Extremes of Space-Time Processes With Heavy-Tailed Distributions

Richard A. Davis

Colorado State University

www.stat.colostate.edu/~rdavis

Thomas Mikosch University of Copenhagen

Outline

- A Class of Space-Time Processes: $X_t(\mathbf{s}) = \sum_{i=0}^{\infty} \psi_i(\mathbf{s}) Z_{t-i}(\mathbf{s}), \quad \mathbf{s} \in [0,1]^d$
 - Dependence properties
- Preliminaries on Regular Variation on $\mathbb{D}([0,1]^d)$
 - Examples
- Point Process Convergence
 - Basic properties
- Application

EVT for Space-Time Processes

Basic set-up: 2 components, spatial and temporal.

Spatial part. Let $Z(\mathbf{s})$ be a random field on $[0,1]^d$.

- Usually d = 1 (transect) or d = 2 (two-dimensional space).
- $Z(\mathbf{s})$ is value of the random field at location $\mathbf{s} \in [0, 1]^d$.
- View $Z(\mathbf{s})$ as a random element of $\mathbb{D} = \mathbb{D}([0,1]^d)$ of càdlàg functions J_1 -topology; see Bickel and Wichura (1971).
- \bullet Will assume that Z has regularly varying tail probabilities –to be described later.

EVT for Space-Time Processes

Temporal part. Build in serial dependence by filtering the random field at each location $\mathbf{s} \in [0, 1]^d$. That is, set

$$X_t(\mathbf{s}) = \sum_{i=0}^{\infty} \psi_i(\mathbf{s}) Z_{t-i}(\mathbf{s}), \quad \mathbf{s} \in [0, 1]^d,$$

where

- $(Z_t)_{t\in\mathbb{Z}}$ are iid copies of the random field Z on $[0,1]^d$
- ψ_i 's are deterministic $c \grave{a} dl \grave{a} g$ real-valued fields on $[0,1]^d$.

Note: For $\mathbf{s}_1, \ldots, \mathbf{s}_k$ fixed,

$$\mathbf{X}_{t} := \begin{bmatrix} X_{t}(\mathbf{s}_{1}) \\ \vdots \\ X_{t}(\mathbf{s}_{k}) \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{\infty} \psi_{i}(\mathbf{s}_{1}) Z_{t-i}(\mathbf{s}_{1}) \\ \vdots \\ \sum_{i=0}^{\infty} \psi_{i}(\mathbf{s}_{k}) Z_{t-i}(\mathbf{s}_{k}) \end{bmatrix} = \sum_{i=0}^{\infty} A_{i} \mathbf{Z}_{t-i}$$

is a multivariate linear time series.

Dependence structure of (X_t)

Suppose the random field $Z(\mathbf{s})$ is stationary with covariance function $\gamma_Z(\mathbf{u})$,

$$Cov(Z(\mathbf{s} + \mathbf{u}), Z(\mathbf{s})) = \gamma_Z(\mathbf{u}).$$

Spatial covariance of X_t .

$$\operatorname{Cov}(X_t(\mathbf{s} + \mathbf{u}), X_t(\mathbf{s})) = \left(\sum_{j=0}^{\infty} \psi_j(\mathbf{s} + \mathbf{u})\psi_j(\mathbf{s})\right) \gamma_Z(\mathbf{u}),$$

which is stationary in space (independent of \mathbf{s}) if the ψ_j 's are constant functions. In this case,

$$\operatorname{Cov}(X_t(\mathbf{s} + \mathbf{u}), X_t(\mathbf{s})) = \left(\sum_{j=0}^{\infty} \psi_j^2\right) \gamma_Z(\mathbf{u}).$$

Dependence structure of (X_t)

Time covariance function of $X_t(\mathbf{s})$. For each $\mathbf{s} \in [0,1]^d$, the time series $X_t(\mathbf{s})$ is a

linear process with covariance function

$$Cov(X_{t+h}(\mathbf{s}), X_t(\mathbf{s})) = \left(\sum_{j=0}^{\infty} \psi_{j+h}(\mathbf{s})\psi_j(\mathbf{s})\right) \gamma_Z(\mathbf{0})$$

If the ψ_j 's are constant functions, then the serial correlation does not depend on s.

Note: In fact, the time series X_t defined on $\mathbb{D}([0,1]^d)$ is strictly stationary.

Space-time covariance function of $X_t(\mathbf{s})$.

$$\operatorname{Cov}(X_{t+h}(\mathbf{s} + \mathbf{u}), X_t(\mathbf{s})) = \left(\sum_{j=0}^{\infty} \psi_{j+h}(\mathbf{s} + \mathbf{u})\psi_j(\mathbf{s})\right) \gamma_Z(\mathbf{u})$$

which, if the ψ_i 's are constant functions, is equal to

$$\gamma_X(h, \mathbf{u}) = \operatorname{Cov}(X_{t+h}(\mathbf{s} + \mathbf{u}), X_t(\mathbf{s}))$$

$$= \left(\sum_{j=0}^{\infty} \psi_{j+h} \psi_j\right) \gamma_Z(\mathbf{u})$$

$$= \gamma_T(h) \gamma_Z(\mathbf{u})$$

Remarks:

- (1) The filter functions ψ_j influence both the spatial and temporal covariances.
- (2) If the ψ_j 's are constant functions, then X_t has a multiplicative covariance function, i.e.,

$$\gamma_X(h, \mathbf{u}) = \text{Cov}(X_{t+h}(\mathbf{s} + \mathbf{u}), X_t(\mathbf{s}))$$

= $\gamma_T(h)\gamma_Z(\mathbf{u})$

Examples and Applications

1. Maximum ozone levels. Suppose there exists a standard L for annual maxima of ozone levels over the rectangular region $[0,1]^2$. Set

 $X_t(\mathbf{s}) = \text{maximum ozone level at site } \mathbf{s} \text{ during year } t.$

Then the probability the standard L is not exceeded in n consecutive years is

$$P(\max_{t=1,\ldots,n} X_t(\mathbf{s}) \le L, \text{ for all } \mathbf{s} \in [0,1]^2).$$

2. Sea level (de Haan and Lin (2001)). Let f(s) represent the height of a dyke off the Dutch coast at location s and set

 $X_t(s) = \text{maximum sea level at site } s \text{ during day } t$

The probability that the dyke is not breached along the coast for n consecutive days is

$$P(\max_{t=1,...,n} X_t(s) \le f(s), \text{ for all } s \in [0,1]).$$

Regular Variation on $\mathbb{D}([0,1]^d)$ — Preliminaries:

Regular variation of $\mathbf{Z} = (Z_1, \dots, Z_m)'$. There exists a random vector $\boldsymbol{\theta}$ defined on \mathbb{S}^{m-1} such that for all z > 0

$$P(\|\mathbf{Z}\| > tz, \mathbf{Z}/\|\mathbf{Z}\| \in \cdot)/P(\|\mathbf{Z}\| > t) \xrightarrow{w} z^{-\alpha}P(\boldsymbol{\theta} \in \cdot),$$

as $t \to \infty$ where $\stackrel{w}{\to}$ is weak convergence on \mathbb{S}^{m-1} , the unit sphere in \mathbb{R}^m .

- $P(\theta \in \cdot)$ is called the spectral measure.
- α is the index of regular variation.

Equivalence: There exists $a_n > 0$ such that for all z > 0

$$nP(\|\mathbf{Z}\| > a_n z, \mathbf{Z}/\|\mathbf{Z}\| \in \cdot) \xrightarrow{w} z^{-\alpha} P(\boldsymbol{\theta} \in \cdot)$$

or, equivalently,

$$nP(a_n^{-1}\mathbf{Z} \in \cdot) \xrightarrow{v} m(\cdot)$$

for some Radon measure m on $\mathcal{B}(\overline{\mathbb{R}}^m \setminus \{\mathbf{0}\})$.

Examples of Regular Variation on \mathbb{R}^2 :

1. If $Z_1 > 0$ and $Z_2 > 0$ are iid $RV(\alpha)$, then $\mathbf{Z} = (Z_1, Z_2)$ is regularly varying with index α and spectral distribution

$$P(\theta = (0, 1)) = P(\theta = (1, 0)) = .5$$
 (mass on axes).

Interpretation: Unlikely that Z_1 and Z_2 are both large at the same time.

Figure: plot of (Z_{t1}, Z_{t2}) for realization of 10,000.

Examples of Regular Variation on \mathbb{R}^2 :

2. If $Z_1 = Z_2 > 0$ and RV(α), then $\mathbf{Z} = (Z_1, Z_2)$ is regularly varying with index α and spectral distribution

$$P(\theta = (1/\sqrt{2}, 1/\sqrt{2})) = 1.$$

3. AR(1): $Z_t = .9Z_{t-1} + \epsilon_t$, $\epsilon_t \sim IID$ symmetric stable (1.8). Then $\mathbf{Z} = (Z_1, Z_2)$ is RV(1.8) with spectral measure

$$\begin{cases} P(\boldsymbol{\theta} = (1,.9)/\sqrt{1.81}) = .9898 \\ P(\boldsymbol{\theta} = (0,1)) = .0102 \end{cases}$$

Figure: plot of (Z_t, Z_{t+1}) for realization of 10,000.

Lindgren Symposium 6/06

Regular Variation on $\overline{\mathbb{D}}([0,1]^d)$

<u>Polar coordinate transformation:</u> For the càdlàg field $x \in \mathbb{D} \setminus \{0\}$

$$x \Leftrightarrow (\|x\|_{\infty}, \widetilde{x}), \quad \widetilde{x} = x/\|x\|_{\infty},$$

where $||x||_{\infty}$ is the sup-norm of x, and 0 represents the zero function: We write

$$\overline{\mathbb{D}} = (0, \infty] \times \mathbb{S}$$
, where $\mathbb{S} = \{\widetilde{x} : x \in \mathbb{D} \setminus \{0\}\}$.

Reg variation on $\overline{\mathbb{D}} = \overline{\mathbb{D}}([0,1]^d)$ (de Haan and Lin '01; Hult and Lindskog '05).

X is regularly varying with spectral measure σ on \mathbb{S} and index $\alpha > 0$, if there exists $a_n > 0$ such that for all t > 0,

$$n P(\|X\|_{\infty} > t \, a_n \,, \widetilde{X} \in \cdot) \xrightarrow{w} t^{-\alpha} \sigma(\cdot) \,,$$

where \xrightarrow{w} denotes weak convergence on $\mathcal{B}(\mathbb{S})$. This convergence is equivalent to (Hult and Lindskog (2005))

$$n P(a_n^{-1} X \in \cdot) \xrightarrow{\widehat{w}} m(\cdot)$$
.

Here $\xrightarrow{\widehat{w}}$ denotes weak convergence of measures in the sense

$$m_n(f) = \int f dm_n \to \int f dm = m(f)$$

for all bounded continuous functions f on $\overline{\mathbb{D}}\setminus\{0\}$ which vanish outside a bounded set (see Appendix A2.6 in Daley and Vere-Jones (1988)), and m is a measure such that $\mu(\overline{\mathbb{D}}\setminus\mathbb{D})=0$;

Examples of Regular Variation on $\mathbb{D}([0,1]^d)$

1. sas random field. Let $(\Gamma_i)_{i=1,2,...}$ be the points of a unit rate Poisson process on $(0,\infty)$, (r_i) be an iid Rademacher sequence, (V_i) be iid \mathbb{D} -valued with $E(\|V_1\|^{\alpha}) < \infty$, all 3 sequences be independent. Then the infinite series

$$X = \sum_{i=1}^{\infty} r_i \, \Gamma_i^{-1/\alpha} \, V_i$$

for $\alpha \in (0,2)$ represents a s\alpha s random field with spectral measure

$$\frac{E(\|V_1\|_{\infty}^{\alpha}I_S(\widetilde{V}_1))}{E(\|V_1\|_{\infty}^{\alpha})}, \quad S \in \mathcal{B}(\mathbb{S}).$$

Regular variation is only determined by the first term in the series representation.

Examples of regular variation on $\mathbb{D}([0,1]^d)$

2. Max-stable random field. Let $(\Gamma_i)_{i=1,2,...}$ be the points of a unit rate Poisson process on $(0, \infty)$, independent of the iid \mathbb{D} -valued random fields Y_i with $E||Y||_{\infty} < \infty$. Then

$$X = \sup_{j \ge 1} \Gamma_j^{-1} Y_j$$

is a max-stable field (with unit Fréchet marginals) in the sense that for iid copies X_i of X, any $k \geq 1$,

$$k X \stackrel{d}{=} \max_{i=1,\dots,k} X_i$$

in the sense of equality of the finite-dimensional distributions. See also Schlather (2002). Every max-stable \mathbb{D} -valued random field X has the representation above. The spectral measure of X is given by

$$E(\|Y_1\|_{\infty}I_S(\widetilde{Y}_1))/E\|Y_1\|_{\infty}, \quad S \in \mathcal{B}(\mathbb{S}).$$

Regular variation of X is determined by $\Gamma_1^{-1}Y_1$.

Max-stable random fields with Gaussian Y

Lindgren Symposium 6/06

Characterization of Regular Variation on \mathbb{D}

<u>Proposition 1.</u> (Hult and Lindskog (2005)) Z is regularly varying if and only if there exist $a_n > 0$ and a collection of Radon measures $m_{\mathbf{s}_1,\dots,\mathbf{s}_k}$, $\mathbf{s}_i \in [0,1]^d$, not all of them being the null measure, with $m_{\mathbf{s}_1,\dots,\mathbf{s}_k}(\overline{\mathbb{R}}^k \backslash \mathbb{R}^k) = 0$, such that the following conditions hold:

1) Finite-dimensional convergence:

$$n P(a_n^{-1}(Z(\mathbf{s}_1), \dots, Z(\mathbf{s}_k)) \in \cdot) \xrightarrow{v} m_{\mathbf{s}_1, \dots, \mathbf{s}_k}(\cdot).$$

2) Tightness. For any $\epsilon, \eta > 0$ there exist $\delta \in (0, 0.5)$ and n_0 such that for $n \geq n_0$,

$$n P(w''(Z, \delta) > a_n \epsilon) \le \eta,$$

$$n P(w(Z, [0, 1]^d \setminus [\delta, 1 - \delta]^d) > a_n \epsilon) \le \eta.$$

Note. The measures $m_{\mathbf{s}_1,...,\mathbf{s}_k}$, $\mathbf{s}_i \in [0,1]^d$, determine the limiting measure m in the definition of regular variation of Z.

Characterization of Regular Variation on \mathbb{D}

• In general, tightness in the regular variation sense (property 2) is not equivalent to tightness in \mathbb{D} of the sequence

(0.1)
$$a_n^{-1} \max_{t=1,...,n} X_t.$$

for an iid **D**-valued sequence with regularly varying finite-dimensional distributions.

• There exists a regularly varying field X which is regularly varying in \mathbb{D} , for which (0.1) holds in the sense of finite-dimensional distributions but not in \mathbb{D} .

Application to Space-Time Processes

Proposition 2. Assume that (Z_t) is an iid sequence of random fields on \mathbb{D} such that Z is regularly varying with index α and limiting measure m_Z . Suppose (ψ_i) is a sequence of càdlàg fields with

$$\sum_{i=0}^{\infty} \|\psi_i\|_{\infty}^{\min(1,\alpha-\epsilon)} < \infty$$

for some $\epsilon \in (0, \alpha)$. Then the infinite series

$$X = \sum_{i=0}^{\infty} \psi_i \, Z_i$$

converges a.s. in \mathbb{D} and is regularly varying with index α and limiting measure

$$m = \sum_{i=0}^{\infty} m_Z \circ \psi_i^{-1}.$$

FIGURE 3. The autoregressive field $X_t = 0.9X_{t-1} + Z_t$ for t = 0, 1, 2, 3. The process Z is symmetric 1-stable Lévy motion.

Application to Space-Time Processes

Main ideas behind proof:

• Show convergence by bounding the sup norm and using the fact that $||Z_i||_{\infty}$ is regularly varying.

22

- First establish regular variation for finite sums by checking conditions (fidiconvergence and tightness) of Proposition 1.
- Extend to infinite sums by approximating the tail sums.

Lindgren Symposium 6/06

Point Process Convergence

Point process convergence for the Z_t 's. From Proposition 1, it follows that

$$I_n = \sum_{t=1}^n \varepsilon_{a_n^{-1}Z_t} \xrightarrow{d} I = \sum_{j=1}^\infty \varepsilon_{P_j}.$$

where $\stackrel{d}{\to}$ denotes convergence in distribution of point processes on the space $\widehat{M}(\overline{\mathbb{D}}\setminus\{\mathbf{0}\})$ and $\sum_{j=1}^{\infty} \varepsilon_{P_j}$ is a Poisson random measure on $\overline{\mathbb{D}}\setminus\{0\}$ with intensity measure m_Z .

Note: The space $\widehat{M}(\overline{\mathbb{D}}^m \setminus \{\mathbf{0}\})$ is the space of point measures on $\overline{\mathbb{D}}^m \setminus \{\mathbf{0}\}$ endowed with the topology generated by \widehat{w} -convergence.

Theorem.

$$N_n = \sum_{t=1}^n \varepsilon_{a_n^{-1}X_t} \xrightarrow{d} N = \sum_{i=0}^\infty \sum_{j=1}^\infty \varepsilon_{\psi_i P_j}.$$

Point Process Convergence

Remark: This theorem generalizes the Davis and Resnick (1985) point process convergence result for linear processes.

Lindgren Symposium 6/06

Application

From the Theorem, we have

$$P(a_n^{-1} \max_{t=1,...,n} ||X_t||_{\infty} \le x) \to P(\sum_{i=0}^{\infty} \sum_{j=1}^{\infty} \varepsilon_{||\psi_i P_j||_{\infty}}(x, \infty) = 0)$$
$$= \exp\{-m_Z(B)\},$$

where

$$B = \{y : ||\psi_i y||_{\infty} > x, \text{ for some } i = 0, 1, \ldots\}.$$

If the ψ_i 's are constant functions, then

$$B = \{y : ||y||_{\infty} > x/\psi_{+}\}$$

and

$$\exp\{-m_Z(B)\} = \exp\{-x^{-\alpha}\psi_+^{\alpha}\},\,$$

where $\psi_{+} = \max_{j} |\psi_{j}|$.

Extremal index = $\psi_+^{\alpha} / \sum_{i=0}^{\infty} |\psi_i|^{\alpha}$.