index for IBM (1962-1981, 1982-2000)
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Multiplicative models for log(returns)

Basic model

X.=In(P)-In(P._) (logreturns)
=0, Z,
where

e {Z,} is 11D with mean O, variance 1 (if exists). (e.g. N(0,1) or
a t-distribution with v df.)

* {o,}Is the volatility process

* 0, and Z, are independent.
Properties:
* EX, =0, Cov(X, Xy) =0, h>0 (uncorrelated if Var(X,) < )

* conditional heteroscedastic (condition on o).
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Multiplicative models for log(returns)-cont

X, =0, Z, (observation eqn in state-space formulation)

Two classes of models for volatility:

(i) GARCH(p,q) process (General AutoRegressive Conditional
Heteroscedastic-observation-driven specification)

O-t2 =0, * G1Xt2-1 L apxtz-p i Bthz-l 15200 a5 Bthz-q -
Special case: ARCH(1):
Xt = (0, +a,X¢;)Z;
=, Z{ X5, +0,Z;
=A X2 +B, (stochastic recursion eqn)

p,.(h)y=a;, if a} <1/3.
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Multiplicative models for log(returns)-cont

GARCH(2,1): X, =0,Z,, 0 =d,+a,X;, +0,X:, +B,0;, .
Then Y, =(0?, X?,)" follows the SRE given by

G'(z — alzt2-1+B1 a2 O-'(2-1 + aO
X1 Zi, 0 X{| LO

Questions:
 Existence of a unique stationary soln to the SRE?
 Reqgular variation of the joint distributions?
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Multiplicative models for log(returns)-cont

X, =0, Z, (observation eqn in state-space formulation)

(ii) stochastic volatility process (parameter-driven specification)

logo; = i(ﬂjé‘t_j, i(ﬂf <o0,{€}~ IIDN(0,0?)

j=—eo jm—o

p,.(h)=Cor(c;,0;,,)/ EZ;

Question:

» Joint distributions of process regularly varying if distr of Z, Is
regularly varying?
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Regular variation — univariate case

Definition: The random variable X is regularly varying with index
aif

P(IX|> t X)/P(|X|>t) - x @ and P(X> t)/P(|X[>t) - p,
or, equivalently, If
POX>t X)/P(IX[>t) - px @ and P(X< -t X)/P(|X[>t) - gx@,
where 0 < p <1 and p+qg=L1.

Equivalence:
XisRV(a) ifand only if P(XTte ) /P(X[>t) -, H(* )
(-, vague convergence of measures on R\{0}). In this case,
u(dx) = (pa x o2 1(x>0) + qa (-x)o1 1(x<0)) dx
Note: u(tA) =t u(A) for every t and A bounded away from O.
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Regular variation — univariate case

Another formulation (polar coordinates):

Then
X 1s RV(a) if and only if
P(X|[>tx, X/|X[dS)
P(X|>1)

-~ XP(O01S)
or

P(X|>tx, X/|X|[Je)
P(X|>1)

L, XOP(0 )

(-, vague convergence of measures on S°= {-1,1}).

Definethe x 1 valuedrv@, PO@=1)=p,P(@=-1) =1-p=q.
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Regular variation—multivariate case

Multivariate regular variation of X=(X,, ..., X, ): There exists a
random vector @ 1 S™ such that

PIX[>tx, X/|X| B )P(X|>t) -, x“P(8 5 )
(-, vague convergence on S™, unit sphere in R™) .
* P( O [d ) is called the spectral measure

e 0 IS the index of X.

Equivalence: P(X Ote)

P(X|>1)
LL IS @ measure on R™ which satisfies for x > 0 and A bounded away
from O,

v IJ'(.)

H(XB) = X" U(XA).
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Examples

1. If X;>0and X,>0are iid RV(a), then X= (X, X,) IS
multivariate regularly varying with index a and spectral
distribution

P(8=(0,1))=P(08=(1,0))=.5 (mass on axes).

Interpretation: Unlikely that X, and X, are very large at the same
time. g o

30

Figure: plot of

(X1, X}p) Tor be .
reaflzatlon <

of 10,000.

10
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2. If X; = X,>0, then X= (X, X,) is multivariate regularly
varying with index a and spectral distribution

P(06=(1V2,1V2))=1.
AR(1): X= .9 X ; + Z;, {Z}~1ID symmetric stable (1.8)

+(1,.9)5qrt(1.81), W.P. .9898

Distr of 9‘{ +(0,1), W.P. .0102
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Figure: plot of

(X, Xi4q) for
realization

of 10,000.
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Applications of multivariate regular variation

* Domain of attraction for sums of Iid random vectors
(Rvaceva, 1962). That is, when does the partial sum
n

-1
a, ) X,
t=1
converge for some constants a,?
* Spectral measure of random stable vectors.

* Domain of attraction for componentwise maxima of iid
random vectors (Resnick, 1987). Limit behavior of

n
-1
a, El X,
* Weak convergence of point processes with iid points.

* Solution to stochastic recurrence equations, Y = A, Y., + B,

* \Weak convergence of sample autocovariance.
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Operations on regularly varying vectors — products

Products (Breiman 1965). Suppose X, Y > 0 are independent with
X~RV(a) and EY®*¢ < 00 for some € >0. Then XY ~ RV(a) with

P(XY >Xx) ~EY2P(X > X).

Multivariate version. Suppose the random vector X is regularly
varying and A is a matrix independent of X with

0 < E[[A]|**® < oo,

Then
AX is regularly varying with index a.

Caracas 02
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Example: SV model X, = o, Z,

Suppose Z, ~ RV(O() and
log 7 —th € i, ZL|J <oo,{e,}~ IID N(0, 0°).

J =—00
Then Zn—(Zl,..., )" Is regulary varying with index a and so is
X.= (Xq,..., X)) =diag(oy,..., 0,) Z,
with spectral distribution concentrated on (1,0), (0, £1).

10000
!

F'gure' plot of

X, X4p) for
rea Ization

of 10,000.

5000
!

0
\

-5000
!

I I I
-5000 0 5000 10000
Caracas 02 x_1

20



Operations on regularly varying vectors — linear combinations

Linear combinations:
X ~RV(a) = all linear combinations of X are regularly varying

l.e., there exist a and slowly varying fcn L(.), s.t.
P(c™X> t)/(t9L(t)) - w(c), exists for all real-valued c,
where

w(tc) = t7ow(c).

Use vague convergence with A ={y: c'y > 1}, i.e,,

P(XOtA,)  P(c'X>t) .
toL@)  P(X|>t) HA) = w(e),

where t°L(t) = P(|X]| > t).

Caracas 02
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Operations on regularly-varying vectors-linear combinations

Converse?

X ~RV(a) LI all linear combinations of X are regularly varying?

There exist a and slowly varying fcn L(.), s.t.

(LC) P(c™X> t)/(t2L(t)) —w(c), exists for all real-valued c.

Theorem. Let X be a random vector.

1. If X satisfies (LC) with a non-integer, then X is RV(a).

2. If X > 0 satisfies (LC) for non-negative ¢ and a Is non-integer,
then X is RV(a).

3. If X > 0 satisfies (LC) with a an odd integer, then X is RV(a).

Caracas 02
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Operations on regularly-varying vectors-linear combinations

Idea of argument: Define the measures
my(+)= P(X0te)/ (t°L(1))

* By assumption we know that for fixed ¢, m(A,) — H(A,).
* {m} is tight: For B bded away from 0, sup, m,(B) < co.

* Do subsequential limits of {m.} coincide?

If m. -, 4, and m. -, M, then
My (A) =1 (A,) forallcz0.

Problem: Need W, =W, but only have equality on A, not a Te
system. In general, equality need not hold (see Ex 6.1.35 In
Meerschaert & Scheffler (2001)).
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Operations on regularly-varying vectors-linear combinations

Solution: Need to show agreement on a nice class of fcns, eg.
f(y)=exp{i(x,y)}-
Integrability problem. p;(tB) =t -* for t around 0 and co.

Consider the measures for all(2n—2,2n) defined by
0;(B) =(-1)" [(e'" —e™"¥)*dp,(y)

B
These are finite measures satisfying:

je“”’du M=) [3- 1)( j'(" Dy, (y)

RAk=0

However, the summands are not integrable wrt .

Caracas 02
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Operations on regularly-varying vectors-linear combinations

Using the identity,
2N 2n
Z(‘l)k( jkm =0, form=0,...2n-1,
=0 K

and setting -
e (2)=e"-1- |z—---—|—z
m!

The above integral, for all(2n-1,2n), can be written as

Jeu(xy)du (y) =(-D" IZ( 1) [ jZn_l(x—2n1+2k1,y)duj(y)

ROk=0

= (—1)“2(—1){ k ] 204 (x =201+ 2K1, y ) ()

Integrals on the right-hand side are finite and coincide.
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Operations on regularly-varying vectors-linear combinations

For X >0 and ¢ > 0, use Laplace transforms.
Problem: For integer a this argument does not work.

Argument for a odd:
Let (N, . .., Ny) be a vector of iid N(0,1) rvs indep of X. Then
d
le(cz,Xz) = le(Cllez +"'+C§Xdz):(cl X1 N1 +'”+Cdded)2
Since (¢,X) Is RV(a) for all ¢£0, the rhs can be shown to be RV

with index a/2, a non-integer.

A Tauberian argument shows that if N,Y is RV, thensois Y. It
follows, with Y = sqrt{(c?,X?)}, that X? is regularly varying with
Index a/2. Hence X is RV(a).
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Applications of theorem

1. Kesten (1973). Under general conditions, (LC) holds with
L(t)=1 for stochastic recurrence equations of the form

Y=A Yt B, (A, B)~IID,
A, dxd random matrices, B,random d-vectors.
It follows that the distr of Y,, and in fact all of the finite dim’l distrs
of Y, are regularly varying.

2. GARCH processes. Since GARCH processes can be embedded
In a SRE, the finite dim’l distributions of GARCH are regularly

varying.

Caracas 02
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Applications of theorem

Example of ARCH(1): X&=(ay,+a, X2 )Yz, {Z}~1ID.
a found by solving E|a, Z3|*2 = 1.

a, [.312 577 1.00 1.57
o ‘8.00 400 200 1.00

Distr of O:

P & ) =E{|I(B.2)|" I(arg((B,2)) & )}/ E||(B,2)||®
where

PB=1)=P(B=-1)=5

Caracas 02
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Example: ARCH(1) model X=(a,+a, X2 )?Z,

Example of ARCH(1): a,=1,a,=1, a=2

Figures: plots of (X,,X,;) and estimated distribution of @ for
realization of 10,000.
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Point process application

Theorem Let {X} be an iid sequence of random vectors satisfying
1 of the 3 conditions in the theorem. Then

—— gl —
Nn '_Z:E':Xt/an & N '_ngiei’
t=1 j=1
If and only If for every ¢ # 0
n 00
—— gl —
Nn,c " Z 8c'Xt/an = Nc " Z 8c'F’iOi ]

t=1 j=1

where {a.} satisfies nP(| X;/> a,) —1, and N is a Poisson process
with intensity measure L.

e {P;} are Poisson pts corresponding to the radial part
(intensity measure o x %1 (dx).

 {6.} are iid with the spectral distribution given by the RV

Caracas 02
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Point process convergence

Theorem (Davis & Hsing 95, Davis & Mikosch "97). Let {X;} be
a stationary sequence of random m-vectors. Suppose

(i) finite dimensional distributions are jointly regularly varying (let
0., ..., 6,) be the vector in SE*+Im-Lin the definition).

(if) mixing condition A (a,) or strong mixing.

(i limlimsupP( O |X, |>a,y||X,|>a,y) =0.

k<ftl<r,
Then

n— oo

K
y=limE(|6;° [ - LI 0 1), /E| 65" [

k_>00

exists. If y>0, then
n

:t;E:Xt/an _d') N ::Z ZapiQij’

Caracas 02
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Point process convergence(cont)

* (P;) are points of a Poisson process on (0,00) with intensity
function v(dy)=yoay-%dy.

o Zgoij , 1 =1, are 1id point process with distribution Q, and
Q i§ the weak limit of

K k
' (k) jo _ (k) (k) o _ (k)
lim E(16 F - 01601). 1.(X £4) /EQ6 =0 [60]),

it}<k

Remarks:

1. GARCH and SV processes satisfy the conditions of the
theorem.

2. Limit distribution for sample ACF follows from this theorem.

Caracas 02
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Summary for GARCH(p,q)

al(0,2):

(ﬁx (h))hzl,...,m DEj" (Vh /Vo)hzl,...,m’
al(2,4):

2 py ) T2 VROV )
al(#4,):.

(2B M) T VOG-

Remark: Similar results hold for the sample ACF based on | X and
X2
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Summary for SV

al(o,2): (n“n n)l/o(fjx (h) T H010h+1 o Sh |
Hcl‘i S
al(2, oo):
KNI N s vl (o (cH
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10000

(a) GARCH(1,1) Model, n
(b) SV Model, n

Sample ACF for GARCH and SV Models (1000 reps)
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10000

(a) GARCH(1,1) Model, n

Sample ACF for Squares of GARCH (1000 reps)

F §| —T
-y m m I
I m oo cwcmm —{ [
S — -
| 5| ==
| §| -—-1-
—T}- m S
T~ = ——— |

_____________

Caracas 02



Sample ACF for Squares of SV (1000 reps)

(c) SV Model, n=10000

0.0 0.05 0.10 0.15

: : ° 8 o e § o
g 8 § g 8 ° 2
L1 ‘Jri-li-i-i}i Plldd
- + 4

(d) SV Model, n=100000

0.0 0.01 0.02 0.03 0.04
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Wrap-up

* Regular variation is a flexible tool for modeling both dependence
and tail heaviness.

 Useful for establishing point process convergence of heavy-tailed
time series.

* Point process theory plays a key role in establishing convergence
for a variety of statistics such as sample ACVF and ACF.

Unresolved issues related to RV < (LC)
0 =2n?

* there is an example for which X,, X, >0, and (¢, X;) and (¢, X,)
have the same limits for all ¢ > 0.

* o =2n-1 and X # 0 (not true in general).
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