# Heavy Tails and Financial Time Series Models

Richard A. Davis

Columbia University

www.stat.columbia.edu/~rdavis

Thomas Mikosch University of Copenhagen

#### **Outline**

- Financial time series modeling
  - General comments
  - Characteristics of financial time series
  - Examples (exchange rate, Merck, Amazon)
  - Multiplicative models for log-returns (GARCH, SV)
- Regular variation
  - Multivariate case
- Applications of regular variation
  - Stochastic recurrence equations (GARCH)
  - Stochastic volatility
  - Extremes and extremal index
  - Limit behavior of sample correlations
- Wrap-up

## **Financial Time Series Modeling**

One possible goal: Develop models that capture essential features of financial data.

Strategy: Formulate families of models that at least exhibit these key characteristics. (e.g., GARCH and SV)

Linkage with goal: Do fitted models actually capture the desired characteristics of the real data?

Answer wrt to GARCH and SV models: Yes and no. Answer may depend on the features.

Stărică's paper: "Is GARCH(1,1) Model as Good a Model as the Nobel Accolades Would Imply?"

Stărică's paper discusses inadequacy of GARCH(1,1) model as a "data generating process" for the data.

## Financial Time Series Modeling (cont)

Goal of this talk: compare and contrast some of the features of GARCH and SV models.

- Regular-variation of finite dimensional distributions
- Extreme value behavior
- Sample ACF behavior

#### Characteristics of financial time series

Define 
$$X_t = In(P_t) - In(P_{t-1})$$
 (log returns)

heavy tailed

$$P(|X_1| > x) \sim RV(-\alpha), \quad 0 < \alpha < 4.$$

uncorrelated

$$\hat{\rho}_X(h)$$
 near 0 for all lags h > 0

- |X<sub>t</sub>| and X<sub>t</sub><sup>2</sup> have slowly decaying autocorrelations
  - $\hat{\rho}_{|X|}(h)$  and  $\hat{\rho}_{X^2}(h)$  converge to 0 slowly as h increases.
- process exhibits 'volatility clustering'.

## Example: Pound-Dollar Exchange Rates (Oct 1, 1981 – Jun 28, 1985; Koopman website)



## Example: Pound-Dollar Exchange Rates Hill's estimate of alpha (Hill Horror plots-Resnick)



#### Stărică Plots for Pound-Dollar Exchange Rates

15 realizations from GARCH model fitted to exchange rates + real exchange rate data. Which one is the real data?



#### Stărică Plots for Pound-Dollar Exchange Rates

ACF of the squares from the 15 realizations from the GARCH model on previous slide.



## Example: Merck log(returns) (Jan 2, 2003 – April 28, 2006; 837 observations)



## Example: Merck log-returns Hill's estimate of alpha (Hill Horror plots-Resnick)



## Example: Amazon-returns (May 16, 1997 – June 16, 2004)



#### Stărică Plots for the Amazon Data

15 realizations from GARCH model fitted to Amazon + exchange rate data. Which one is the real data?



#### Stărică Plots for Amazon

ACF of the squares from the 15 realizations from the GARCH model on previous slide.



SAMSI RISK WS 2007

## Multiplicative models for log(returns)

#### **Basic model**

$$X_t = In (P_t) - In (P_{t-1})$$
 (log returns)  
=  $\sigma_t Z_t$ ,

#### where

- {Z<sub>t</sub>} is IID with mean 0, variance 1 (if exists). (e.g. N(0,1) or a t-distribution with v df.)
- {σ<sub>t</sub>} is the volatility process
- σ<sub>t</sub> and Z<sub>t</sub> are independent.

#### **Properties:**

- $EX_t = 0$ ,  $Cov(X_t, X_{t+h}) = 0$ , h>0 (uncorrelated if  $Var(X_t) < \infty$ )
- conditional heteroscedastic (condition on  $\sigma_t$ ).

## Two models for log(returns)-cont

 $X_t = \sigma_t Z_t$  (observation eqn in state-space formulation)

(i) GARCH(1,1) (General AutoRegressive Conditional Heteroscedastic – observation-driven specification):

$$X_{t} = \sigma_{t} Z_{t}, \quad \sigma_{t}^{2} = \alpha_{0} + \alpha_{1} X_{t-1}^{2} + \beta_{1} \sigma_{t-1}^{2}, \quad \{Z_{t}\} \sim \text{IID}(0,1)$$

(ii) Stochastic Volatility (parameter-driven specification):

$$X_t = \sigma_t Z_t$$
,  $\log \sigma_t^2 = \phi_0 + \phi_1 \log \sigma_{t-1}^2 + \varepsilon_t$ ,  $\{\varepsilon_t\} \sim \text{IIDN}(0, \sigma^2)$ 

#### Main question:

What intrinsic features in the data (*if any*) can be used to discriminate between these two models?

## Regular variation — multivariate case

Multivariate regular variation of  $X=(X_1, \ldots, X_m)$ : There exists a random vector  $\theta \in S^{m-1}$  such that

$$P(|X| > t x, X/|X| \in \bullet)/P(|X| > t) \rightarrow_{V} X^{-\alpha} P(\theta \in \bullet)$$

 $(\rightarrow_{\nu}$  vague convergence on  $S^{m-1}$ , unit sphere in  $R^{m}$ ).

- P( $\theta \in \bullet$ ) is called the spectral measure
- $\alpha$  is the index of **X**.

#### **Equivalence:**

$$\frac{P(\mathbf{X} \in \mathbf{t}^{\bullet})}{P(|\mathbf{X}| > \mathbf{t})} \rightarrow_{\nu} \mu(\bullet)$$

 $\mu$  is a measure on R<sup>m</sup> which satisfies for x > 0 and A bounded away from 0,

$$\mu(xA) = x^{-\alpha} \mu(A).$$

## Regular variation — multivariate case (cont)

#### Examples:

1. If  $X_1 > 0$  and  $X_2 > 0$  are iid RV( $\alpha$ ), then  $X = (X_1, X_2)$  is multivariate regularly varying with index  $\alpha$  and spectral distribution

$$P(\theta = (0,1)) = P(\theta = (1,0)) = .5 \text{ (mass on axes)}.$$

Interpretation: Unlikely that  $X_1$  and  $X_2$  are very large at the same

time.

Figure: plot of  $(X_{t1}, X_{t2})$  for realization of 10,000.



2. If  $X_1 = X_2 > 0$ , then  $X = (X_1, X_2)$  is multivariate regularly varying with index  $\alpha$  and *spectral distribution* 

$$P(\theta = (1/\sqrt{2}, 1/\sqrt{2})) = 1.$$

-10

3. AR(1):  $X_t = .9 X_{t-1} + Z_t$ ,  $\{Z_t\} \sim IID$  symmetric stable (1.8)



10

x\_t

20

30

## Applications of multivariate regular variation (cont)

#### **Linear combinations:**

 $X \sim RV(\alpha) \Rightarrow$  all linear combinations of X are regularly varying

i.e., there exist  $\alpha$  and slowly varying fcn L(.), s.t.

$$P(\mathbf{c}^{\mathsf{T}}\mathbf{X} \geq t)/(t^{\alpha}L(t)) \rightarrow w(\mathbf{c})$$
, exists for all real-valued  $\mathbf{c}$ ,

where

$$w(t\mathbf{c}) = t^{-\alpha}w(\mathbf{c}).$$

Use vague convergence with  $A_c = \{y: c^Ty > 1\}$ , i.e.,

$$\frac{P(\mathbf{X} \in tA_{c})}{t^{-\alpha}L(t)} = \frac{P(\mathbf{c}^{T}\mathbf{X} > t)}{P(|\mathbf{X}| > t)} \rightarrow \mu(A_{c}) =: w(\mathbf{c}),$$



where  $t^{\alpha}L(t) = P(|\mathbf{X}| > t)$ .

#### Applications of multivariate regular variation (cont)

#### **Converse?**

 $X \sim RV(\alpha) \leftarrow all linear combinations of X are regularly varying?$ 

There exist  $\alpha$  and slowly varying fcn L(.), s.t.

(LC)  $P(\mathbf{c}^T\mathbf{X} > \mathbf{t})/(t^{\alpha}L(t)) \rightarrow w(\mathbf{c})$ , exists for all real-valued **c**.

Theorem (Basrak, Davis, Mikosch, `02). Let X be a random vector.

- 1. If **X** satisfies (LC) with  $\alpha$  non-integer, then **X** is RV( $\alpha$ ).
- If X > 0 satisfies (LC) for non-negative c and α is non-integer, then X is RV(α).
- 3. If X > 0 satisfies (LC) with  $\alpha$  an odd integer, then X is  $RV(\alpha)$ .

#### Applications of multivariate regular variation (cont)

There exist  $\alpha$  and slowly varying fcn L(.), s.t.

(LC)  $P(\mathbf{c}^T\mathbf{X} > t)/(t^{\alpha}L(t)) \rightarrow w(\mathbf{c})$ , exists for all real-valued **c**.

- 1. If **X** satisfies (LC) with  $\alpha$  non-integer, then **X** is RV( $\alpha$ ).
- 2. If X > 0 satisfies (LC) for non-negative c and  $\alpha$  is non-integer, then X is  $RV(\alpha)$ .
- 3. If X > 0 satisfies (LC) with  $\alpha$  an odd integer, then X is  $RV(\alpha)$ .

#### Remarks:

- 1 cannot be extended to integer α (Hult and Lindskog `05)
- 2 cannot be extended to integer  $\alpha$  (Hult and Lindskog `05)
- 3 can be extended to even integers (Lindskog et al. `07, under review).

## Applications of theorem

1. Kesten (1973). Under general conditions, (LC) holds with L(t)=1 for stochastic recurrence equations of the form

$$\mathbf{Y}_{t} = \mathbf{A}_{t} \mathbf{Y}_{t-1} + \mathbf{B}_{t}, \quad (\mathbf{A}_{t}, \mathbf{B}_{t}) \sim \mathbf{IID},$$

 $\mathbf{A}_t d \times d$  random matrices,  $\mathbf{B}_t$  random d-vectors.

It follows that the distributions of  $\mathbf{Y}_t$ , and in fact all of the finite dim'l distrs of  $\mathbf{Y}_t$  are regularly varying (no longer need  $\alpha$  to be non-even).

2. GARCH processes. Since squares of a GARCH process can be embedded in a SRE, the *finite dimensional distributions* of a *GARCH* are regularly varying.

## Examples

Example of ARCH(1): 
$$X_t = (\alpha_0 + \alpha_1 X_{t-1}^2)^{1/2} Z_t$$
,  $\{Z_t\} \sim IID$ .

 $\alpha$  found by solving  $E|\alpha_1 Z^2|^{\alpha/2} = 1$ .

#### Distr of $\theta$ :

$$P(\theta \in \bullet) = E\{||(B,Z)||^{\alpha} ||(arg((B,Z)) \in \bullet)\}/ ||E||(B,Z)||^{\alpha}$$

#### where

$$P(B = 1) = P(B = -1) = .5$$

Example of ARCH(1):  $\alpha_0=1$ ,  $\alpha_1=1$ ,  $\alpha=2$ ,  $X_t=(\alpha_0+\alpha_1 X_{t-1}^2)^{1/2}Z_t$ ,  $\{Z_t\}\sim IID$ 

Figures: plots of  $(X_t, X_{t+1})$  and estimated distribution of  $\theta$  for realization of 10,000.



36

Example of ARCH(1):  $\alpha_0=1$ ,  $\alpha_1=1$ ,  $\alpha=2$ ,  $X_t=(\alpha_0+\alpha_1 X_{t-1}^2)^{1/2}Z_t$ ,  $\{Z_t\}\sim IID$ 

Is this process time-reversible?

Figures: plots of  $(X_t, X_{t+1})$  and  $(X_{t+1}, X_t)$  imply non-reversibility.



39

Example: SV model  $X_t = \sigma_t Z_t$ 

Suppose  $Z_t \sim RV(\alpha)$  and

$$X_t = \sigma_t Z_t$$
,  $\log \sigma_t^2 = \phi_0 + \phi_1 \log \sigma_{t-1}^2 + \varepsilon_t$ ,  $\{\varepsilon_t\} \sim \text{IIDN}(0, \sigma^2)$ 

Then  $\mathbf{Z}_n = (Z_1, ..., Z_n)$ ' is regulary varying with index  $\alpha$  and so is

$$\mathbf{X}_{n} = (\mathbf{X}_{1}, \dots, \mathbf{X}_{n})' = \operatorname{diag}(\sigma_{1}, \dots, \sigma_{n}) \mathbf{Z}_{n}$$

with spectral distribution concentrated on  $(\pm 1,0)$ ,  $(0,\pm 1)$ .

Figure: plot of  $(X_t, X_{t+1})$  for realization of 10,000.



## Example: SV model $X_t = \sigma_t Z_t$

- SV processes are time-reversible if log-volatility is Gaussian.
- Asymptotically time-reversible if log-volatility is nonGaussian







#### Extremes for GARCH and SV processes

#### Setup

- $X_t = \sigma_t Z_t$ ,  $\{Z_t\} \sim \text{IID}(0,1)$
- $X_t$  is RV ( $\alpha$ )
- Choose  $\{b_n\}$  s.t.  $nP(X_t > b_n) \rightarrow 1$

#### Then

$$P^{n}(b_{n}^{-1}X_{1} \le x) \to \exp\{-x^{-\alpha}\}.$$

Then, with  $M_n = \max\{X_1, \ldots, X_n\}$ ,

(i) GARCH:

$$P(b_n^{-1}M_n \le x) \to \exp\{-\gamma x^{-\alpha}\},\,$$

 $\gamma$  is extremal index (0 <  $\gamma$  < 1).

(ii) SV model:

$$P(b_n^{-1}M_n \le x) \to \exp\{-x^{-\alpha}\},\,$$

extremal index  $\gamma$  = 1 no clustering.

## Extremes for GARCH and SV processes (cont)

- (i) GARCH:  $P(b_n^{-1}M_n \le x) \rightarrow \exp\{-\gamma x^{-\alpha}\}$
- (ii) SV model:  $P(b_n^{-1}M_n \le x) \rightarrow \exp\{-x^{-\alpha}\}$

#### Remarks about extremal index.

- (i)  $\gamma$  < 1 implies clustering of exceedances
- (ii) Numerical example. Suppose c is a threshold such that

$$P^{n}(b_{n}^{-1}X_{1} \le c) \sim .95$$

Then, if 
$$\gamma = .5$$
,  $P(b_n^{-1}M_n \le c) \sim (.95)^{.5} = .975$ 

- (iii)  $1/\gamma$  is the mean cluster size of exceedances.
- (iv) Use  $\gamma$  to *discriminate* between GARCH and SV models.
- (v) Even for the light-tailed SV model (i.e.,  $\{Z_t\}$  ~IID N(0,1), the extremal index is 1 (see Breidt and Davis `98 )

## Extremes for GARCH and SV processes (cont)

#### Absolute values of ARCH



## Extremes for GARCH and SV processes (cont)

## Absolute values of SV process



## Summary of results for ACF of GARCH(p,q) and SV models

#### GARCH(p,q)

 $\alpha \in (0,2)$ :

$$(\hat{\rho}_X(h))_{h=1,\ldots,m} \xrightarrow{d} (V_h/V_0)_{h=1,\ldots,m},$$

 $\alpha \in (2,4)$ :

$$\left(n^{1-2/\alpha}\hat{\rho}_X(h)\right)_{h=1,\ldots,m} \xrightarrow{d} \gamma_X^{-1}(0)\left(V_h\right)_{h=1,\ldots,m}.$$

 $\alpha \in (4,\infty)$ :

$$\left(n^{1/2}\hat{\rho}_X(h)\right)_{h=1,\ldots,m} \xrightarrow{d} \gamma_X^{-1}(0)\left(G_h\right)_{h=1,\ldots,m}.$$

Remark: Similar results hold for the sample ACF based on  $|X_t|$  and  $X_t^2$ .

## Summary of results for ACF of GARCH(p,q) and SV models (cont)

#### **SV Model**

 $\alpha \in (0,2)$ :

$$(n/\ln n)^{1/\alpha} \hat{\rho}_X(h) \xrightarrow{d} \frac{\|\sigma_1 \sigma_{h+1}\|_{\alpha}}{\|\sigma_1\|_{\alpha}^2} \frac{S_h}{S_0}.$$

 $\alpha \in (2, \infty)$ :

$$(n^{1/2}\hat{\rho}_X(h))_{h=1,\ldots,m} \xrightarrow{d} \gamma_X^{-1}(0)(G_h)_{h=1,\ldots,m}.$$

## Sample ACF for GARCH and SV Models (1000 reps)





#### (b) SV Model, n=10000



## Sample ACF for Squares of GARCH (1000 reps)

(a) GARCH(1,1) Model, n=10000



b) GARCH(1,1) Model, n=100000



## Sample ACF for Squares of SV (1000 reps)





#### (d) SV Model, n=100000



## Example: Amazon-returns (May 16, 1997 – June 16, 2004)



## Amazon returns (GARCH model)

GARCH(1,1) model fit to Amazon returns:

$$\alpha_0$$
= .00002493,  $\alpha_1$ = .0385,  $\beta_1$  = .957,  $X_t$ =( $\alpha_0$ + $\alpha_1$   $X_{t-1}^2$ )<sup>1/2</sup> $Z_t$ , { $Z_t$ }~IID t(3.672)

Simulation from GARCH(1,1) model



## Amazon returns (SV model)

## Stochastic volatility model fit to Amazon returns:



#### Wrap-up

- Regular variation is a flexible tool for modeling both dependence and tail heaviness.
- Useful for establishing *point process convergence* of heavy-tailed time series.
- Extremal index  $\gamma$  < 1 for GARCH and  $\gamma$  =1 for SV.
- ACF has faster convergence for SV.