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lllustrative Example

How many segments do you see?
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lllustrative Example

Auto-PARM=Auto-Piecewise AutoRegressive Modeling

4 pieces, 2.58 seconds.
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A Second Example

Any breaks in this series? _
Log-returns for Merck (2 Jan 2003 to 28 April 2006, N=837)
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» Introduction
eExamples
= AR
= GARCH
= Stochastic volatility
= State space models
» Model selection using Minimum Description Length (MDL)
e General principles
* Application to AR models with breaks
» Optimization using a Genetic Algorithm
* Basics
e Implementation for structural break estimation
» Simulation results

» Applications
» Simulation results for GARCH and SV models
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Examples

1. Piecewise AR model:

Y, =y, +(|)j1Yt—1+”'+¢jp,-Yt +o;g, Ift,<t<rt,

o,
where tp=1<1,<...<1,,<T,=Nn+1, and {g} is 1ID(0,1).
Goal: Estimate

m = number of segments

t; = location of | break point

v; = level in j" epoch

p, = order of AR process in j"" epoch
(9j0:---10;5,) = AR coefficients in ™ epoch
c; = scale in j" epoch
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Examples (cont)

2. Segmented GARCH model:

Yt = G,&y,

2 2 2 2 2 :
G (’)_ +<x . —|—on o—|—‘ l . —|— . (s —|—oon+ . ( ; - < -

where tp=1<1,<...<1,1<T,=Nn+1,and {g} is 1ID(0,1).

3. Segmented stochastic volatility model:

Yt = G;&ys

2 2 2 :
logo, =v; +¢,logo,; +---+¢;, logor, +vim, If 7y, <t<7;

4. Segmented state-space model (SVM a special case):

PCY; [0t 04, Yegoes Y1) = PCY: | ) 1S specified
O =Vj o+ +¢p 0, +om, Ity <t<7
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Model Selection Using Minimum Description Length

Basics of MDL.:

Choose the model which maximizes the compression of the data or,
equivalently, select the model that minimizes the code length of the
data (i.e., amount of memory required to encode the data).

M = class of operating models fory = (y;, . . ., Y,)

L-(y) = code length of y relative to F e M
Typically, this term can be decomposed into two pieces (two-part code),

L (y) = L(Fly) +L(é|F),
where

L(I:'Iy) = code length of the fitted model for F

LEIF) = code length of the residuals based on the fitted model
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Model Selection Using Minimum Description Length (cont)

Applied to the segmented AR model:
Y yj +(|)11Yt -1 T +(|)
First term L(F|y) .

ift.. < .
ip Yiop, + O €0 Ifrj_l_t<rj,

L(Fy)= L(M)+L(Ty oo, T) + L(Pyy- o P) + LT | Y) -+ L(G, | )
+2

Iogzm+mlogzn+ZIog2 P, +Z log, n;

Second term L(é|l:‘) :
L(é|ﬁ) z—Z‘Jlogz L(\Tjj 'Y)
=1
MDL(m (Tl’ pl) (Tml pm))

=log, m+mlog, n + Zlog2 P, +Z

=1

pj+2

log, n; + > _(n;log,(2n57)+n;)/2
j=1

10
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Optimization Using Genetic Algorithm

Basics of GA:
Class of optimization algorithms that mimic natural evolution.

e Start with an initial set of chromosomes, or population, of
possible solutions to the optimization problem.

e Parent chromosomes are randomly selected (proportional to
the rank of their objective function values), and produce
offspring using crossover or mutation operations.

« After a sufficient number of offspring are produced to form a
second generation, the process then restarts to produce a third
generation.

e Based on Darwin’s theory of natural selection, the process
should produce future generations that give a smaller (or larger)

objective function.
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Optimization Using Genetic Algorithm

Genetic Algorithm: Chromosome consists of n genes, each taking
the value of -1 (no break) or p (order of AR process). Use natural
selection to find a near optimal solution.

Map the break points with a chromosome c via

(m,(Tl, pl)""(rm’ pm)) > C:(Sl""’sn)’

where
{—L if no break pointatt,
t ju—

p;, if break pointat timet =1, and AR order is p;.
For example,

c=(2 -1,-1,-1,-1,0,-1, -1,-1,-1,0, -1, -1, -1, 3, -1, -1, -1, -1,-1)
t 1 6 11 15

would correspond to a process as follows:

AR(2), t=1:5; AR(0), t=6:10; AR(0), t=11:14; AR(3), t=15:20

Michigan 10-07
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Implementation of Genetic Algorithm—(cont)

Generation 0: Start with L (200) randomly generated chromosomes,
c,, . . .,C,_ Wwith associated MDL values, MDL(c,), . . ., MDL(c)).

Generation 1: A new child in the next generation is formed from the
chromosomes c,, . . ., ¢, of the previous generation as follows:

» with probability =_, crossover occurs.

= two parent chromosomes c; and ¢c; are selected at random with
probabilities proportional to the ranks of MDL(c)).

= k' gene of child is 5, = &, w.p. %2 and §;, w.p. %2
» with probability 1- =, mutation occurs.
= a parent chromosome c¢; is selected

= k' gene of child is §, = §;, W.p. my ; =1 w.p. myand p w.p. 1- m;—,.

Michigan 10-07 13



Implementation of Genetic Algorithm—(cont)

Execution of GA: Run GA until convergence or until a maximum
number of generations has been reached. .

Various Strategies:

» include the top ten chromosomes from last generation in next
generation.

» use multiple islands, in which populations run independently,
and then allow migration after a fixed number of generations.
This implementation is amenable to parallel computing.

Michigan 10-07
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Simulation Examples-based on Ombao et al. (2001) test cases

1. Piecewise stationary with dyadic structure: Consider a time
series following the model,

Y., +¢, If 1<t<513

Y, =41.69Y,, - .81 _,+¢, If 513<t< 769,
1.32Y, - .81V, +¢, if 769<t<1024

where {g} ~ [ID N(0,1).
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1. Piecewise stat (cont)

Implementation: Start with NI =50 islands, each with population size L = 200.

After every Mi = 5 generations, allow migration.

Replace worst 2 in Island 2
with best 2 from Island 4.

Stopping rule: Stop when the max
MDL does not change for 10
consecutive migrations or after
100 migrations.

3%2

4

oy

Span configuration for model selection: Max AR order K = 10,

P 0 1 2 3 4 5 6 /7-10  11-20
m, 10 10 12 14 16 18 20 25 50
T, 1/21 1/21 1/21 1/21 1/21 1/21 1/21 1/21 1/21

Michigan 10-07
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1. Piecewise stat (cont)

GA results: 3 pieces breaks at 1,=513; 1,=769. Total run time 16.31 secs
Fitted model: b, b, o?
1-512:| .857 9945
513-768:| 1.68 -0.801 1.1134
769-1024:| 1.36 -0.801 1.1300

True Model Fitted Model
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Simulation Examples (cont)

2. Slowly varying AR(2) model:
Y,=aY_,—.81Y_,+g Iif 1<t<1024

where a, =.8[1-0.5cos(nt/1024)], and {¢} ~ 1ID N(0,1).
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2. Slowly varying AR(2) (cont)

GA results: 3 pieces, breaks at 1,=293, t,=615. Total run time 27.45 secs

Fitted model: b, b, o?
1-292: .365 -0.753 1.149
293- 614: .821 -0.790 1.176

615-1024: 1.084 -0.760 0.960
True Model Fitted Model
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2. Slowly varying AR(2) (cont)

In the graph below right, we average the spectogram over the GA
fitted models generated from each of the 200 simulated realizations.

True Model Average Model
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Theory

Consistency.
Suppose the number of change points m is known and let
A=t 0, L AT /N

be the relative (true) changepoints. Then

N

A >N as.
where Xj =1;/n and 1, = Auto-PARM estimate of ;.
Consistency of the estimate of m and the AR orders p,, . . .,p,?
* For n large, Auto-PARM estimate is > m.

 Close to a proof of consistency:
(Joint work with Stacey Hancock and Yi-Ching Yao.)
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Examples

Speech signal: GREASY
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Speech signal: GREASY
n = 5762 observations

m = 15 break points

Run time = 18.02 secs
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Examples

Mine explosion seismic trace in Scandinavia: (Shumway and Stoffer
2000, Stoffer et al. 2005)

Two waves: P (primary) compression wave and S (shear) wave
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Examples

AR orders: 1 7
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Log-returns for Merck (MRK), 2 Jan 2003 to 28 April 2006 (N=837)

0.1

log-returns
0.1 0.0
| |

-0.2

-0.3
|

N

T~

Analysis by
Wing Chan

| 25 Feb 2005:
?77?

| |
0 / 200

I I
400 600

|
80(&

13 Jan 2004: Merck
announced the filing
of ARCOXIA®

28 Sep 2004: Merck
announces withdrawal
of VIOXX ®
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14 Oct 2004: rumor
surfaced about potential
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news on Wall Street.
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Example: EEG Time series

Data: Bivariate EEG time series at channels T3 (left temporal) and P3 (left
parietal). Female subject was diagnosed with left temporal lobe epilepsy.
Data collected by Dr. Beth Malow and analyzed in Ombao et al (2001).
(n=32,768; sampling rate of 100H). Seizure started at about 1.85 seconds.

G AGAvaniata ret s Ul s plebseakibos dodels; 171 hréakpdin®, rdy s, 4, 1
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Example: EEG Time series (cont)

Remarks:

 the general conclusions of this analysis are similar to those
reached in Ombao et al.

e prior to seizure, power concentrated at lower frequencies and
then spread to high frequencies.

* power returned to the lower frequencies at conclusion of seizure.
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Example: EEG Time series (cont)

Remarks (cont):
« T3 and P3 strongly coherent at 9-12 Hz prior to seizure.

* strong coherence at low frequencies just after onset of seizure.

* strong coherence shifted to high frequencies during the seizure.

T3/P3 Coherency
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20

10

\ \ \ \ \ \ \
1 50 100 150 200 250 300
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Application to GARCH

Garch(1,1) model: Y, =ce,

1 200 400
Time

CP estimate = 506

600

800

AG = Andreou and Ghysels (2002)

Michigan 10-07

1000

{e}~ 11D(0,1)

2 2 2

ifr,, <t<r,.

P [ 4+.0Y2%+50%,, if 1<t<501
=X
© | 4+.v2 +.607, if 501<t<1000
# of CPs GA AG
% %
0 80.4 72.0
1 19.2 24.0
> 2 0.4 0.4
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Application to GARCH (cont)

Garch(1,1) model: Y, =cg, {e}~11D(0,1)

2 2 2 -
o, =w; +a,Y; +Bor,, Ift, <t<7;

[ 4+.Y2 +502,, if 1<t<501

< o =4
© |4+ +.857,, if 501<t<1000
© # of CPs GA AG
N % %
N 0 0.0 0.0
I1 2(I)O 4(I)O 6(I)O 8(I)O 1OIOO 1 96 ) 4 95 ' O
Time
P estimate = 502
CP estimate = 50 > 36 05
AG = Andreou and Ghysels (2002)
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Application to GARCH (cont)

More simulation results for Garch(1,1) : Y,=ocg, {e}~11D(0,1)
) _ 05+.4Y7 +.307,, if 1<t<t,
Y 11.00+.3v2 +.267,, if 1,<t<1000
T, Mean SE Med Freq
=0 GA 52.62 11.70 50 .98
Berkes 71.40 12.40 /1
250 GA 251.18 4.50 250 .99
Berkes | 272.30 | 18.10 271
500 GA 501.22 4.76 502 .98
Berkes | 516.40 | 54.70 538

Michigan 10-07
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Application to Parameter-Driven SS Models

State Space Model Setup:

Observation equation:

ply: | o) = exp{o,y, — b(ay) + c(yy}-

State equation: {o,} follows the piecewise AR(1) model given by

=Y+ 00 ,+08, If 1,5t <1,
where l=1t,< 1 < ... <t,<n, and {g}~ 1ID N(O,1).

Parameters:
m = number of break points
1, = location of break points
v = level in ki epoch
¢, = AR coefficients ki" epoch
o, = scale in k" epoch

Michigan 10-07

39



Application to Structural Breaks—(cont)

Estimation: For (m, 14, . .., 1) fixed, calculate the approximate

likelihood evaluated at the “MLE”, i.e.,

expfyno’ —1'{b(a’) —c(y,)}- (o ) G (o —p)/2},

|1/ 2

~ov_ |G,
L. (w;y,) = (K +Gn)1/2

where ¥=Fpeen o bpee b 62,...,62) is the MLE.

Remark: The exact likelihood is given by the following formula
L(y;y,) = L (v o) Er (w),

Er, (y) = [ exp{R(a,; a*)}p, (0t | Yo w) e,
It turns out that log(Er, (y)) is nearly linear and can be approximated

where

by a linear function via importance sampling,
e(y) ~ e )+ e, ) (v —w,)

Michigan 10-07

40



SV Process Example

Model: Y,| o, ~ N(O,exp{a}), o,=v +d o+ &, {e}~1ID N(O, c?)

1315

1310

MDL
1305

1300

1295
|

1 500 1000 1500 2000 2500 3000 1 500 1000 1500 2000 2500 3000

time Breaking Point

True model:

= Y, | o, ~ NQ©, exp{o}), a,=-.05+ .975a,,+¢,, {e}~11D N(0, .05), t< 750
*Y,| o, ~ N(O, exp{o, }), a,=-.25+.9000,+ ¢, {e}~11D N(O, .25), t> 750.
= GA estimate 754, time 1053 secs

Michigan 10-07
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SV Process Example

Model: Y,| o, ~ N(O,exp{a}), o,=v +d o+ &, {e}~1ID N(O, c?)

-505 -500

0.5
-510

-520 -

MDL
515

-0.5
-525

-530

1 100 200 300 400 500 1 100 200 300 400 500

time Breaking Point

True model:

= Y, | a,~ N, exp{a}), a,=-.175+ .977a,,+ ¢, {e}~11D N(0, .1810), t < 250
=Y, | o, ~ N(O, exp{c, }), a,=-.010 +.9960., ,+ ¢, {e}~11D N(O, .0089), t > 250.
= GA estimate 251, time 269s
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SV Process Example-(cont)

True model:
" Y| o, ~N(, exp{a;}), o,=-175+ .977a,,+¢€,, {e}~1ID N(O, .1810), t<250
=Y, | o, ~ N, exp{c }), a,=-.010+.9960a,,+ ¢, {e}~11D N(O, .0089), t> 250.

Fitted model based on no structural break:

“ Y, | o, ~ N(O, exp{o}), a,=-.0645 + 98890, .+ & , {e}~1ID N(O, .0935)
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original series
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time time
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SV Process Example-(cont)

Fitted model based on no structural break:

“ Y, | o, ~ N(O, exp{o}), a,=-.0645 + 98890, ,+ & , {e}~1ID N(O, .0935)

1simulated series W\\

1.0

0.5

-0.5

y
0.0
MDL
478 476 474 472 470 468 466

T T T T T T T T T T T T
1 100 200 300 400 500 1 100 200 300 400 500

time Breaking Point
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Summary Remarks

1. MDL appears to be a good criterion for detecting structural
breaks.

2. Optimization using a genetic algorithm is well suited to find a
near optimal value of MDL.

3. This procedure extends easily to multivariate problems.

4. While estimating structural breaks for nonlinear time series
models is more challenging, this paradigm of using MDL together
GA holds promise for break detection in parameter-driven models
and other nonlinear models.

5. Extensions to outlier (both innovation and additive) detection are
currently under study. Preliminary results look promising.
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