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Introduction

Structural breaks:
Kitagawa and Akaike (1978)
e fitting locally stationary autoregressive models using AIC

« computations facilitated by the use of the Householder
transformation

Davis, Huang, and Yao (1995)

* likelihood ratio test for testing a change in the parameters
and/or order of an AR process.

Kitagawa, Takanami, and Matsumoto (2001)

e signal extraction in seismology-estimate the arrival time of
a seismic signal.

Ombao, Raz, von Sachs, and Malow (2001)

 orthogonal complex-valued transforms that are localized
In time and frequency- smooth localized complex
exponential (SLEX) transform.

 applications to EEG time series and speech data.
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Introduction (cont)

Locally stationary:
Dahlhaus (1997, 2000,...)
* locally stationary processes
e estimation
Adak (1998)

* piecewise stationary

 applications to seismology and biomedical signal
processing

MDL and coding theory:

Lee (2001, 2002)
« estimation of discontinuous regression functions

Hansen and Yu (2001)
* model selection
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Introduction (cont)

Time Series: y,, ..., Y,

Piecewise AR model:

Yt:Vj +(|)j1Yt_1+-o-+(|)jijt_pj+Gj8t, if T, <t<Ty,

where tp=1<1,<...<1,,<t,=n+1 and {g} is 1ID(0,1).
Goal: Estimate

m = number of segments
t; = location of j break point
v; = level in j" epoch

p, = order of AR process in j"" epoch
(90 ) = AR coefficients in | epoch
o, = scale in j" epoch
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Motivation for using piecewise AR models:

Piecewise AR is a special case of a piecewise stationary process (see
Adak 1998),

Vo, =YW, (),
j=1

where {Y/'},j=1,...,m is asequence of stationary processes. lItis
argued in Ombao et al. (2001), that if {Y, .} is a locally stationary
process (in the sense of Dahlhaus), then there exists a piecewise
stationary process {Vt,n} with

m —oc withm /n—0, as n — oo,

that approximates {Y, .} (in average mean square).

Roughly speaking: {Y,} is a locally stationary process if it has a time-
varying spectrum that is approximately |A(t/n,o)|? , where A(u,o) is a
continuous function in u.
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Example--Monthly Deaths & Serious Injuries, UK

Data: y, = number of monthly deaths and serious injuries in UK, Jan
‘75 —-Dec 84, (t=1,...,120)
Remark: Seat belt legislation introduced in Feb 83 (t = 99).

Q Q

2q00 2%00
o
o
o

1800
©

@ ®

Counts
1600

@& Q)

&

1400

(VJV)

1200
|

1976 1978 1980 1982 1984

Year

St. Louis 10/04



Example -- Monthly Deaths & Serious Injuries, UK (cont)

Data: X, = number of monthly deaths and serious injuries in UK,
differenced at lag 12; Jan 75— Dec 84, (t=13,..., 120)
Remark: Seat belt legislation introduced in Feb 83 (t = 99).
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Model: b=-373.4, {NJ~AR(13).
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Y, = a+bf4(_t) +W,,
0, iIf1<t<98,
f)=<. .
1, if 98 <t <120.
Xt :Yt _Yt—12
=bg(t) + N,
1 1f 99 <t <110,
g(t) = .
0, otherwise.



Model Selection Using Minimum Description Length

Basics of MDL.:

Choose the model which maximizes the compression of the data or,
equivalently, select the model that minimizes the code length of the
data (i.e., amount of memory required to encode the data).

M = class of operating models fory = (y;, . . ., Y,)

L-(y) = code length of y relative to F e M
Typically, this term can be decomposed into two pieces (two-part code),

L (y) = L(Fly) +L(&|F),
where

L(I:'|y) = code length of the fitted model for F

LEIF) = code length of the residuals based on the fitted model
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lllustration Using a Simple Regression Model (see T. Lee 01)

Encoding the data: (X.,Y), . - -+ (XY,

1. “Nalve” case
L("naive') = L(x,...,x,) +L(Y,....Y,)
= L) +---+L(x) +L(y) +---+L(y,)

2. Linear model; supposey,; =a, + a;%,1=1,...,n. Then

L("p=1") = L%, %) +L(3,a)
=L0¢) +---+ LX) +L(a) +L(a)
3. Linear model with noise; suppose y; = a, + a;x;+ ¢, 1 =1, ..., n, where
{e}~11D N(0,62). Then
L("p=1") =L(x) +--+L(x,) + L&) +L(E) + L) +L(E,...2,18,,8,67)

A
If A<L(y)+...+L(y,), then “p=1" encoding scheme dominates the “naive” scheme.
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Model Selection Using Minimum Description Length (cont)

Applied to the segmented AR model:

Yt:Vj +(|)j1Yt_1+-o-+(|)jijt_pj+Gj8t, if T, <t<1y,

First term L(I:'|y) CLetn =1 -1, w;=(y; ,(I)jl,...,d)jpj,csj)
denote the length of the j* segment and the parameter vector of
the j" AR process, respectively. Then

L(FIY) = L(M)+ Lt ., T) + LRy P) + L | )+ 4 L(G, | )

= L(M)+ L(ye ) + LRy )+ LOT [ Y) 4+ LG, | )
Encoding:
integer | : log, | bits (if | unbounded)
log, |, bits (if | bounded by I )

N

MLE 6 : “2log,N bits (where N = number of observations used to
compute 0 ; Rissanen (1989))
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SO, p,+2

2

L(I:'|y):IogszrmIogzn+Zlog2 JES log, n,
j=1 j=1

Second term L(élﬁ) . Using Shannon’s classical results on
information theory, Rissanen demonstrates that the code length of €
can be approximated by the negative of the log-likelihood of the
fitted model, i.e., by

N N

L(e|F)~ 2y
For fixed values of m, (t,,py),. - -, (t,Py), We define the MDL as

MDL(m, (z;, py), - (s P))

m m
=log,m+mlog,n+ > log, p; +)
j=1 j=1

(log,(275%) +1)

pj+2
2

The strategy is to find the best segmentation that minimizes

m n R
log, n; +ZE’I092(2M5?)+2
j=1

MDL(m,t,Pq,---, TPm)- 10 Speed things up, we use Y-W estimates of
AR parameters.

St. Louis 10/04
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Optimization Using Genetic Algorithms

Basics of GA:
Class of optimization algorithms that mimic natural evolution.

e Start with an initial set of chromosomes, or population, of
possible solutions to the optimization problem.

e Parent chromosomes are randomly selected (proportional to
the rank of their objective function values), and produce
offspring using crossover or mutation operations.

« After a sufficient number of offspring are produced to form a
second generation, the process then restarts to produce a third
generation.

e Based on Darwin’s theory of natural selection, the process
should produce future generations that give a smaller (or larger)

objective function.
St. Louis 10/04 13



Application to Structural Breaks—(cont)

Genetic Algorithm: Chromosome consists of n genes, each taking
the value of -1 (no break) or p (order of AR process). Use natural
selection to find a near optimal solution.

Map the break points with a chromosome c via

(m,(Tl, pl)""(rm’ pm)) > C:(Sl""’sn)’

where
{—L if no break pointatt,
t ju—

p;, if break pointat timet =1, and AR order is p;.
For example,

c=(2 -1,-1,-1,-1,0,-1, -1,-1,-1,0, -1, -1, -1, 3, -1, -1, -1, -1,-1)
t 1 6 11 15

would correspond to a process as follows:

AR(2), t=1:5; AR(0), t=6:10; AR(0), t=11:14; AR(3), t=15:20

St. Louis 10/04
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Implementation of Genetic Algorithm—(cont)

Generation 0: Start with L (200) randomly generated chromosomes,
c,, . . .,C,_ Wwith associated MDL values, MDL(c,), . . ., MDL(c)).

Generation 1: A new child in the next generation is formed from the
chromosomes c,, . . ., ¢, of the previous generation as follows:

» with probability =, crossover occurs.

= two parent chromosomes c; and ¢c; are selected at random with
probabilities proportional to the ranks of MDL(c)).

= k' gene of child is 5, = &, w.p. %2 and §;, w.p. %2
» with probability 1- =, mutation occurs.
= a parent chromosome c¢; is selected

= k' gene of child is §, = §; W.p. my ; =1 w.p. myand p w.p. 1- m;—,.

St. Louis 10/04 15



Implementation of Genetic Algorithm—(cont)

Execution of GA: Run GA until convergence or until a maximum
number of generations has been reached. .

Various Strategies:

» include the top ten chromosomes from last generation in next
generation.

» use multiple islands, in which populations run independently,
and then allow migration after a fixed number of generations.
This implementation is amenable to parallel computing.

St. Louis 10/04
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Simulation Examples-based on Ombao et al. (2001) test cases

1. Piecewise stationary with dyadic structure: Consider a time
series following the model,

-

9Y, | +e, If 1<t<513
Y, =<1.69Y,,-.81LY, ,+¢, If 513<t<769
1.32Y_, —.8IY_, +g, If 769<t<1024

where {g} ~ [ID N(0,1).
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[
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1. Piecewise stat (cont)

Implementation: Start with NI =50 islands, each with population size L = 200.

After every Mi = 5 generations, allow migration.

Replace worst 2 in Island 2
with best 2 from Island 4.

Stopping rule: Stop when the max
MDL does not change for 10
consecutive migrations or after
100 migrations.

3%2

4

oy

Span configuration for model selection: Max AR order K = 10,

P 0 1 2 3 4 5 6 /7-10  11-20
m, 10 10 12 14 16 18 20 25 50
T, 1/21 1/21 1/21 1/21 1/21 1/21 1/21 1/21 1/21

St. Louis 10/04
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1. Piecewise stat (cont)

GA results: 3 pieces breaks at 1,=513; 1,=769. Total run time 16.31 secs
Fitted model: b, b, o?
1-512:| .857 9945
513-768:| 1.68 -0.801 1.1134
769-1024:| 1.36 -0.801 1.1300

True Model Fitted Model
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1. Piecewise stat (cont)

Simulation: 200 replicates of time series of length 1024 were
generated. (SLEX results from Ombao et al.)

n 32 ~
ASE =n™(1/33)> > {log f (t/n,e;)—log f (t/n,0,)}, o, =2nj/64.
t=1 j=0
# of Auto-SLEX GA
segments % Change Points ASE | %  mean std ASE
2 0 1/2 - 0
3 60.0 14, 3/4 2542 | o) | 200 | OO0 364
(4.56) 749 | .006 | (.13)
476 .080
34.09 3.73
4 34.0 1/4, 2/4, 3/4 (6.74) 17.5 .616 110 (13)
' 761 .037 '
32.77
5 5.0 218, 4/8, 5/8, 6/8, 7/8 0
(5.20)
50.01
> 6 1.0 0.5 3.83
(6.25)

St. Louis 10/04
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1. Piecewise stat (cont)

Simulation (cont):

True model:

Y, , +¢, If 1<t<513
Y, =<1.69Y,,-.8L ,+¢, If 513<t<769
1.32Y, - .81V, +¢, If 769<t<1024

AR orders selected (percent):

Order | O 1 2 3 4 5 >
p, | O 99.4 0.60 0 0 0 0
p, [ O 0 86.0 116 1.8 0.6 0
p; | O 0 89.0 104 0.6 0 0

St. Louis 10/04
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Simulation Examples (cont)

3. Piecewise stationary with short segments:
| 9 te, I 1<t<Bl
- |.25Y,, +¢, if 50<t <500

t

where {g} ~ [ID N(0,1).

GA results: 2 pieces with break at t,=47

1 100 200 300 400 500

Time
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3. Piecewise stationary (cont)

Simulation results: Change occurred at time t, = 51; 51/500=.1

St. Louis 10/04

# of change points
segments| 9%  mean @ std
1 9.0
2 89.0 .096 017
.048 .020
3 2.0
.092 011
>4 0
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Simulation Examples (cont)

4. Slowly varying AR(2) model:
Y,=aY_,—.81Y_,+g Iif 1<t<1024

where a, =.8[1-0.5cos(nt/1024)], and {¢} ~ 1ID N(O,1).
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4. Slowly varying AR(2) (cont)

GA results: 3 pieces, breaks at 1,=293, 1,=615. Total run time 27.45 secs

Fitted model: b, b, o?
1-292: .365 -0.753 1.149
293- 614: .821 -0.790 1.176

615-1024: 1.084 -0.760 0.960
True Model Fitted Model
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4. Slowly varying AR(2) (cont)

In the graph below right, we average the spectogram over the GA
fitted models generated from each of the 200 simulated realizations.
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Example: Monthly Deaths & Serious Injuries, UK

Data: Y, = number of monthly deaths and serious injuries in UK, Jan
‘75 —-Dec 84, (t=1,...,120)
Remark: Seat belt legislation introduced in Feb 83 (t = 99).
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Example: Monthly Deaths & Serious Injuries, UK

Data: Y, = number of monthly deaths and serious injuries in UK, Jan
‘75 —-Dec 84, (t=1,...,120)
Remark: Seat belt legislation introduced in Feb 83 (t = 99).
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Results from GA: 3 pieces; time = 4.4secs
Piece 1. (t=1,...,98) IID; Piece 2: (t=99,...108) IID; Piece 3: t=109,...,120 AR(1)
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Examples

Speech signal: GREASY
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Speech signal: GREASY
n = 5762 observations

m = 15 break points

Run time = 18.02 secs

St. Louis 10/04
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Examples

Large brown bat echolocation: 400 data points taken at 7microsecond
Intervals (total duration of .0028 seconds). Data and ideas about M-
stationarity described here are from Buddy Gray, Wayne Woodward, and
their group at SMU. http://faculty.smu.edu/hgray/research.htm

bat echolocation
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1 100 200 300 400
Time
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Features of data:

e time varying frequency, examples of which are chirps and doppler
signals found in radar, sonar, and communication theory.

 data appears to be made up of two signals.

 each signal has a frequency that is changing linearly in time. i.e.,
that is the cycle is lengthening in time.

e an AR(20) model is the best fitting AR model. Residuals are
uncorrelated but not independent.
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Examples (bat data cont)

M-Stationarity (Gray et al): Cov(Y(1),Y(tr)) = R(1).

e This notion corresponds to a time-deformation (logarithmic in this
case) to make the transformed process stationary in the ordinary
sense.

* The Euler process (Gray and Zhang 98) is an example of an M-

stationary process.
\\ | \/\[M\/\V\W

1 100 200 300 400
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-0.2
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Examples (bat data cont)

GA results: 6 pieces, breaks at t,=16, 1,=98, t5= 205, t,= 265, 1= 353.
Fitted model: AR orders 1, 6, 13, 7, 13, 5; Total run time 4.7 secs
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Examples (bat data spectrograms)

Euler(12), Gray et al Auto-PARM

S

St. Louis 10/04
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Application to Multivariate Time Series

Multivariate time series (d-dimensional): y,, . .., ¥,

Piecewise AR model:
Y, =1 + @Y+ @Y, +3%Z,, ift, <t<t,

t—p;
where tp=1<1,<...<1,,<7t,=Nn+1 and {Z}is IID(O, |,).

In this case,

MDL(mM, (ty, Py),-- - (T P)) = Iogm+m|ogn+ilog o
m n.d*+d-+d(d 1/2
+Zp1 i +2( L +Z Z(log(M|)+(Y LVAY, - )

tr_l

where Y, =E(Y, |Y,,...Y,) andV, =E(Y,-Y,)? and the AR parameters
are estimated by the multivariate Y-W equations based on Whittle’s

generalization of the Durbin-Levinson algorithm.
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Example: EEG Time series

Data: Bivariate EEG time series at channels T3 (left temporal) and P3 (left
parietal). Female subject was diagnosed with left temporal lobe epilepsy.
Data collected by Dr. Beth Malow and analyzed in Ombao et al (2001).
(n=32,768; sampling rate of 100H). Seizure started at about 1.85 seconds.
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Example: EEG Time series (cont)

Remarks:

 the general conclusions of this analysis are similar to those
reached in Ombao et al.

e prior to seizure, power concentrated at lower frequencies and
then spread to high frequencies.

* power returned to the lower frequencies at conclusion of seizure.
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Example: EEG Time series (cont)

Remarks (cont):
« T3 and P3 strongly coherent at 9-12 Hz prior to seizure.

* strong coherence at low frequencies just after onset of seizure.

* strong coherence shifted to high frequencies during the seizure.
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Application to Parameter-Driven SS Models

State Space Model Setup:

Observation equation:

p(y: | o) = exp{o, Y, — b(ay) + c(yy}-

State equation: {o,} follows the piecewise AR(1) model given by

=Y+ 00 ,+08, If 1,5t <1,
where l=ty< 1 < ... <t,<n, and {g}~ 1ID N(O,1).

Parameters:
m = number of break points
1, = location of break points
Y. = level in ki epoch
o, = AR coefficients ki" epoch
o, = scale in k" epoch

St. Louis 10/04
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Application to Structural Breaks—(cont)

Estimation: For (m, 14, . . ., 1,,) fixed, calculate the approximate

likelihood evaluated at the “MLE”, i.e.,

expfyno’ —1'{b(a’) —c(y,)}- (o ) G (o —p)/2},

|1/ 2

~ v y-_ |G
Ld(Wiyn) - (K+Gn)1/2

where ¥=Fpeen o bpee b 62,...,62) is the MLE.
Goal: Optimize an objective function over (m, t, . . ., T,)-
* use minimum description length (MDL) as an objective function

* use genetic algorithm for optimization
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Count Data Example

Model: Y, | o, ~ Pois(exp{B + a}), o,= oo, ,+ &, {g}~1ID N(O, c?)

15

10

MDL
1002 1004 1006 1008 1010 1012 1014
I I

BRL R \

1 100 200 300 400 500 1 100 200 300 400

time Breaking Point

500

True model:
" Y,| o, ~ Pois(exp{.7 + o, }), o, = .50+ &, {e}~1ID N(O, .3), t<250
*Y,| o, ~ Pois(exp{.7 + o }), o,=-5a,,+ ¢, {e}~11D N(O, .3), t>250.
= GA estimate 251, time 267secs
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SV Process Example

Model: Y,| o, ~ N(O,exp{a}), o,=vy +d o+ &, {g}~1ID N(O, c?)

1315
I

1310

MDL
1305

1300

1295
|

1 500 1000 1500 2000 2500 3000 1 500 1000 1500 2000 2500 3000

time Breaking Point

True model:

= Y, | o, ~ NQ©, exp{o}), a,=-.05+ .975a,,+¢,, {e}~11D N(0, .05), t< 750
*Y,| o, ~ N, exp{o, }), a,=-.25+.9000,+ ¢, {e}~11D N(O, .25), t> 750.
= GA estimate 754, time 1053 secs

St. Louis 10/04
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SV Process Example

Model: Y,| o, ~ N(O,exp{a}), o,=vy +d o+ &, {g}~1ID N(O, c?)

-505 -500

0.5
-510

-515

y
0.0

!
MDL

-520

-0.5
-525

-530

1 100 200 300 400 500 1 100 200 300 400 500

time Breaking Point

True model:

= Y, | a,~ N, exp{a}), a,=-.175+ 9770+ ¢, {e}~11D N(0, .1810), t < 250
=Y, | o, ~ N(O, exp{c, }), a,=-.010 +.9960., ,+ ¢, {e}~11D N(O, .0089), t> 250.
= GA estimate 251, time 269s
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SV Process Example-(cont)

True model:

" Y| o, ~N(, exp{a;}), o,=-175+ .977a,,+¢€,, {e}~1ID N(O, .1810), t<250

"Y,| o, ~N(, exp{a,}), a,=-.010+.9960,,+ ¢, , {eJ~1ID N(O, .0089), t > 250.

Fitted model based on no structural break:

“ Y, | o, ~ N(O, exp{o}), a,=-.0645 + 98890, .+ & , {e}~1ID N(O, .0935)

<
—

original series 1 simulated series

0.5

0.5

0.5
-0.5

0.0
———
y
0.0

1 100 200 300 400 500 1 100 200 300 400

time time
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SV Process Example-(cont)

Fitted model based on no structural break:

“ Y, | o, ~ N(O, exp{o}), a,=-.0645 + 98890, ,+ &, {e}~1ID N(O, .0935)

1simulated series W\\

1.0

0.5

-0.5

y
0.0
MDL
478 476 -474  -472 470 468 466
| ! ! !

T T T T T T
1 100 200 300 400 500 1 100 200 300 400 500

time Breaking Point
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Summary Remarks

1. MDL appears to be a good criterion for detecting structural
breaks.

2. Optimization using a genetic algorithm is well suited to find a
near optimal value of MDL.

3. This procedure extends easily to multivariate problems.

4. While estimating structural breaks for nonlinear time series
models is more challenging, this paradigm of using MDL together
GA holds promise for break detection in parameter-driven models
and other nonlinear models.
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