Structural Break Detection in Time Series Models

Richard A. Davis
Columbia University

Thomas Lee
Colorado State University

Gabriel Rodriguez-Yam
Universidad Autónoma Chapingo

(http://www.stat.columbia.edu/~rdavis/lectures)

This research supported in part by an IBM faculty award.
Illustrative Example

How many segments do you see?

\[\tau_1 = 51 \quad \tau_2 = 151 \quad \text{time} \quad \tau_3 = 251 \]
Illustrative Example

Auto-PARM = Auto-Piecewise AutoRegressive Modeling

4 pieces, 2.58 seconds.

\[\tau_1 = 51 \quad \tau_2 = 157 \quad \text{time} \quad \tau_3 = 259 \]
A Second Example

Any breaks in this series?
Log-returns for Merck (2 Jan 2003 to 28 April 2006, N=837)
Introduction
 • Examples
 ▪ AR
 ▪ GARCH
 ▪ Stochastic volatility
 ▪ State space models

Model selection using Minimum Description Length (MDL)
 • General principles
 • Application to AR models with breaks

Optimization using a Genetic Algorithm
 • Basics
 • Implementation for structural break estimation

Simulation results

Applications

Simulation results for GARCH and SV models
Examples

1. Piecewise AR model:

\[Y_t = \gamma_j + \phi_{j1} Y_{t-1} + \cdots + \phi_{jp_j} Y_{t-p_j} + \sigma_j \varepsilon_t, \quad \text{if } \tau_{j-1} \leq t < \tau_j, \]

where \(\tau_0 = 1 < \tau_1 < \ldots < \tau_{m-1} < \tau_m = n + 1 \), and \{\varepsilon_t\} is IID(0,1).

Goal: Estimate

- \(m \) = number of segments
- \(\tau_j \) = location of \(j^{th} \) break point
- \(\gamma_j \) = level in \(j^{th} \) epoch
- \(p_j \) = order of AR process in \(j^{th} \) epoch
- \(\phi_{j1}, \ldots, \phi_{jp_j} \) = AR coefficients in \(j^{th} \) epoch
- \(\sigma_j \) = scale in \(j^{th} \) epoch
2. Segmented GARCH model:

\[Y_t = \sigma_t \varepsilon_t, \]
\[\sigma_t^2 = \omega_j + \alpha_{j1} Y_{t-1}^2 + \cdots + \alpha_{jp_j} Y_{t-p_j}^2 + \beta_{j1} \sigma_{t-1}^2 + \cdots + \beta_{jq_j} \sigma_{t-q_j}^2, \quad \text{if} \quad \tau_{j-1} \leq t < \tau_j, \]

where \(\tau_0 = 1 < \tau_1 < \ldots < \tau_{m-1} < \tau_m = n + 1 \), and \(\{\varepsilon_t\} \) is IID(0,1).

3. Segmented stochastic volatility model:

\[Y_t = \sigma_t \varepsilon_t, \]
\[\log \sigma_t^2 = \gamma_j + \phi_{j1} \log \sigma_{t-1}^2 + \cdots + \phi_{jp_j} \log \sigma_{t-p_j}^2 + \nu_j \eta_t, \quad \text{if} \quad \tau_{j-1} \leq t < \tau_j. \]

4. Segmented state-space model (SVM a special case):

\[p(y_t | \alpha_{t-1}, \ldots, \alpha_t, y_{t-1}, \ldots, y_1) = p(y_t | \alpha_{t-1}) \quad \text{is specified} \]
\[\alpha_t = \gamma_j + \phi_{j1} \alpha_{t-1} + \cdots + \phi_{jp_j} \alpha_{t-p_j} + \sigma_j \eta_t, \quad \text{if} \quad \tau_{j-1} \leq t < \tau_j. \]
Model Selection Using Minimum Description Length

Basics of MDL:
Choose the model which *maximizes the compression* of the data or, equivalently, select the model that *minimizes the code length* of the data (i.e., amount of memory required to encode the data).

\[M = \text{class of operating models for } y = (y_1, \ldots, y_n) \]

\[L_F(y) = \text{code length of } y \text{ relative to } F \in M \]

Typically, this term can be decomposed into two pieces (two-part code),

\[L_F(y) = L(\hat{F}|y) + L(\hat{e}|\hat{F}), \]

where

\[L(\hat{F}|y) = \text{code length of the fitted model for } F \]

\[L(\hat{e}|\hat{F}) = \text{code length of the residuals based on the fitted model} \]
Applied to the segmented AR model:

\[Y_t = \gamma_j + \phi_{j1} Y_{t-1} + \cdots + \phi_{jp_j} Y_{t-p_j} + \sigma_j \varepsilon_t, \quad \text{if } \tau_{j-1} \leq t < \tau_j, \]

First term \(L(\hat{F} | y) \):

\[
L(\hat{F} | y) = L(m) + L(\tau_1, \ldots, \tau_m) + L(p_1, \ldots, p_m) + L(\hat{\psi}_1 | y) + \cdots + L(\hat{\psi}_m | y) \\
= \log_2 m + m \log_2 n + \sum_{j=1}^{m} \log_2 p_j + \sum_{j=1}^{m} \frac{p_j + 2}{2} \log_2 n_j
\]

Second term \(L(\hat{e} | \hat{F}) \):

\[
L(\hat{e} | \hat{F}) \approx -\sum_{j=1}^{m} \log_2 L(\hat{\psi}_j | y)
\]

\[
MDL(m, (\tau_1, p_1), \ldots, (\tau_m, p_m)) \\
= \log_2 m + m \log_2 n + \sum_{j=1}^{m} \log_2 p_j + \sum_{j=1}^{m} \frac{p_j + 2}{2} \log_2 n_j + \sum_{j=1}^{m} (n_j \log_2 (2\pi\hat{\sigma}_j^2) + n_j) / 2
\]
Optimization Using Genetic Algorithm

Basics of GA:
Class of optimization algorithms that mimic natural evolution.

- Start with an initial set of *chromosomes*, or population, of possible solutions to the optimization problem.
- Parent chromosomes are randomly selected (proportional to the rank of their objective function values), and produce offspring using *crossover* or *mutation* operations.
- After a sufficient number of offspring are produced to form a second generation, the process then *restarts to produce a third generation*.
- Based on Darwin’s *theory of natural selection*, the process should produce future generations that give a *smaller (or larger)* objective function.
Optimization Using Genetic Algorithm

Genetic Algorithm: Chromosome consists of \(n \) genes, each taking the value of \(-1\) (no break) or \(p \) (order of AR process). Use natural selection to find a *near* optimal solution.

Map the break points with a chromosome \(c \) via

\[
(m, (\tau_1, p_1), \ldots, (\tau_m, p_m)) \iff c = (\delta_1, \ldots, \delta_n),
\]

where

\[
\delta_t = \begin{cases}
-1, & \text{if no break point at } t, \\
p_j, & \text{if break point at time } t = \tau_{j-1} \text{ and AR order is } p_j.
\end{cases}
\]

For example,

\[
c = (2, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, -1, -1, 0, -1, -1, -1, 3, -1, -1, -1, -1,-1)
\]

\[
t: \quad 1 \quad 6 \quad 11 \quad 15
\]

would correspond to a process as follows:

\[
AR(2), \ t=1:5; \ AR(0), \ t=6:10; \ AR(0), \ t=11:14; \ AR(3), \ t=15:20
\]
Implementation of Genetic Algorithm—(cont)

Generation 0: Start with L (200) randomly generated chromosomes, c_1, \ldots, c_L with associated MDL values, $MDL(c_1), \ldots, MDL(c_L)$.

Generation 1: A new child in the next generation is formed from the chromosomes c_1, \ldots, c_L of the previous generation as follows:

- with probability π_c, crossover occurs.
 - two parent chromosomes c_i and c_j are selected at random with probabilities proportional to the ranks of $MDL(c_i)$.
 - k^{th} gene of child is $\delta_k = \delta_{i,k}$ w.p. $\frac{1}{2}$ and $\delta_{j,k}$ w.p. $\frac{1}{2}$

- with probability $1 - \pi_c$, mutation occurs.
 - a parent chromosome c_i is selected
 - k^{th} gene of child is $\delta_k = \delta_{i,k}$ w.p. π_1 ; -1 w.p. π_2 ; and ρ w.p. $1 - \pi_1 - \pi_2$.
Implementation of Genetic Algorithm—(cont)

Execution of GA: Run GA until convergence or until a maximum number of generations has been reached.

Various Strategies:

- include the top ten chromosomes from last generation in next generation.
- use multiple islands, in which populations run independently, and then allow migration after a fixed number of generations.

This implementation is amenable to parallel computing.
1. Piecewise stationary with dyadic structure: Consider a time series following the model,

\[Y_t = \begin{cases}
0.9Y_{t-1} + \varepsilon_t, & \text{if } 1 \leq t < 513, \\
1.69Y_{t-1} - 0.81Y_{t-2} + \varepsilon_t, & \text{if } 513 \leq t < 769, \\
1.32Y_{t-1} - 0.81Y_{t-2} + \varepsilon_t, & \text{if } 769 \leq t \leq 1024,
\end{cases} \]

where \(\{\varepsilon_t\} \sim \text{IID } N(0,1). \)
1. Piecewise stat (cont)

Implementation: Start with $NI = 50$ islands, each with population size $L = 200$.

After every $Mi = 5$ generations, allow migration.

Replace worst 2 in Island 2 with best 2 from Island 4.

Stopping rule: Stop when the max MDL does not change for 10 consecutive migrations or after 100 migrations.

Span configuration for model selection: Max AR order $K = 10$,

<table>
<thead>
<tr>
<th>p</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7-10</th>
<th>11-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_p</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>π_p</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
<td>1/21</td>
</tr>
</tbody>
</table>
1. Piecewise stat (cont)

GA results: 3 pieces breaks at $\tau_1=513$; $\tau_2=769$. Total run time 16.31 secs

Fitted model:

<table>
<thead>
<tr>
<th>Piece</th>
<th>ϕ_1</th>
<th>ϕ_2</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-512</td>
<td>0.857</td>
<td>0.9945</td>
<td></td>
</tr>
<tr>
<td>513-768</td>
<td>1.68</td>
<td>-0.801</td>
<td>1.1134</td>
</tr>
<tr>
<td>769-1024</td>
<td>1.36</td>
<td>-0.801</td>
<td>1.1300</td>
</tr>
</tbody>
</table>

True Model

Fitted Model
Simulation Examples (cont)

2. Slowly varying AR(2) model:

\[Y_t = a_t Y_{t-1} - 0.81 Y_{t-2} + \varepsilon_t \quad \text{if} \quad 1 \leq t \leq 1024 \]

where \(a_t = 0.8[1 - 0.5 \cos(\pi t / 1024)] \), and \(\{\varepsilon_t\} \sim \text{IID } N(0,1) \).
2. Slowly varying AR(2) (cont)

GA results: 3 pieces, breaks at $\tau_1=293$, $\tau_2=615$. Total run time 27.45 secs

Fitted model:

<table>
<thead>
<tr>
<th>Time</th>
<th>ϕ_1</th>
<th>ϕ_2</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- 292</td>
<td>0.365</td>
<td>-0.753</td>
<td>1.149</td>
</tr>
<tr>
<td>293- 614</td>
<td>0.821</td>
<td>-0.790</td>
<td>1.176</td>
</tr>
<tr>
<td>615-1024</td>
<td>1.084</td>
<td>-0.760</td>
<td>0.960</td>
</tr>
</tbody>
</table>

True Model

Fitted Model
In the graph below right, we average the spectogram over the **GA fitted models** generated from each of the 200 simulated realizations.
Theory

Consistency.

Suppose the number of change points m is known and let

$$\lambda_1 = \frac{\tau_1}{n}, \ldots, \lambda_m = \frac{\tau_m}{n}$$

be the relative (true) changepoints. Then

$$\hat{\lambda}_j \to \lambda_j \quad \text{a.s.}$$

where $\hat{\lambda}_j = \hat{\tau}_j / n$ and $\hat{\tau}_j$ = Auto-PARM estimate of τ_j.

Consistency of the estimate of m and the AR orders p_1, \ldots, p_m?

• For n large, Auto-PARM estimate is $\geq m$.

• Close to a proof of consistency:
 (Joint work with Stacey Hancock and Yi-Ching Yao.)
Examples

Speech signal: GREASY
Speech signal: GREASY

$n = 5762$ observations

$m = 15$ break points

Run time = 18.02 secs
Examples

Mine explosion seismic trace in Scandinavia: (Shumway and Stoffer 2000, Stoffer et al. 2005)

Two waves: P (primary) compression wave and S (shear) wave
Examples

AR orders: 1 7 17 13 15
Log-returns for Merck (MRK), 2 Jan 2003 to 28 April 2006 (N=837)

13 Jan 2004: Merck announced the filing of ARCOXIA®

28 Sep 2004: Merck announces withdrawal of VIOXX®

14 Oct 2004: rumor surfaced about potential resignation of Merck's CEO--seen as positive news on Wall Street.

Analysis by Wing Chan
Example: EEG Time series

Data: Bivariate EEG time series at channels T3 (left temporal) and P3 (left parietal). Female subject was diagnosed with left temporal lobe epilepsy. Data collected by Dr. Beth Malow and analyzed in Ombao et al (2001). (n=32,768; sampling rate of 100Hz). Seizure started at about 1.85 seconds.

GA bivariate results: 11 pieces with AR orders, 15, 2, 6 15, 2, 3, 5, 9, 5, 4, 1

GA univariate results: 14 breakpoints for T3; 11 breakpoints for P3.

Data: Bivariate EEG time series at channels T3 (left temporal) and P3 (left parietal). Female subject was diagnosed with left temporal lobe epilepsy. Data collected by Dr. Beth Malow and analyzed in Ombao et al (2001). (n=32,768; sampling rate of 100Hz). Seizure started at about 1.85 seconds.

GA bivariate results: 11 pieces with AR orders, 15, 2, 6 15, 2, 3, 5, 9, 5, 4, 1

GA univariate results: 14 breakpoints for T3; 11 breakpoints for P3.

Example: EEG Time series

Data: Bivariate EEG time series at channels T3 (left temporal) and P3 (left parietal). Female subject was diagnosed with left temporal lobe epilepsy. Data collected by Dr. Beth Malow and analyzed in Ombao et al (2001). (n=32,768; sampling rate of 100Hz). Seizure started at about 1.85 seconds.
Remarks:

- the general conclusions of this analysis are similar to those reached in Ombao et al.
- prior to seizure, power concentrated at lower frequencies and then spread to high frequencies.
- power returned to the lower frequencies at conclusion of seizure.
Remarks (cont):

• T3 and P3 strongly coherent at 9-12 Hz prior to seizure.
• strong coherence at low frequencies just after onset of seizure.
• strong coherence shifted to high frequencies during the seizure.

T3/P3 Coherency
Application to GARCH

Garch(1,1) model:

\[Y_t = \sigma_t \varepsilon_t, \quad \{\varepsilon_t\} \sim \text{IID}(0,1) \]

\[\sigma_t^2 = \omega_j + \alpha_j Y_{t-1}^2 + \beta_j \sigma_{t-1}^2, \quad \text{if } \tau_{j-1} \leq t < \tau_j. \]

\[
\sigma_t^2 = \begin{cases}
.4 + .1 Y_{t-1}^2 + .5 \sigma_{t-1}^2, & \text{if } 1 \leq t < 501 \\
.4 + .1 Y_{t-1}^2 + .6 \sigma_{t-1}^2, & \text{if } 501 \leq t < 1000
\end{cases}
\]

CP estimate = 506

AG = Andreou and Ghysels (2002)
Garch(1,1) model: \(Y_t = \sigma_t \varepsilon_t, \quad \{ \varepsilon_t \} \sim \text{IID}(0,1) \)
\[
\sigma_t^2 = \omega_j + \alpha_j Y_{t-1}^2 + \beta_j \sigma_{t-1}^2, \quad \text{if } \tau_{j-1} \leq t < \tau_j.
\]
\[
\sigma_t^2 = \begin{cases}
0.4 + 1Y_{t-1}^2 + 0.5\sigma_{t-1}^2, & \text{if } 1 \leq t < 501, \\
0.4 + 1Y_{t-1}^2 + 0.8\sigma_{t-1}^2, & \text{if } 501 \leq t < 1000
\end{cases}
\]

CP estimate = 502
AG = Andreou and Ghysels (2002)

<table>
<thead>
<tr>
<th># of CPs</th>
<th>GA (%)</th>
<th>AG (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>96.4</td>
<td>95.0</td>
</tr>
<tr>
<td>\geq 2</td>
<td>3.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>
More simulation results for Garch(1,1): \(Y_t = \sigma_t \varepsilon_t, \quad \{ \varepsilon_t \} \sim \text{IID}(0,1) \)

\[
\sigma_t^2 = \begin{cases}
0.05 + 4Y_{t-1}^2 + 3\sigma_{t-1}^2, & \text{if } 1 \leq t < \tau_1, \\
1.00 + 3Y_{t-1}^2 + 2\sigma_{t-1}^2, & \text{if } \tau_1 \leq t < 1000
\end{cases}
\]

<table>
<thead>
<tr>
<th>(\tau_1)</th>
<th>Mean</th>
<th>SE</th>
<th>Med</th>
<th>Freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>GA</td>
<td>52.62</td>
<td>11.70</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Berkes</td>
<td>71.40</td>
<td>12.40</td>
<td>71</td>
</tr>
<tr>
<td>250</td>
<td>GA</td>
<td>251.18</td>
<td>4.50</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Berkes</td>
<td>272.30</td>
<td>18.10</td>
<td>271</td>
</tr>
<tr>
<td>500</td>
<td>GA</td>
<td>501.22</td>
<td>4.76</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td>Berkes</td>
<td>516.40</td>
<td>54.70</td>
<td>538</td>
</tr>
</tbody>
</table>

Application to Parameter-Driven SS Models

State Space Model Setup:

Observation equation:

\[p(y_t \mid \alpha_t) = \exp\{\alpha_t y_t - b(\alpha_t) + c(y_t)\} \].

State equation: \{\alpha_t\} follows the piecewise AR(1) model given by

\[\alpha_t = \gamma_k + \phi_k \alpha_{t-1} + \sigma_k \varepsilon_t, \quad \text{if} \quad \tau_{k-1} \leq t < \tau_k, \]

where \(1 = \tau_0 < \tau_1 < \ldots < \tau_m < n \), and \{\varepsilon_t\} ~ \text{IID } N(0,1).

Parameters:

\(m \) = number of break points
\(\tau_k \) = location of break points
\(\gamma_k \) = level in \(k^{th} \) epoch
\(\phi_k \) = AR coefficients \(k^{th} \) epoch
\(\sigma_k \) = scale in \(k^{th} \) epoch
Application to Structural Breaks—(cont)

Estimation: For \((m, \tau_1, \ldots, \tau_m)\) fixed, calculate the approximate likelihood evaluated at the “MLE”, i.e.,

\[
L_a(\hat{\psi}; y_n) = \frac{|G_n|^{1/2}}{(K + G_n)^{1/2}} \exp \{y_n^T \alpha^* - 1^T \{b(\alpha^*) - c(y_n)\} - (\alpha^* - \mu)^T G_n (\alpha^* - \mu)/2\},
\]

where \(\hat{\psi} = (\hat{\gamma}_1, \ldots, \hat{\gamma}_m, \hat{\phi}_1, \ldots, \hat{\phi}_m, \hat{\sigma}_1^2, \ldots, \hat{\sigma}_m^2)\) is the MLE.

Remark: The exact likelihood is given by the following formula

\[
L(\psi; y_n) = \frac{L_a(\psi; y_n) \overline{E}_a(\psi)}{E_a(\psi)},
\]

where

\[
\overline{E}_a(\psi) = \int \exp \{R(\alpha_n; \alpha^*)\} p_a(\alpha_n \mid y_n; \psi) \, d\alpha_n.
\]

It turns out that \(\log(E_a(\psi))\) is nearly linear and can be approximated by a linear function via importance sampling,

\[
e(\psi) \sim e(\hat{\psi}_{AL}) + \hat{e}(\hat{\psi}_{AL})(\psi - \hat{\psi}_{AL})
\]
SV Process Example

Model: \[Y_t \mid \alpha_t \sim N(0, \exp{\alpha_t}), \quad \alpha_t = \gamma + \phi \alpha_{t-1} + \varepsilon_t, \quad \{\varepsilon_t\} \sim \text{IID } N(0, \sigma^2) \]

True model:
- \[Y_t \mid \alpha_t \sim N(0, \exp{\alpha_t}), \quad \alpha_t = -.05 + .975\alpha_{t-1} + \varepsilon_t, \quad \{\varepsilon_t\} \sim \text{IID } N(0, .05), \quad t \leq 750 \]
- \[Y_t \mid \alpha_t \sim N(0, \exp{\alpha_t}), \quad \alpha_t = -.25 + .900\alpha_{t-1} + \varepsilon_t, \quad \{\varepsilon_t\} \sim \text{IID } N(0, .25), \quad t > 750. \]
- GA estimate 754, time 1053 secs
SV Process Example

Model: \(Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = \gamma + \phi \alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim \text{IID } N(0, \sigma^2) \)

True model:
- \(Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = -.175 + .977\alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim \text{IID } N(0, .1810), \ t \leq 250 \)
- \(Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = -.010 + .996\alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim \text{IID } N(0, .0089), \ t > 250 \)
- GA estimate 251, time 269s
SV Process Example-(cont)

True model:
- \(Y_t | \alpha_t \sim N(0, \exp \{\alpha_t\}) \), \(\alpha_t = -0.175 + 0.977 \alpha_{t-1} + \epsilon_t \), \(\{\epsilon_t\} \sim \text{IID } N(0, 0.1810), \ t \leq 250 \)
- \(Y_t | \alpha_t \sim N(0, \exp \{\alpha_t\}) \), \(\alpha_t = -0.010 + 0.996 \alpha_{t-1} + \epsilon_t \), \(\{\epsilon_t\} \sim \text{IID } N(0, 0.0089) \), \(t > 250 \).

Fitted model based on no structural break:
- \(Y_t | \alpha_t \sim N(0, \exp \{\alpha_t\}) \), \(\alpha_t = -0.0645 + 0.9889 \alpha_{t-1} + \epsilon_t \), \(\{\epsilon_t\} \sim \text{IID } N(0, 0.0935) \)
Fitted model based on no structural break:

- \(Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}) \), \(\alpha_t = -.0645 + .9889\alpha_{t-1} + \varepsilon_t \), \(\{\varepsilon_t\} \sim IID N(0, .0935) \)
Summary Remarks

1. MDL appears to be a good criterion for detecting structural breaks.

2. Optimization using a genetic algorithm is well suited to find a near optimal value of MDL.

3. This procedure extends easily to multivariate problems.

4. While estimating structural breaks for nonlinear time series models is more challenging, this paradigm of using MDL together with GA holds promise for break detection in parameter-driven models and other nonlinear models.

5. Extensions to outlier (both innovation and additive) detection are currently under study. Preliminary results look promising.