Lindgren Symposium 6/06

Extremes of Space-Time Processes
With Heavy-Tailed Distributions

Richard A. Davis
Colorado State University
www.stat.colostate.edu/~rdavis

Thomas Mikosch
University of Copenhagen



Outline

e A Class of Space-Time Processes: X¢(s) = > "0 i(s) Zs_i(s), s €0, 1]
— Dependence properties

e Preliminaries on Regular Variation on D([0, 1]%)
— Examples

e Point Process Convergence

— Basic properties

e Application

Lindgren Symposium 6/06



EVT for Space-Time Processes

Basic set-up: 2 components, spatial and temporal.

Spatial part. Let Z(s) be a random field on [0, 1]%.

e Usually d =1 (transect) or d = 2 (two-dimensional space).

e Z(s) is value of the random field at location s € [0, 1]¢.

e View Z(s) as a random element of D = D([0, 1]%) of cadlag functions
Ji-topology; see Bickel and Wichura (1971).

e Will assume that Z has reqularly varying tail probabilities —to be described

later.
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EVT for Space-Time Processes

Temporal part. Build in serial dependence by filtering the random field at each

location s € [0,1]%. That is, set

> 9

Xi(s) =Y wils) Zi_i(s). s e[0.1]",

=0

(

where
o (Z;)tez, are iid copies of the random field Z on [0, 1]

e ¢;'s are deterministic cadlag real-valued fields on [0, 1]%.

Note: For sy, ..., s fixed,

[ X.(s1) | _Zio Vi($1) Z—i(s1)

Xt = : = : = E fl.z‘_Zt_.;;
b 5.9 !
_At(sﬁc)_ > ico Vi(Sk) Zi—i(s) i=0

1s a multivariate linear time series.
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Dependence structure of (X3)

Suppose the random field Z(s) is stationary with covariance function vyz(u),

Cov(Z(s+u), Z(s)) = vz(u).

Spatial covariance of X;.

o e
e a = 4 E -~
4=0
which is stationary in space (independent of s) if the 1);'s are constant functions.
In this case,

C(.ﬁ)&-—*(JYt(S )_‘ ){ S Z W ,.}.,.

J=0
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Dependence structure of (X3)

Time covariance function of X;(s). For each s € [0, 1)%, the time series X;(s) is a

linear process with covariance function

Cov(Xesn(s), Xels)) = | D vyn(s)es(s) | 72(0)

If the ¥;'s are constant functions, then the serial correlation does not depend on s.
Note: In fact, the time series Xz defined on D(]0, 1]9) is strictly stationary.

Space-time covariance function of Xy(s).

Cov(Xiin(s +u), Xi(s)) = Z Vipn(s +u)i(s) | vz(u)
j=0
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which, if the 1;’s are constant functions, is equal to

Yx(h,u) = Cov(Xppa(s + ), Xy(s))

Remarks:
(1) The filter functions v; influence both the spatial and temporal covariances.
(2) If the +;’s are constant functions, then X; has a multiplicative covariance
function, 1.e.,
vx(h,u) = Cov(Xip(s+ u), X¢(s))

= 1(h)7z(u)
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Examples and Applications

1. Maximum ozone levels. Suppose there exists a standard L for annual maxima
of ozone levels over the rectangular region [0, 1]%. Set

Xi(s) = maximum ozone level at site s during vear t.
Then the probability the standard L is not exceeded in n consecutive years is

P( max X(s) < L, foralls €[0,1]%).

t=1,....n
2. Sea level (de Haan and Lin (2001)). Let f(s) represent the height of a dyke off
the Dutch coast at location s and set
X¢(s) = maximum sea level at site s during day ¢
The probability that the dvke is not breached along the coast for n consecutive

days 1s

P(max Xy(s) < f(s), forall s € [0,1]).

t=1,....n
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Regular Variation on D(]0, 1}d) Preliminaries:

Regular variation of Z = (Zy, ..., Zy)'. There exists a random vector @ defined
on S™ ! such that for all z > 0
PIZ| > 12, 2/|Z € )/ P(1Z]) > 1) % PO € -,

as t — oo where — is weak convergence on S™7 1, the unit sphere in R™.

e (0 € ) is called the spectral measure.

e o Is the index of regular variation.

Equivalence: There exists a,, > 0 such that for all z > 0
nP(|Z|| > anz. Z/|Z|| € -) = 2 “P(0 € -)

or. equivalently,
nP(a'Z € -) = m(-)
for some Radon measure m on B (Em\ {0}).
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= - ) . 9
Examples of Reeular Variation on R=:
O

1. If Z1 > 0 and Zy > 0 are iid RV («), then Z = (Z1, Zs) is regularly varying
with index a and spectral distribution
PO =(0.1)) = P(@ = (1.0)) = .5 (mass on axes).

Interpretation: Unlikely that Z; and Zy are both large at the same time.

Figure: plot of (Z,,Z,) n
for realization of 10,000.
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Examples of Recular Variation on R=:
)

2. It Zy = Zy > 0 and RV(a), then Z = (Zy, Z5) is regularly varying with index a
and spectral distribution

P8 =(1/v2,1/y/2)) =1
3. AR(1): Zy = .9Z;_1 + € , & ~IID symmetric stable (1.8). Then Z = (Z;, Z3) is

RV(1.8) with spectral measure

PO
P(6

(1,.9)/4/1.81) = .9898

— (0,1)) = .0102 3
Figure: plot of (Z, Z,,,) =
for realization of 10,000. | ~ =-
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Regular Variation on @( 0, 1}0“’)

Polar coordinate transformation: For the cadlag field z € D\{0}

v ([l 7)), T=2/]7]w,

where [|x]|x 1s the sup-norm of z, and 0 represents the zero function: We write

D= (0,00] x S,where S = {7 : 2 € D\{0}} .

Reg variation on D = D([0, 1]¢) (de Haan and Lin ‘01; Hult and Lindskog ‘05).
X 1s reqularly varying with spectral measure o on S and index oo > 0, if there

exists a, > 0 such that for all £ > 0,

nP(|X||o >ta,, X €) St (),

w . . .
where — denotes weak convergence on B(S). This convergence is equivalent to

(Hult and Lindskog (2005))
nPa;' X € )£> (+) .
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Here — denotes weak convergence of measures in the sense

mu(f) = / Jdm, — / fdm =m(f)

for all bounded continuous functions f on D\{0} which vanish outside a bounded
set (see Appendix A2.6 in Daley and Vere-Jones (1988)), and m is a measure such

that u(D\D) = 0;
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Examples of Regular Variation on ([0, 1%)

1. sas random field. Let (I%);=1.2.. be the points of a unit rate Poisson process on

)

(0, 00), (r;) be an 1id Rademacher sequence, (V;) be iid D-valued with

E(Ivi

) < 00, all 3 sequences be independent. Then the infinite series

X =Y "nl;"y

i=1
for av € (0,2) represents a sas random field with spectral measure

E(|W ‘;;_Isf(f’i>)
E(Villy)

S € B(S).

Regular variation is only determined by the first term in the series representation.

Lindgren Symposium 6/06

15



Examples of regular variation on ([0, 1]%)

2. Max-stable random field. Let (I';);=1.2.... be the points of a unit rate Poisson
process on (0, 0o), independent of the iid D-valued random fields Y; with

E|Y

o < 00. Then

X =sup T'j_l Y
j=1
is a max-stable field (with unit Fréchet marginals) in the sense that for iid copies
X;oft X any k > 1,
d
EX = max X
i=1,..k
in the sense of equality of the finite-dimensional distributions. See also Schlather

(2002). Every max-stable D-valued random field X has the representation above.

The spectral measure of X is given by
E([YillZs(Y1))/E|Yille, S € B(S).

Regular variation of X is determined by Fl_lyl.
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Max-stable random fields with Gaussian Y
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Characterization of Reoular Variation on ID

Proposition 1. (Hult and Lindskog (2005)) Z is regularly varying if and only if

there exist a, > 0 and a collection of Radon measures mg, _,, si € |0, 1], not all

of them being the null measure, with ms s (R \Rh) = 0, such that the following

conditions hold:
1) Finite-dimensional convergence:

nPla; (Z(s1),.... Z(sg)) € ) — ms,._s.(")

2) Tightness. For any €, > 0 there exist 6 € (0,0.5) and ngy such that for

n > ny,
n P(w"(Z.8) > ane) < 1.

n P(w(Z, [0, J\[0,1 = 8]%) > ane) < 1.

Note. The measures m.. s; € [0.1]¢. determine the limitine measure m in the
S1yeeesSpy DL ; ; &

definition of regular variation of Z.
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Characterization of Reoular Variation on ID

e In general, tightness in the regular variation sense (property 2) is not
equivalent to tightness in I of the sequence

(0.1) a;t max X;.

" t=1,....n

for an 1id D-valued sequence with regularly varying finite-dimensional
distributions.
e There exists a regularly varying field X which is regularly varying in D, for

which (0.1) holds in the sense of finite-dimensional distributions but not in ID.
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Application to Space-Time Processes

Proposition 2. Assume that (Z;) is an iid sequence of random fields on D such that

Z 1s regularly varving with index a and limiting measure mz. Suppose (1) 1s a
o ; . o o 7

sequence of cadlag fields with

o0
Z (K&
i=0

for some € € (0, ). Then the infinite series

X = Zx: Vi Zi
i=0

converges a.s. 1n D and 1s regularly varying with index a and limiting measure

.x.
m = E mgz o Y; L
i=0

min(1l,a—e) \
‘ 00 < o0
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Ficure 3. The autoregressive field X; = 0.9X;_, + Z; for t = 0,1,2,3. The process Z is symmetric
1-stable Lévy motion.
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Application to Space-Time Processes

Main ideas behind proof:
e Show convergence by bounding the sup norm and using the fact that || Z;| » is
regularly varying.
e First establish regular variation for finite sums by checking conditions (fidi
convergence and tightness) of Proposition 1.

e [ixtend to infinite sums by approximating the tail sums.
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Point Process Convergence

Point process convergence for the Z;’s. From Proposition 1, it follows that

d
I, = E \-:;G__;1Zt—>f— E EP; -
t=1 j=1

where — denotes convergence in distribution of point processes on the space
e —

M(D\{0}) and > j=1£p; Is a Poisson random measure on D\{0} with intensity
measure my.

-

Note: The space M (D"\{0}) is the space of point measures on D \{0} endowed

. o~
with the topology generated by w-convergence.

Theorem.
n 00 o
nT d nNT
N, = Z Eurlx, — N = Z Z Eqy; P; -
t=1 i=0 j=1
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Point Process Convergence

Remark: This theorem generalizes the Davis and Resnick (1985) point process

convergence result for linear processes.
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Application

From the Theorem. we have

Play" max [ Xillow < @) = P(3_ D eupp (e, o) = 0

ey
i=0 j=1

= exp{—mz(B)},
where
B = {._U Nyl > 2, for some ¢ = 0,1, .. } .

If the 1;’s are constant functions, then

B={y: |yl

ancd
exp{—mz(B)} = exp{—z" ¥},
where ¢ = max; |¢;].

Extremal index = ¢¢ / Zig |20i] .
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