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Characteristics of Some Financial Data

* heavy tailed

P(X{>%x)~Cx% O0<a<4.

* uncorrelated
P, (h) near O for all lags h >0 (MGD sequence)

* |X{ and X? have slowly decaying autocorrelations

P (h) and p, . (h) converge to O slowly as h increases.

* process exhibits ‘stochastic volatility’.




500-daily log-returns of NZ/US exchange rate
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ACF of X(t)=log-returns of NZ/US exchange rate
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ACF of X2(t)

ACF(|X|"2)
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ACF of [X(t)|
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Plot of M,(4)/S,(4)
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Plot of M,(K)/S,(K)
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Hill’s plot of tail index
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L inear Processes

Model: X, = > ,Z, {Z}~IID, P(| Z{>x) ~ Cx ™%, 0<a<2.

Properties: T

* P(| X{>x) ~C, x™@
 Define p(h) = W,/ S0’

j=—0 =

Ifa>2
d 00

nY*(p(h) - ph)) - Z(p(h+j)+p(h-j)-2p(j)p(h)) N;, {N}~11DN
fO<a <2 =

(n/Inn)¥* (p(h) - p(h)) Z (p(h+))+p(h-1)-2p(0)p(h)) S;/ S,
{S}~1ID stable (a), S, stable (a/2)
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Background Results

Joint regular variation of X=(X,, ..., X.): There exist constants x,

and a random vector 8 [1 S™1 such that
NP(IX|>tx, , X/|X| [ ) - t2P(0[)
(vague convergence on S™1),

Mixing condition A (a,) for a stationary sequence {X,}: Let a, be
such that nP(| X,|> a,) - 1. Then A (a,) holds if there exists a
sequence of integers r,, such that r, — oo, k =[n/r,] — o and

Eexp{—zn: f (X, /an)} —LE exp{—i f (Xt/an)}] | - 0,

for every bounded , non-negative step function f on R™/{0} with
bounded support.
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Point Process Convergence

Theorem (Davis & Hsing 95, Davis & Mikosch "97). Let {X} be
a stationary sequence of random vectors. Suppose

(1) finite dimensional distributions are jointly regularly varying (let
0., ..., 0,) be the vector in S@k+m-1in the definition).

(if) mixing condition A (a,) or strong mixing.

(i limlimsupP( O |X, 1>a,y||X,]>a,y) =0.

n_ oo k<lt|<r,
Then )
— |i k K k
y=limE( 6 [* - 0165 |). /E| 6 [

exists. 1f y>0, then

Nn = Zext/an _d_) N = Z ZePiQij’
t=1 -
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Point Process Convergence (cont)

where

* (P;) are points of a Poisson process on (0,00) with intensity
function v(dy)=yay°-1dy.

* Zeqij , 1 =1, are 1id point process with distribution Q, and
Q i$the weak limit of

k - o0

it|<k

k K
limE (6" " — D167 ). 1. gy)/E(6L7 I ~ T8 ),
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Application of Point Process Convergence

Set-up: Let {X} be a stationary sequence and set
X=X(m) = (X . -+, Xiapm)-

Suppose X, satisfies the conditions of previous theorem. Then

n
=Ye I N=Y Se,

i=1  j=1

Sample ACVF and ACF:

Yx (h)—n‘lzx X..,h=0 — ACVF
Py (h) = Vx(h)/yx(h) h>1 ACF

IT EX,% < o0, then define yy(h) =EX X, and py(h)=yy(h)/ yy(0).
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Limit Behavior of Sample ACVF and ACF

(i) If al0,2), then
(nan_ZVX (h))hzo,...,m DEE’ (Vh)h:O,...,m
(ﬁx (h))hzl,...,m D]:i’ (Vh /Vo)h:l,...,m’

where

(i) If al(2,4) + additional condition, then

(a2 () =y (M) o, o T2 )
(e By () —py (M), - T YOV, Py (Vo)

S

p~=—"
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Stochastic Recurrence Equations

YEA Yt By (A, By) ~ 11D,
A, dxd random matrices, B,random d-vectors
Examples
ARCH(1): X=(agta, X2 )Yz, {Z}~1ID. Then the squares
follow an SREwithY, =X?, A =a,Z;, B, =0,Z;.
GARCH(Z’l) Xt = O-tZt’ O'f = cXO + ale-l t GZXtZ-Z +Blo-t2-1 :
Then Y, =(X?,X?,,a07)" follows the SRE given by

X0 ezt 0,z BZE| XE| ez
1 0 0 [ X, |+] O
O-t2 al GZ Bl Gt-l O

1
[
[
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Stochastic Recurrence Equations (cont)

Examples (tricks)

GARCH(1,1): X, =0,Z, o =a,+aX: +B,0;, .

Although this process does not have a 1-dimensional SRE
. 2 .

representation, the process O; does. Iterating, we have

2 2 2 2 2 2
O, =0y + alxt-l + Blo-t-l = U, + alo-t-lzt-l + Blo-t-l
— 2 2
- (alzt-l + Bl)ct-l + 0.
Bilinear(1): X=aX_+bX_Z,+7Z, {Z}~1ID

=Yt 4,
Y, =AY, +B, A=at+bZ, B=AZ
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Stochastic Recurrence Equations (cont)

YEA Yt By (A, B) ~1ID
Existence of stationary solution
*Eln*|| A, <o
* EIn*|| By|| < o0

*infntEIn||A,... A ||=y<O0 (y-top Lyapunov exponent)
Ex. (d=1) EIn|A, <O0.
Strong mixing
If E||A||f < oo, E|B,|t <o for some € >0, then the SRE (Y,)

IS geometrically ergodic = strong mixing with geometric rate
(Meyn and Tweedie 93).
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Stochastic Recurrence Equations (cont)

Reqgular variation of the marqginal distribution (Kesten)

Assume A and B have non-negative entries and
°E||A]|lE<1forsomee>0
* A, has no zero rows a.s.
* W.P. 1, {Inp(A,... A,):isdense in R for some n, A,... A, >0}

* There exists a K, > 0 such that EJ|A[ In”

AH <o and

Then there exists a K, (0, K,] such that Y is regularly varying with
Index K;. (Alsoneed E|B[*< .)
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Application to GARCH

Proposition: Let (Y,) be the soln to the SRE based on the squares of
a GARCH model. Assume

* Top Lyapunov exponent y < 0. (See Bougerol and Picard 92)

* Z has a positive density on (—oo, o) with all moments finite or
E|Z|'= oo, for all h = hyand E|Z|"< oo for all h <h,.

* Not all the GARCH parameters vanish.

Then (YY) Is strongly mixing with geometric rate and all finite
dimensional distributions are regularly varying with index K;.

Corollary: The corresponding GARCH process is strongly mixing
and has all finite dimensional distributions that are regularly
varying with index K = 2K;.
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Application to GARCH (cont)

Remarks:

1. Kesten’s result applied to an iterate of Y., 1.e., Y, = ,&tY(t_l)m + I§t

2. Determination of K is difficult. Explicit expressions only known

In two(?) cases.
* ARCH(1): Ela Z3«2=1.

o | 312 577 100 157
K | 8.00 4.00 2.00 1.00

* GARCH(1,1): E|la Z2+ B|¥2 =1 (Mikosch and St->ric->)
* For IGARCH (a + =1), then Kk = 2 = infinite variance.

* Can estimate kK empirically by replacing expectations with
sample moments.
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Summary for GARCH(p,q)

K[(0D,2):

KI(2,4):

K[(4,00):

ps=—""

(f)x (h))hzl,...,m 1% (Vh /Vo)hzl,...,m’

By () T VO

(2B () o T VHO) G oot o

Remark: Similar results hold for the sample ACF based on | X and

X2
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Realization of GARCH Process

Fitted GARCH(1,1) model for NZ-USA exchange:

X(®)

X, =0,Z,, o’=(6.70)107 +.1519X?, +.7720%,

(Z,) ~ 11D t-distr with 5 df. K is approximately 3.8
Realization of fitted GARCH

I I I I I
0 100 200 300 400 500
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ACF of Fitted GARCH(1,1) Process

ACF

1.0

0.8

0.6

0.4

0.2

0.0

ACF of squares of realization 1

20 30 40 50

Lag

ACF

1.0

0.8

0.6

0.4

0.2

0.0

ACF of squares of realization 2

40 50

25




ACF of 2 realizations of an (ARCH)?: X,=(.001+.7 X, ) Z,
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ACF of 2 realizations of an JARCH|: X,=(.001+ X, )¥?Z,
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Stochastic Volatility Models

SVM: X&=0,Z,
° (Z,) ~ 1D with mean O (if it exists)

* (oy) Is a stationary process (2 log o, is a linear process) given
by

logo? = itpjet_j, itpf <o, (g,) ~ 11D N(0, %)

j:—oo j:—oo

Heavy tailedness: Assume Z, has Pareto tails with index a, I.e.,
P(1Z|>2)~Cz %= P(| X|>2z)~CEc*z™

Then if al(0,2) |,

(n/Inn)"*p, (h) (% 0.0,

O(Sh
. S

o]




Stochastic Volatility Models (cont)

Other powers:
1. Absolute values: al(1,2),
E|X;| = Elo\|E|Z|, E|X;Xun|= (ElO; O NEIZ,|E|Z. ])

COV(Xt’ Xt+h) - COV(Gt’ O-t+h)(E|Z |)2
Cor(X,, Xpup) = Cor(ay, 0p.p)(E|Z )%/ EZ2

=0 (?)
We obtain
. n(ninn) ™ (§,(h) =y () 2 [0,0,.4] S,
(n/Inn)"“p, (h) O H010h+21 a S
Ho-l‘a SO
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Stochastic Volatility Models (cont)

2. Higher order: al(0,2)

The squares are again a SV process and the results of the previous
proposition apply. Namely,

a/2 “~h

(n/Inn)f"*p. . (h) O3

o

al/2
In particular,

p..(h)E O
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Stochastic Volatility Models (cont)

log X72(t)

(log X?) - mean for NZ-USA exchange rates
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Stochastic Volatility Models (cont)

ACF/PACF for (log X?) suggests ARMA (1,1) model:
pu=-11.5403, Y,=.9646Y,, + ¢ —.8709 g, , (¢)WN(0,4.6653)

10 ACF 1.00 PACF

80 model .80 model

60 sample 60 sample

40 40

290 \H WM“ N - 'ZOJM L 11

og Al | W A Al o T 09 LTI il AN . . [ I
-.20] -.20

-40 -40
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-80 -.80

) 20 25 30 3 40 00 s 10 18 20 25 3 3 40
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Stochastic Volatility Models (cont)

The ARMA (1,1) model for log X2 leads to the SV model

X= 0y Z,
with

2Ino,=-11.5403 + v, + &,
v,=.9646 v, ; +V,, (YOWN(O0,.07253)
(g) LMWN(0,4.2432).
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Stochastic Volatility Models (cont)

Simulation of SVM model: Took g, to be distributed according to

log of at random variable with 3 df (suitable normalized).
ACF: abs(realization)
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Stochastic Volatility Models (cont)
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Linear Processes With Nonlinear Behavior

Allpass ARMA

Causal AR polynomial: @@)=1-@z - ... - @z", @(z) # 0 for |z|<1.

Define MA polynomial:
0@2) =-P o) @,=—-(2P —@zF* —... - @) @,

# 0 for |z|=1 (MA polynomial is non-invertible).

Model for data (X)) : @B) X,=0(B) Z,, (£, ~ IID (non-Gaussian)

Properties:
* uncorrelated (flat spectrum) but data are dependent

* squares and absolute values are correlated

e X, has heavy tails if noise is heavy-tailed.
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Linear Processes With Nonlinear Behavior (cont)

X(t)

Realization of an allpass model of order 2 (t3 noise )
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Linear Processes With Nonlinear Behavior (cont)
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Linear Processes With Nonlinear Behavior (cont)

Allpass model fitted to NZ-USA exchange rates :

Order = 6, @,=.852, ¢,=.616, @,=. 952, ¢,=.098, @.=-.158, @;=-.066

ACE: residuals ACF: (residuals)?

||,|| o |||I|I L1 |
2 : : :
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Sample ACF of squares for S&P (a) 1961-1976, (b) 1977-1993

(a) ACF, Squares of S&P (1st half) (b) ACF, Squares of S&P (2nd half)
3) 3]
< <
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8 8 NIRRT T
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Sample ACF for GARCH and SV Models (1000 reps)

10000

(a) GARCH(1,1) Model, n

10000

(b) SV Model, n
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Sample ACF for Squares of GARCH and SV (1000 reps)

(a) GARCH(1,1) Model, n=10000
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Sample ACF for Squares of GARCH and SV (1000 reps)

(c) GARCH(1,1) Model, n=100000
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(d) SV Model, n=100000
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