Structural Break Detection in Time Series Models

Richard A. Davis Thomas Lee Gabriel Rodriguez-Yam

Colorado State University (http://www.stat.colostate.edu/~rdavis/lectures)

This research supported in part by an IBM faculty award.

Illustrative Example

How many segments do you see?

Illustrative Example

Auto-PARM=Auto-Piecewise AutoRegressive Modeling

4 pieces, 2.58 seconds.

A Second Example

Any breaks in this series?

Introduction

- •Examples
 - AR
 - GARCH
 - Stochastic volatility
 - State space models

Model selection using Minimum Description Length (MDL)

- General principles
- Application to AR models with breaks
- Optimization using a Genetic Algorithm
 - Basics
 - Implementation for structural break estimation
- Simulation results
- Applications
- Simulation results for GARCH and SV models

Examples

1. Piecewise AR model:

$$Y_t = \gamma_j + \phi_{j1}Y_{t-1} + \dots + \phi_{jp_j}Y_{t-p_j} + \sigma_j\varepsilon_t, \quad \text{if } \tau_{j-1} \leq t < \tau_j,$$

where $\tau_0 = 1 < \tau_1 < \ldots < \tau_{m-1} < \tau_m = n + 1$, and $\{\varepsilon_t\}$ is IID(0,1).

Goal: Estimate

m = number of segments $\tau_j = \text{location of } j^{\text{th}} \text{ break point}$ $\gamma_j = \text{level in } j^{\text{th}} \text{ epoch}$ $p_j = \text{order of AR process in } j^{\text{th}} \text{ epoch}$ $(\phi_{j1}, \dots, \phi_{jp_j}) = \text{AR coefficients in } j^{\text{th}} \text{ epoch}$ $\sigma_j = \text{scale in } j^{\text{th}} \text{ epoch}$

Examples (cont)

2. Segmented GARCH model:

$$Y_t = \sigma_t \varepsilon_t,$$

$$\sigma_t^2 = \omega_j + \alpha_{j1} Y_{t-1}^2 + \dots + \alpha_{jp_j} Y_{t-p_j}^2 + \beta_{j1} \sigma_{t-1}^2 + \dots + \beta_{jq_j} \sigma_{t-q_j}^2, \quad \text{if } \tau_{j-1} \le t < \tau_j,$$

where $\tau_0 = 1 < \tau_1 < \ldots < \tau_{m-1} < \tau_m = n + 1$, and $\{\varepsilon_t\}$ is IID(0,1).

3. Segmented stochastic volatility model:

$$Y_t = \sigma_t \varepsilon_t,$$

$$\log \sigma_t^2 = \gamma_j + \phi_{j1} \log \sigma_{t-1}^2 + \dots + \phi_{jp_j} \log \sigma_{t-p_j}^2 + \nu_j \eta_t, \quad \text{if } \tau_{j-1} \le t < \tau_j.$$

4. Segmented state-space model (SVM a special case):

$$p(y_t | \alpha_t, ..., \alpha_1, y_{t-1}, ..., y_1) = p(y_t | \alpha_t) \text{ is specified}$$

$$\alpha_t = \gamma_j + \phi_{j1}\alpha_{t-1} + \dots + \phi_{jp_j}\alpha_{t-p_j} + \sigma_j\eta_t, \quad \text{if } \tau_{j-1} \le t < \tau_j.$$

Model Selection Using Minimum Description Length

Basics of MDL:

Choose the model which *maximizes the compression* of the data or, equivalently, select the model that *minimizes the code length* of the data (i.e., amount of memory required to encode the data).

M =class of operating models for $y = (y_1, \ldots, y_n)$

 $L_F(y)$ = code length of y relative to $F \in M$

Typically, this term can be decomposed into two pieces (two-part code),

$$L_{\mathbf{F}}(y) = L(\hat{\mathbf{F}}/y) + L(\hat{e} \mid \hat{\mathbf{F}}),$$

where

$$L(\hat{F}/y) = \text{code length of the fitted model for } F$$

 $L(\hat{e}/\hat{F}) = \text{code length of the residuals based on the fitted model}$

Model Selection Using Minimum Description Length (cont)

Applied to the segmented AR model:

$$Y_t = \gamma_j + \phi_{j1}Y_{t-1} + \dots + \phi_{jp_j}Y_{t-p_j} + \sigma_j\varepsilon_t, \quad \text{if } \tau_{j-1} \le t < \tau_j,$$

First term $L(\hat{F}/y)$:

$$L(\hat{F}/y) = L(m) + L(\tau_1, \dots, \tau_m) + L(p_1, \dots, p_m) + L(\hat{\psi}_1 \mid y) + \dots + L(\hat{\psi}_m \mid y)$$

= $\log_2 m + m \log_2 n + \sum_{j=1}^m \log_2 p_j + \sum_{j=1}^m \frac{p_j + 2}{2} \log_2 n_j$

Second term $L(\hat{e} | \hat{F})$:

$$L(\hat{e} | \hat{F}) \approx -\sum_{j=1}^{m} \log_2 L(\hat{\psi}_j | y)$$

$$MDL(m,(\tau_1, p_1), \dots, (\tau_m, p_m)) = \log_2 m + m \log_2 n + \sum_{j=1}^m \log_2 p_j + \sum_{j=1}^m \frac{p_j + 2}{2} \log_2 n_j + \sum_{j=1}^m (\log_2(2\pi\hat{\sigma}_j^2) + n_j)$$

NCAR-IMAGe 2006

Optimization Using Genetic Algorithm

Basics of GA:

Class of optimization algorithms that mimic natural evolution.

- Start with an initial set of *chromosomes*, or population, of possible solutions to the optimization problem.
- Parent chromosomes are randomly selected (proportional to the rank of their objective function values), and produce offspring using *crossover* or *mutation* operations.
- After a sufficient number of offspring are produced to form a second generation, the process then *restarts to produce a third generation*.
- Based on Darwin's *theory of natural selection*, the process should produce future generations that give a *smaller (or larger)* objective function.

Optimization Using Genetic Algorithm

Genetic Algorithm: Chromosome consists of n genes, each taking the value of -1 (no break) or p (order of AR process). Use natural selection to find a *near* optimal solution.

Map the break points with a chromosome *c* via

$$(m,(\tau_1,p_1)...,(\tau_m,p_m)) \longleftrightarrow c = (\delta_1,...,\delta_n),$$

where

$$\delta_t = \begin{cases} -1, \text{ if no break point at } t, \\ p_j, \text{ if break point at time } t = \tau_{j-1} \text{ and AR order is } p_j \end{cases}$$

For example,

would correspond to a process as follows:

AR(2), t=1:5; AR(0), t=6:10; AR(0), t=11:14; AR(3), t=15:20

Implementation of Genetic Algorithm—(cont)

Generation 0: Start with *L* (200) randomly generated chromosomes, c_1, \ldots, c_L with associated MDL values, $MDL(c_1), \ldots, MDL(c_L)$.

Generation 1: A new child in the next generation is formed from the chromosomes c_1, \ldots, c_L of the previous generation as follows:

> with probability π_c , crossover occurs.

• two parent chromosomes c_i and c_j are selected at random with probabilities proportional to the ranks of $MDL(c_i)$.

• *k*th gene of child is $\delta_k = \delta_{i,k}$ w.p. $\frac{1}{2}$ and $\delta_{i,k}$ w.p. $\frac{1}{2}$

- > with probability $1 \pi_c$, *mutation* occurs.
 - a parent chromosome c_i is selected
 - *k*th gene of child is $\delta_k = \delta_{i,k}$ w.p. π_1 ; -1 w.p. π_2 ; and *p* w.p. $1 \pi_1 \pi_2$.

Implementation of Genetic Algorithm—(cont)

Execution of GA: Run GA until *convergence* or until a *maximum number* of generations has been reached. .

Various Strategies:

- include the top ten chromosomes from last generation in next generation.
- use multiple *islands*, in which populations run independently, and then allow *migration* after a fixed number of generations. This implementation is amenable to *parallel computing*.

Simulation Examples-based on Ombao et al. (2001) test cases

1. Piecewise stationary with dyadic structure: Consider a time series following the model,

$$Y_{t} = \begin{cases} .9Y_{t-1} + \varepsilon_{t}, & \text{if } 1 \le t < 513, \\ 1.69Y_{t-1} - .81Y_{t-2} + \varepsilon_{t}, & \text{if } 513 \le t < 769, \\ 1.32Y_{t-1} - .81Y_{t-2} + \varepsilon_{t}, & \text{if } 769 \le t \le 1024, \end{cases}$$

where {\varepsilon_{t}} ~ IID N(0,1).

NCAR-IMAGe 2006

1. Piecewise stat (cont)

Implementation: Start with NI = 50 islands, each with population size L = 200.

After every *Mi* = 5 generations, allow migration.

Replace worst 2 in Island 2 with best 2 from Island 4.

Stopping rule: Stop when the max MDL does not change for 10 consecutive migrations or after 100 migrations.

Span configuration for model selection: Max AR order K = 10,

p	0	1	2	3	4	5	6	7-10	11-20
m _p	10	10	12	14	16	18	20	25	50
π_{ρ}	1/21	1/21	1/21	1/21	1/21	1/21	1/21	1/21	1/21

1. Piecewise stat (cont)

GA results: 3 pieces breaks at τ_1 =513; τ_2 =769. Total run time 16.31 secs Fitted model: $\phi_1 \qquad \phi_2 \qquad \sigma^2$

True Model

0.5

0.4

0.3

0.2

0.1

0.0

0.0

Fitted Model

0.2

0.4

0.8

0.6

Time

Simulation Examples (cont)

2. Slowly varying AR(2) model:

 $Y_t = a_t Y_{t-1} - .81 Y_{t-2} + \varepsilon_t$ if $1 \le t \le 1024$

where $a_t = .8[1 - 0.5\cos(\pi t / 1024)]$, and $\{\varepsilon_t\} \sim IID N(0,1)$.

2. Slowly varying AR(2) (cont)

GA results: 3 pieces, breaks at τ_1 =293, τ_2 =615. Total run time 27.45 secs

Fitted model: ϕ_1 ϕ_2 σ^2 1- 292:.365-0.7531.149293- 614:.821-0.7901.176615-1024:1.084-0.7600.960

True Model

2. Slowly varying AR(2) (cont)

In the graph below right, we average the spectogram over the *GA fitted models* generated from each of the 200 simulated realizations.

True Model

Average Model

Simulation Examples (cont)

3. Simulated data from Fearnhead (2005):

True model has 9 changepoints

MAP est of m=9 while MAP of m and changepoint locations gives m= 8 NCAR-IMAGe 20 transports. Plot is conditional on 9 changepoints.

4. Fearnhead example

True Model

Fitted APARM Model

Theory

Consistency.

Suppose the number of change points *m* is known and let

$$\lambda_1 = \tau_1/n, \ldots, \lambda_m = \tau_m/n$$

be the relative (true) changepoints. Then

$$\hat{\lambda}_j \rightarrow \lambda_j$$
 a.s.

where $\hat{\lambda}_j = \hat{\tau}_j / n$ and $\hat{\tau}_j = \text{Auto-PARM}$ estimate of τ_j .

Consistency of the estimate of *m*?

- For *n* large, Auto-PARM estimate is $\geq m$.
- Have not proved equality.

Examples

Speech signal: GREASY

Speech signal: GREASY n = 5762 observations m = 15 break points Run time = 18.02 secs

NCAR-IMAGe 2006

Examples

Mine explosion seismic trace in Scandinavia: (Shumway and Stoffer 2000, Stoffer et al. 2005)

Two waves: P (primary) compression wave and S (shear) wave

Examples

Example: EEG Time series

Data: Bivariate EEG time series at channels T3 (left temporal) and P3 (left parietal). Female subject was diagnosed with left temporal lobe epilepsy. Data collected by Dr. Beth Malow and analyzed in Ombao et al (2001). (n=32,768; sampling rate of 100H). Seizure started at about 1.85 seconds.

NCAR-IMAGe 2006

Example: EEG Time series (cont)

Remarks:

- the general conclusions of this analysis are similar to those reached in Ombao et al.
- prior to seizure, power concentrated at lower frequencies and then spread to high frequencies.
- power returned to the lower frequencies at conclusion of seizure.

Example: EEG Time series (cont)

Remarks (cont):

- T3 and P3 strongly coherent at 9-12 Hz prior to seizure.
- strong coherence at low frequencies just after onset of seizure.
- strong coherence shifted to high frequencies during the seizure.

T3/P3 Coherency

NCAR-IMAGe 2006

Time in seconds

Application to GARCH

Garch(1,1) model:
$$Y_t = \sigma_t \varepsilon_t, \quad \{\varepsilon_t\} \sim \text{IID}(0,1)$$

 $\sigma_t^2 = \omega_j + \alpha_j Y_{t-1}^2 + \beta_j \sigma_{t-1}^2, \quad \text{if } \tau_{j-1} \le t < \tau_j$

AG = Andreou and Ghysels (2002)

NCAR-IMAGe 2006

$$\sigma_t^2 = \begin{cases} .4 + .1Y_{t-1}^2 + .5\sigma_{t-1}^2, & \text{if } 1 \le t < 501 \\ .4 + .1Y_{t-1}^2 + .6\sigma_{t-1}^2, & \text{if } 501 \le t < 1000 \end{cases}$$

# of CPs	GA %	AG %
0	80.4	72.0
1	19.2	24.0
≥2	0.4	0.4

Application to GARCH (cont)

 $\begin{array}{ll} \underline{\text{Garch}(1,1) \text{ model:}} & Y_t = \sigma_t \varepsilon_t, \quad \{\varepsilon_t\} \sim \text{IID}(0,1) \\ & \sigma_t^2 = \omega_j + \alpha_j Y_{t-1}^2 + \beta_j \sigma_{t-1}^2, \quad \text{if } \tau_{j-1} \leq t < \tau_j. \end{array}$

AG = Andreou and Ghysels (2002)

$$\sigma_t^2 = \begin{cases} .4 + .1Y_{t-1}^2 + .5\sigma_{t-1}^2, & \text{if } 1 \le t < 501 \\ .4 + .1Y_{t-1}^2 + .8\sigma_{t-1}^2, & \text{if } 501 \le t < 1000 \end{cases}$$

# of CPs	GA %	AG %
0	0.0	0.0
1	96.4	95.0
≥2	3.6	0.5

Application to GARCH (cont)

More simulation results for Garch(1,1): $Y_t = \sigma_t \varepsilon_t$, $\{\varepsilon_t\} \sim IID(0,1)$

$$\sigma_t^2 = \begin{cases} .05 + .4Y_{t-1}^2 + .3\sigma_{t-1}^2, & \text{if } 1 \le t < \tau_1, \\ 1.00 + .3Y_{t-1}^2 + .2\sigma_{t-1}^2, & \text{if } \tau_1 \le t < 1000 \end{cases}$$

τ_1		Mean	SE	Med	Freq
50	GA	52.62	11.70	50	.98
50	Berkes	71.40	12.40	71	
250	GA	251.18	4.50	250	.99
230	Berkes	272.30	18.10	271	
500	GA	501.22	4.76	502	.98
300	Berkes	516.40	54.70	538	

Berkes = Berkes, Gombay, Horvath, and Kokoszka (2004).

Application to Parameter-Driven SS Models

State Space Model Setup:

Observation equation:

 $p(y_t \mid \alpha_t) = \exp\{\alpha_t y_t - b(\alpha_t) + c(y_t)\}.$

State equation: $\{\alpha_t\}$ follows the piecewise AR(1) model given by

$$\alpha_t = \gamma_k + \phi_k \alpha_{t-1} + \sigma_k \varepsilon_t, \quad \text{if} \quad \tau_{k-1} \leq t < \tau_k,$$

where $1 = \tau_0 < \tau_1 < ... < \tau_m < n$, and $\{\varepsilon_t\} \sim IID N(0,1)$.

Parameters:

m = number of break points τ_k = location of break points γ_k = level in kth epoch ϕ_k = AR coefficients kth epoch σ_k = scale in kth epoch

Application to Structural Breaks—(cont)

Estimation: For $(m, \tau_1, \ldots, \tau_m)$ fixed, calculate the approximate likelihood evaluated at the "MLE", i.e.,

$$L_{a}(\hat{\psi}; y_{n}) = \frac{|G_{n}|^{1/2}}{(K+G_{n})^{1/2}} \exp\{y_{n}^{T}\alpha^{*} - 1^{T}\{b(\alpha^{*}) - c(y_{n})\} - (\alpha^{*}-\mu)^{T}G_{n}(\alpha^{*}-\mu)/2\},\$$

where $\hat{\psi} = (\hat{\gamma}_1, \dots, \hat{\gamma}_m, \hat{\phi}_1, \dots, \hat{\phi}_m, \hat{\sigma}_1^2, \dots, \hat{\sigma}_m^2)$ is the MLE.

Remark: The exact likelihood is given by the following formula $L(\psi; y_n) = L_a(\psi; y_n) Er_a(\psi),$ where $Er_a(\psi) = \int \exp\{R(\alpha_n; \alpha^*)\} p_a(\alpha_n | y_n; \psi) d\alpha_n.$

It turns out that $log(Er_a(\psi))$ is nearly linear and can be approximated

by a linear function via importance sampling,

$$e(\psi) \sim e(\hat{\psi}_{AL}) + \dot{e}(\hat{\psi}_{AL})(\psi - \hat{\psi}_{AL})$$

Count Data Example

SV Process Example

Model: $Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = \gamma + \phi \alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim IID \ N(0, \sigma^2)$

True model:

- $Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = -.05 + .975\alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim \text{IID N}(0, .05), \ t \le 750$
- $Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = -.25 + .900\alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim \text{IID N}(0, .25), \ t > 750.$
- GA estimate 754, time 1053 secs

SV Process Example

Model: $Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = \gamma + \phi \alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim IID \ N(0, \sigma^2)$

True model:

- $Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = -.175 + .977\alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim \text{IID N}(0, .1810), \ t \le 250$
- $Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = -.010 + .996\alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim \text{IID N}(0, .0089), \ t > 250.$
- GA estimate 251, time 269s

NCAR-IMAGe 2006

SV Process Example-(cont)

True model:

•
$$Y_t \mid \alpha_t \sim N(0, \exp\{a_t\}), \ \alpha_t = -.175 + .977\alpha_{t-1} + e_t, \ \{\varepsilon_t\} \sim \text{IID N}(0, .1810), \ t \le 250$$

• $Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = -.010 + .996\alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim IID \ N(0, .0089), \ t > 250.$

Fitted model based on no structural break:

• $Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = -.0645 + .9889\alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim IID \ N(0, .0935)$

NCAR-IMAGe 2006

SV Process Example-(cont)

Fitted model based on no structural break:

•
$$Y_t \mid \alpha_t \sim N(0, \exp\{\alpha_t\}), \ \alpha_t = -.0645 + .9889\alpha_{t-1} + \varepsilon_t, \ \{\varepsilon_t\} \sim IID \ N(0, .0935)$$

