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Financial Time Series Modeling

One possible goal: Develop models that capture essential features
of financial data.

Strategy: Formulate families of models that at least exhibit these
key characteristics. (e.g., GARCH and SV)

Linkage with goal: Do fitted models actually capture the desired
characteristics of the real data?

Answer wrt to GARCH and SV models: Yes and no. Answer may
depend on the features.

Starica’s paper: “Is GARCH(1,1) Model as Good a Model as the
Nobel Accolades Would Imply?”

Starica’s paper discusses inadequacy of GARCH(1,1) model as a
“data generating process” for the data.
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Financial Time Series Modeling (cont)

Goal of this talk: compare and contrast some of the features of
GARCH and SV models.

* Regular-variation of finite dimensional distributions
* Extreme value behavior

* Sample ACF behavior
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Characteristics of financial time series

Define X;=1In (P,) - In (P.,) (log returns)

* heavy tailed

P(|X,] > x) ~RV(-a), 0O<a<4.

* uncorrelated

p,(h) near O for all lags h >0

* |X{| and X have slowly decaying autocorrelations

Py (k) and p . (%) converge to 0 slowly as h increases.

* process exhibits ‘volatility clustering’.
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log returns (exchange rates)

ACF of squares

Example: Pound-Dollar Exchange Rates
(Oct 1, 1981 — Jun 28, 1985; Koopman website)
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Example: Pound-Dollar Exchange Rates
Hill's estimate of alpha (Hill Horror plots-Resnick)
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Starica Plots for Pound-Dollar Exchange Rates

15 realizations from GARCH model fitted to exchange rates +
real exchange rate data. Which one is the real data”
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Starica Plots for Pound-Dollar Exchange Rates

ACF of the squares from the 15 realizations from the GARCH
model on previous slide.
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ACF of squares
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Example: Merck log(returns)
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Example: Merck log-returns
Hill's estimate of alpha (Hill Horror plots-Resnick)
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Example: Amazon-returns (May 16, 1997 — June 16, 2004)
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Starica Plots for the Amazon Data

15 realizations from GARCH model fitted to Amazon +
. Which one is the real data?

exchange rate data
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ACF of the squares from the 15 realizations from the GARCH

Starica Plots for Amazon

model on previous slide.
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Multiplicative models for log(returns)

Basic model
Xi=In(Py)-In(P.) (logreturns)

=0, 4,

where
* {Z} is IID with mean 0, variance 1 (if exists). (e.g. N(0,1) or
a t-distribution with v df.)
* {c.} is the volatility process

* ¢, and Z, are independent.

Properties:
* EX; =0, Cov(X,, X,,) =0, h>0 (uncorrelated if Var(X,) < «)

e conditional heteroscedastic (condition on o).
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Two models for log(returns)-cont

X, = o, Z, (observation egn in state-space formulation)

(i) GARCH(1,1) (General AutoRegressive Conditional
Heteroscedastic — observation-driven specification):

X, =0z, 0, =0+0X; +por;, {Z}~ D0

(i) Stochastic Volatility (parameter-driven specification):
X =07, logc’ =¢,+¢ logc’, +¢,, {&}~1IDN(0,c°)

Main question:

What intrinsic features in the data (if any) can be used to
discriminate between these two models?
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Regular variation — multivariate case

Multivariate regular variation of X=(X,, ..., X_): There exists a
random vector 6 € S™' such that

P(IX]|> t x, X/|X| € o )/P(|X|>t) >, x*P(0 € o)
(—, vague convergence on S™', unit sphere in R™) .
* P( 0 ee) is called the spectral measure

* o is the index of X.

Equivalence:
P( X ete)

P( X]|>1)

—, 1W(e)

i is a measure on R™ which satisfies for x > 0 and A bounded away
from O,
H(XA) = X7 u(A).
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Regular variation — multivariate case (cont)

Examples:

1. It X;>0and X,> 0 are iid RV(a), then X= (X,, X, ) is multivariate
regularly varying with index o and spectral distribution

P(06=(0,1))=P(06=(1,0))=.5 (mass on axes).

Interpretation: Unlikely that X, and X, are very large at the same

time. 2 %

Figure: plot of
(X, Xp) for realization

of 10,000. |t

30
|

X
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2. 1t X, =X,> 0, then X= (X;, X, ) is multivariate regularly varying
with index o and spectral distribution

P(0= (12, 12))=1.

3. AR(1): X= .9 X, + Z,, {Z}~IID symmetric stable (1.8)

Dt of 6 {i(l,.9)/sqrt(1 81), W.P. 9898

+(0,1), W.P. .0102

30
L

Figure: scatter plot
of (X, X1) for
realization of 10,000
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Applications of multivariate regular variation (cont)

Linear combinations:

X ~RV(a) = all linear combinations of X are regularly varying

l.e., there exist o and slowly varying fcn L(.), s.t.
P(cTX> t)/(t>L(t)) —w(c), exists for all real-valued c,

where

w(tc) = tow(c).

Use vague convergence with A_={y: cTy > 1}, i.e,,

P(XetA) P(c'X>1)
L) P(X|>t)

— WA,) = w(c),

N

where tL(t) = P(|X]| > t).
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Applications of multivariate regular variation (cont)

Converse?

X ~RV(a) <= all linear combinations of X are regularly varying?

There exist a. and slowly varying fcn L(.), s.t.

(LC) P(cTX> t)/(tL(t)) ->w(c), exists for all real-valued c.

Theorem (Basrak, Davis, Mikosch, '02). Let X be a random vector.

1. If X satisfies (LC) with a. non-integer, then X is RV(a.).

2. If X > 0 satisfies (LC) for non-negative ¢ and a is non-integer,

then X'is RV(a).

3. If X >0 satisfies (LC) with o an odd integer, then X is RV(a).
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Applications of multivariate regular variation (cont)

There exist a. and slowly varying fcn L(.), s.t.

(LC) P(cTX> t)/(t“L(t)) —w(c), exists for all real-valued c.

1. If X satisfies (LC) with a. non-integer, then X is RV(a.).

2. If X > 0 satisfies (LC) for non-negative ¢ and a is non-integer,
then X'is RV(a).

3. If X > 0 satisfies (LC) with o an odd integer, then X is RV(a.).

Remarks:

* 1 cannot be extended to integer o (Hult and Lindskog "05)
° 2 cannot be extended to integer o (Hult and Lindskog "05)

° 3 can be extended to even integers (Lindskog et al. '07, under
review).
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Applications of theorem

1. Kesten (1973). Under general conditions, (LC) holds with L(t)=1

for stochastic recurrence equations of the form

Y=A Yt By (A, BY ~ID,

A, dxd random matrices, B,random d-vectors.

It follows that the distributions of Y,, and in fact all of the finite dim’l

distrs of Y, are regularly varying (no longer need a to be non-even).

2. GARCH processes. Since squares of a GARCH process can be

embedded in a SRE, the finite dimensional distributions of a

GARCH are regularly varying.

SAMSI RISK WS 2007
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Examples

Example of ARCH(1):  X&=(agtoy X2 )22,  {Z}~IID.

a found by solving E|o, Z3|%? = 1.

a, | .312 577 1.00 157
a | 800 4.00 200 1.00

Distr of 0:

P(8 < o) = E{||(B,2)||* I(arg((B,Z)) < *)}/ E||(B,Z)||*
where

PB=1)=P(B=-1)=5
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Examples (cont)

Example of ARCH(1): og=1, 0,=1, a=2, X=(ag+oq X24)"2Z,, {Z}~IID

Figures: plots of (X,, Xi,,) and estimated distribution of 8 for
realization of 10,000.
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Examples (cont)

Example of ARCH(1):

Is this process time-reversible?

Figures: plots of (X,, X,4) and (X.,,, X;) imply non-reversibility.

o
X_
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Examples (cont)

Example: SV model X, = o, Z,
Suppose Z, ~ RV(a) and

X, =0,Z, log csté =, + Iogcs?_1 +¢,, {¢}~1ID N(O,csé)

Then Z =(Z,,...,Z,)" is regulary varying with index o and so is
X,= (X4,...,X, ) =diag(c,..., 6,) Z,

with spectral distribution concentrated on (+£1,0), (0, £1).

2000
\

Figure: plot of .
(X Xi4q) for -1 e

realization of 10,000.
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\

\ \
-2000 0 2000
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X

Examples (cont)

Example: SV model X, = o, Z,

* SV processes are time-reversible

if log-volatility is Gaussian.

* Asymptotically time-reversible if

log-volatility is nonGaussian
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Extremes for GARCH and SV processes

Setup
= X,=06,Z, {Z}~IID(0,1)
= X, isRV (o)
= Choose {b}s.t. nP(X;>Db,) —>1

Then
P'(b X, <x) >expfx}.

Then, with M= max{X,, ..., X},
(i) GARCH:
P(b, 1Mn <x) >exp{yx "},
v is extremal index (0 <y<1).

(i) SV model:
P(b*M, < x) — exp{—x"},

extremal index y = 1 no clustering.

SAMSI RISK WS 2007
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Extremes for GARCH and SV processes (cont)

(i) GARCH: P(b,'M , < x) — exp{—yx*}
(i) SV model: P(b.'M, < x) —>expfx"}

Remarks about extremal index.
(i) vy <1 implies clustering of exceedances
(i)  Numerical example. Suppose c is a threshold such that
P'(b X, <c)~.95
Then, if y=.5, P(b.*"M, <c)~ (.95)° =.975
(iii) 1/yis the mean cluster size of exceedances.
(iv) Use y to discriminate between GARCH and SV models.

(v) Even for the light-tailed SV model (i.e., {Z;} ~IID N(0,1), the
extremal index is 1 (see Breidt and Davis 98 )
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Extremes for GARCH and SV processes (cont)

Absolute values of ARCH
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Extremes for GARCH and SV processes (cont)

Absolute values of SV process

RS ||*|‘

time
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Summary of results for ACF of GARCH(p,q) and SV models

GARCH(p,q)
ae(0,2):

CRQ) I (V179 M

ae(2,4):
(nH/aﬁX (h))h=1m L)V;(l (O)(Vh )h:l,...,m'

o€ (4,0):

(nllzﬁ x () )hzl,. o —d_)'Y;(l (0) (Gh )hzl,. o’

Remark: Similar results hold for the sample ACF based on |X| and
XZ.
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Summary of results for ACF of GARCH(p,q) and SV models (cont)

SV Model
ae(0,2):
(n/nnl'p  (h) —is Gl““ﬁ”a S
foul, 5
ae(2, ©):

(%, (D)y =7 2O)NG s
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Sample ACF for GARCH and SV Models (1000 reps)

10000

(a) GARCH(1,1) Model, n
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Sample ACF for Squares of GARCH (1000 reps)

10000

(a) GARCH(1,1) Model, n

_______

100000

b) GARCH(1,1) Model, n

_______

54

SAMSI RISK WS 2007



Sample ACF for Squares of SV (1000 reps)

(c) SV Model, n=10000
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(d) SV Model, n=100000
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ACF of abs values

Example: Amazon-returns (May 16, 1997 — June 16, 2004)

log returns
4
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ACF abs values

Amazon returns (GARCH model)

GARCH(1,1) model fit to Amazon returns:
a,=.00002493, o,= .0385, B, = .957, X;=(ag+o, X?.4)"2Z,, {Z}~IID t(3.672)

Simulation from GARCH(1,1) model
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ACF of squares
0.4 0.6 0.8 1.0
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0.0

Lag Lag
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ACF of abs values

Amazon returns (SV model)

Stochastic volatility model fit to Amazon returns:
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Wrap-up

* Reqgular variation is a flexible tool for modeling both dependence

and tail heaviness.

 Useful for establishing point process convergence of heavy-tailed

time series.
» Extremal index y < 1 for GARCH and y =1 for SV.

« ACF has faster convergence for SV.
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