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Example: Daily Asthma Presentations (1990:1993)
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Example: Monthly Polio Counts in USA (Zeger 1988)

Counts

14

12

10

| -/\/mmm\ -- /\/

1970 1972 1974 1976 1978 1980 1982 1984

Year




Notation and Setup

Countdata: Y, ..., Y,

Regression (explanatory) variable: x;

Model: Distribution of the Y, given X, and a stochastic process v, are indep
Poisson distributed with mean

M = exp(x" B + V).

The distribution of the stochastic process v, may depend on a vector of
parameters'y.

Note: v,= 0 corresponds to standard Poisson regression model.

Primary objective: Inference about f3.




Example: Polio (cont)

Regression function:
X,'=(1, /1000, cos(2mt’/12), sin(21t’/12), cos(21¢"/6), sin(21t’/6))
where t"=(t-73).

Summary of various models fits to Polio data:

Study Trend([3) SE(PB) t-ratio
GLM Estimate -4.80 1.40 -3.43
Zeger (1988) -4.35 2.68 -1.62
Chan and Ledolter (1995) -4.62 1.38 -3.35
Kuk&Chen (1996) MCNR  -3.79 2.95 -1.28
Jorgensen et al (1995) -1.64 018 -91.1

Fahrmeir and Tutz (1994)  -3.33 2.00 -1.67




Linear Regression Model-A Review

Suppose {Y,} follows the linear model with time series errors given by
Yi=x'B+W,,

where {W,} is a stationary (ARMA) time series.

® Estimate 3 by ordinary least squares (OLS).

® OLS estimate has same asymptotic efficiency as MLE.

® Asymptotic covariance matrix of é\OLS depends on ARMA parameters.

* |dentify and estimate ARMA parameters using the estimated residuals,
N\
W= Y- X Bo s

® Re-estimate 3 and ARMA parameters using full MLE.




GLM Estimation

Model: Y| v,, X, OP(exp(x," B + v,)).
GLM log-likelihood:

1(B) = —i eXP +Zn:thtTB - |ogm Yt!}

(Likelihood ignores presence of the latent process.)

Assumptions on regressors.

QI,n = n_lthXtTp't - Q|(B)’
t=1

Qll,n = n_lzzxtxzutusye(s _t) - QII (B)’

t=1 s=1




Theorem for GLM Estimates

N\

Theorem (Davis, Dunsmuir, Wang 00). Let B be the GLM estimate of 3
obtained by maximizing I() for the Poisson regression model with a stationary
lognormal latent process. Then

~ d
n"*(B-P) - NO.Q"+Q'Q, Q)
Notes:

1. ntQ1is the asymptotic cov matrix from a std GLM analysis.

2. n'1Q1Q, Q,is the additional contribution due to the presence of the latent
process.

3. Result also valid for more general latent processes (mixing, etc),

4. Can have x, depend on the sample size n.




When does CLT Apply?

Conditions on the regressors hold for:

1. Trend functions.
X = f(t/n)

where f is a continuous function on [0,1]. In this case,

n 1
n-lzxtxjut S jf(t)fT(t)ef OB,

I TUINTRACI jf(t)f (O P>y, ().

t=1 s=1

Remark. X, = (1, t/n) corresponds to linear regression and works. However X, =

(1, t) does not produce consistent estimates say if the true slope is negative.
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When does CLT apply? (cont)

2. Harmonic functions to specify annual or weekly effects, e.g.,
X, = COS(21t/7)

3. Stationary process. (e.g. seasonally adjusted temperature series.)
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Application to Model for Polio Data

Use the same regression function as before. Assume the {v,}
follows a log-normal AR(1), where

(vi+0%/2) = (V.1 + 04/2) +n,, {nJ~11D N(0, o4(1-¢)),
with @ =.82,0%=.57.

Zeger GLM Fit  Asym Simulation
/\

N\ N\
B s.e.| PBgm Se | se | Bgm S

Intercept 0.17 0.13| .207 .075 | .205 | .150 .213
Trend(x103) -4.35 268 | -4.80 1.40 | 412 | -4.89 3.94
cos(2rt/12) | -0.11 0.16| -0.15 .097 | .157 | -.145 .144
sin(2rt/12) | -.048 0.17| -0.53 .109 | .168 | -.531 .168
cos(21/6) 020 0.14| .169 .098 | .122 | .16/ .123
sin(2Tt/6) -041 0.14 | -432 .101 | .125 | -.440 .125

e
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Polio Data With Estimated Regression Function

Counts

14

12

10

1970 1972 1974 1976 1978 1980 1982

Year

1984

13




Model for the Mean Function L,

Parameter-driven specification: (Assume Y,| M, is Poisson(y,))

log pe=x"B + v ,
where {v, } is a stationary Gaussian process.

e.d. (AR(1) process)
(v, + 0%/12) = @(v., + 0%/12) + &, , {& }~1ID N(O, o?(1-¢)).

Advantages:
* properties of model (ergodicity and mixing) easy to derive.
* interpretability of regression parameters
E(Y,) = exp(x," B )Eexp(v,) =exp(x,"B), if Eexp(v) =1.

Disadvantages:

e estimation is difficult-likelihood function not easily calculated (MCEM,
Importance sampling, estimating eqgns).

* model building can be laborious
* prediction is hard.
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Model for the Mean Function L,

Observation-driven specification: (Assume Y,| M, is Poisson(L))

log = x,"B +v; ,
where v, is a function of past observations Y, s <t.
€.0. Vi =YYt HYp Yy
Advantages:
* prediction is straightforward (at least one lead-time ahead).

* likelihood easy to calculate

Disadvantages:

* stability behavior, such as stationarity and ergodicty, is difficult to derive.
* x," B isnot easily interpretable. In the special case above,

E(Y,) =exp(X,"B)EeXp(y, Y1 + ... +V,Yy,)
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New Observation Driven Model

Two components in the specification of v, (see also Shephard (1994)).
1. Uncorrelated (martingale difference sequence)
For A >0, define
€ = (Yt _/Ut)/:ut}‘
(Specification of A will be described later.)

2. Form a linear process driven by the MGD sequence {e;}
T
log 1, =x; B+v;,
Vi = Zwiet—i'
—

Since the conditional mean L, is based on the whole past, the model is no longer
Markov. Nevertheless, this specification could lead to stationary solutions,
although the stability theory appears difficult.

where
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Properties of the New Model

e, =(Y =) 1, log p =x{ B+V,, v, :iwiet—i'
i=1
1. E(e;|Fy) =0
2. E(ef) = E(U*2)
=1ifA=.5
3. Set,
W, =log i, =x! B+v,,

SO that )
E(W,) = XIIB and Var(Wt) = ZwizE(:u::iZA)
i=1

=Sy (if A= 5)
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Properties continued

4. COV(Wt ! Wt+h) = ZwinhE(ﬂ:—-im)

It follows that {W,} has properties similar to the latent process specification:
W, =x; B+ Z‘/’iet—i
i=1
which, by using the results for the latent process case and assuming the linear
process part is nearly Gaussian, we obtain
Tp, e
E(eWt) — E(ext B Ziw@t )

~ extT,B+Var(vt)/2

XtTﬁ+§ll,Ui2/2
- e i=1 :

It follows that the intercept term can be adjusted in order for E(j,) to be
Interpretable as exp(x,").
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Existence and uniquess of a stationary distr in the simple case.

Consider the simplest form of the model with A = 1, given by

W, = B+ (Y, —e")e™,

Theorem: The Markov process {W,} has a unique stationary distribution.
Idea of proof:

* State space is [B—Y,) (if y>0) and (- oo, B=y] (if y<0).

e Satisfies Doeblin’s condition:

There exists a prob measure v such for somem>1, € >0, and o >0,

V(A) > ¢ implies PM(x,A) = .
* Chain is strongly aperiodic.

* |t follows that the chain {W,} is uniformly ergodic (Thm 16.0.2 (iv) in
Meyn and Tweedie (1993))
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Existence of Stationary Distr in Case .5 < A <1.

Consider the process
W, = B+ p(Y,_, —e")e ™,
Propostion: The Markov process {W,} has at least one stationary distribution.
Idea of proof:
* {W.} is weak Feller.

* {W,} is bounded in probability on average, i.e., for each x, the sequence
ik i _ .
{k*> . P'(x0 k=12,.} istight
* There exists at least one stationary distribution (Thm 12.0.1 in M&T)

Lemma: If a MC {X} is weak Feller and {P(x, ), xUX} is tight, then {X} is
bounded in probability on average and hence has a stationary distribution.

Note: For our case, we can show tightness of {P(X, -), x[OX} using a Markov
style inequality.

20




Uniqueness of Stationary Distr in Case .5 < A <17?

Theorem (M&T "93): If the Markov process {X} is an e-chain which is bounded
In probability on average, then there exists a unique stationary distribution if and
only if there exists a reachable point x".

For the process W, =B +y(Y,, —e")e™, we have
e {W,} is bounded in probability uniformly over the state space.

* {W,} has a reachable point x™ that is a zero of the equation
0= x"+yexp{(1-A) X'}
* e-chain?

Reachable point: x™ is a reachable point if for every open set O containing X,

o0

anlpn(X,O) >0 forall x.

e-chain: For every continuous f with compact support, the sequence of functions
{P"f, n=1,...} is equicontinuous, on compact sets.
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Modeling Framework for Stock Prices (Rydberg & Shephard)

Consider the model of a price of an asset at time t given by
N (t)

p(t) = p(0) + > Z;,
i=1
where
* N(t) is the number of trades up to time t

* Z. is the price change of the i"" transaction.

Then for a fixed time period A,
N ((t+1)A-)

p = p((t+D)A-) - p(d) = > Z; ,
i=N (tA)+1
denotes the rate of return on the investment during the t time interval and

N, := N((t +1)A-) - N(tA)

denotes the number of trades in [t A, (t+1) A).
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The Bin Model for the Number of Trades

Bin(p,q) model: The distribution of the number of trades N, in [t A, (t+1) A),
conditional on information up to time t A— is Poisson with mean

P q
A=a+> yN_ +>3A_,a200<vy,,3, <l
j=1 j=1
Proposition: For the Bin(1,1) model,

Ay =a+yN +0A

there exists a unique stationary solution.
Idea of proof:
* {A} Is an e-chain.
* {A.} Is bounded in probability on average.

* Possesses a reachable point ( x®=a/(1-y))
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A Simple GLARMA Model for Price Activity (R&S)

Model for price change: The price change Z; of the i'" transaction has the
following components:

* A, activity {0,1}
* D, direction {-1,1}
°S;size{1,2,3,...}

Rydberg and Shephard consider a model for these components. An autologistic
model is used for A, .

Simple GLARMA model for price activity: A, is a Bernoulli rv representing a
price change at the t™ transaction. Assume A, given F,, is Bernoulli(p,), i.e.,

PA=1[F)=p=1-P(A=0]F),

where

oU; —
=_°© —— and U, = A1~ Py .
(1+ € t) \/pt-l(l_ pt-l)

Py
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Existence of Stationary for the Simple GLARMA Model .

Consider the process
U = A~ Pu

t \/pt-l(l_ pt-l) ’
where A, ; is Bernoulli with parameter p, =e® (1+e®)™

Propostion: The Markov process {U,} has a unique stationary distribution.

Idea of proof:
* {U,} is an e-chain.
* {U,} is bounded in probability on uniformly over the state space

* Possesses a reachable point ( xHis soln to x+e/2=0 )

25




Estimation for Poisson Observation Driven Model

Let d= (BT, y")T be the parameter vector for the model (y corresponds to the
parameters in the linear process part).

Model: Y,| W, is Poisson(p,)
logp, =x;B+Vv,,

Vi = Zl-l"iet—i'
i1

Log-likelihood:
L(3) = D (Y, W,(0) -e™'?),
t=1

where

Wi (3) =x,B+ Y ¢ (8)e.s

First and second derivatives of the likelihood can easily be computed recursively
and Newton-Raphson methods are then implementable. For example,

aL(5) o)y OW,(9)
Zl(Yt ) 5

and the term oW, (9)/0d can be computed recursively.
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Asymptotic Results for MLE

Define the array of random variables by
W (2)y oW, (9)

T = n_llz(Yt —€ LY

Properties of {n}:
*{n,.} Is a martingale difference sequence.
N E(11h | F) [ V(3).
t=1

e Y E@ (0,17 €) | Fy) OE O,
t=1

Using a MG central limit theorem, it “follows” that

n2(0-9) 2 N,V ™),

where v = |imEZeWt("’c‘)Wt(é)c?WtT (9).

n-*° N5
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Simulation Results

Model 1: W, =B, +y(Y,_, —e")e™, n =500, nreps =5000

Parameter Mean SD SD(from like)
B, = 1.50 1.499 0.0263 0.0265
y = 0.25 0.249 0.0403 0.0408
B, = 1.50 1.499 0.0366 0.0364
y = 0.75 0.750 0.0218 0.0218
B, =3.00 3.000 0.0125 0.0125
y = 0.25 0.249 0.0431 0.0430
B, =3.00 3.000 0.0175 0.0174
vy = 0.75 0.7/750 0.0270 0.0271
Model 2: W, =B, +B,t/500 + y(Y,, —e")e™, n =500, nreps = 5000
B,=1.00 1.000 0.0286 0.0284
B, =0.50 0.500 0.0035 0.0034
y = 0.25 0.248 0.0420 0.0426
B, =1.50 0.998 0.0795 0.0805
B,=-.15 -150 0.0171 0.0173
y = 0.25 0.247 0.0337 0.0339
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Application to Sydney Asthma Count Data

Data: Y, ..., Yy daily asthma presentations in a Campbelltown hospital.

Preliminary analysis identified.
® no upward or downward trend

® a triple peaked annual cycle modelled by pairs of the form
cos(21kt/365), sin(21kt/365), k=1,2,3,4.

® day of the week effect modelled by separate indicator
variables for Sundays and Monday (increase in admittance on
these days compared to Tues-Sat).

® Of the meteorological variables (max/min temp, humidity)
and pollution variables (ozone, NO, NO,), only humidity at
lags of 12-20 days appears to have an association.
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Model for Asthma Data

Trend function.

X,"=(1, S;, M,, cos(21t/365), sin(21t/365), cos(41t/365), sin(41t/365),
cos(611t/365), sin(611t/365), cos(81t/365), sin(8T1t/365))

(No humidity used in this model.)

Model for {v}.

v, = (L/@(B) — 1) e, , where @(B) is the AR(10) with autoregressive
polynomial

®B)=1-@B - @B°- @B’ - @BY.

Note: the v, can be computed recursively.
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Results for Asthma Data

Term Est SE
Intercept 0.533 0.029
Sunday effect 0.240 0.054
Monday effect | 0.249 0.054
cos(2t/365) -0.162 0.036
sin(21t/365) 0.362 0.035
cos(4t/365) -0.067 0.036
sin(41t/365) 0.023 0.034
cos(67tt/365) -0.083 0.035
sin(6711t/365) 0.009 0.035
cos(81it/365) -0.157 0.034
sin(81t/365) -0.062 0.034
0} 0.053 0.024
0 0.061 0.024
@, 0.078 0.024
O 0.053 0.024
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Asthma Data w/ Deterministic Part of Mean Fcn
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Asthma Data; Deterministic Part + AR In Pearson Resid
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Summary Remarks

The observation model for the Poisson counts proposed here is

1. Easily interpretable on the linear predictor scale and on the scale of the mean

L, with the regression parameters directly interpretable as the amount by which
the mean of the count process at time t will change for a unit change in the
regressor variable.

2. An approximately unbiased plot of the |, can be generated by
i1, = exp(W, = 5y 7).
i=1
3. Is easy to predict with.

4. Provides a mechanism for adjusting the inference about the regression
parameter (3 for a form of serial dependence.

5. Generalizes to ARMA type lag structure.

6. Estimation (approx MLE) is easy to carry out.
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