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Outline

¥~ Characteristics of some financial time series

* |IBM returns
e Multiplicative models for log-returns (GARCH, SV)

~ Regular variation

e univariate case

e multivariate case

e new characterization: X is RV < ¢ Xis RV ?
=~ Applications of regular variation

e Stochastic recurrence equations (GARCH)

e Point process convergence

e Extremes and extremal index

 Limit behavior of sample correlations
= Wrap-up
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Characteristics of some financial time series

Define X;,=In (P, - In (P.,) (log returns)

* heavy tailed

P(X,|>x) ~Cx% 0<a<4.

* uncorrelated

py(h) near O for all lags h > 0 (MGD sequence)

* |X{| and X% have slowly decaying autocorrelations

px () andp. .(h) converge to O slowly as h increases.

* process exhibits ‘volatility clustering’.
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Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)
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Sample ACF IBM (a) 1962-1981, (b) 1982-2000

ACF
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Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000

(a) ACF, Abs Values of IBM (1st half)

(b) ACF, Abs Values of IBM (2nd half)
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Hill’s plot of tail index for IBM (1962-1981, 1982-2000)
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Multiplicative models for log(returns)

Basic model

X;=In(P)-In(P.) (logreturns)
=0, 4,
where

* {Z} is IID with mean 0, variance 1 (if exists). (e.g. N(0,1) or
a t-distribution with v df.)

* {o,} is the volatility process

* g, and Z, are independent.

Properties:
* EX, =0, Cov(X, X) =0, h>0 (uncorrelated if Var(X,) < «)

* conditional heteroscedastic (condition on o).
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Multiplicative models for log(returns)-cont

X, = o, Z, (observation eqn in state-space formulation)

Two classes of models for volatility:

() GARCH(p,q) process (General AutoRegressive Conditional
Heteroscedastic-observation-driven specification)

2 2 2 2 2
G, =0y + oy Xi; +- -+ 0o, Xi) +B01; ++B,0y, -

Special case: ARCH(1):
th = (0, + O(‘lxtz-l)ztz
= OL1Zt2 Xt2-1 + OLoztz

=AX?,+B, (stochastic recurrence eqn)

pxz(h):alh, if o <1/3.
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Multiplicative models for log(returns)-cont

GARCH(2,1): X, =6,Z,, & =a,+a,X>, +o,X, +Boo, .

Theny, =(c?,X?,)' follows the SRE given by

Gtz _ alztz-l_'_Bl O, Gtz-l n Oy
X Z,  0]X{,]| O

Questions:
» Existence of a unique stationary solution to the SRE?
* Regular variation of the joint distributions?
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Multiplicative models for log(returns)-cont

X, = o, Z, (observation eqn in state-space formulation)

(1) stochastic volatility process (parameter-driven specification)

logo? = D wis ;, D vi <o {e}~1IDN(0,07)

= j=—

p,.(h)=Cor(c;,o;,,)/ EZ}

Question:

« Joint distributions of process regularly varying if distr of Z, is
regularly varying?

Lisbon-L1 10/04
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Regular variation — univariate case

Def: The random variable X is regularly varying with index a. if
P(X|> t X)/P(|X|>t) —> x and P(X> t)/P(]X|>t) —p,
or, equivalently, if
P(X> t X)/P(|X|>t) > px and P(X< -t X)/P(|X|>t) > gx =,
where 0 <p <1 and p+qg=1.

Equivalence:
Xis RV(a) if and only if P(X € te) /P(|X|>t)—, u(e)

(—, vague convergence of measures on R\{0}). In this case,

u(dx) = (pa x-11(x>0) + qa. (-x)11(x<0)) dx

Note: w(tA) =t* u(A) for every t and A bounded away from O.
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Regular variation — univariate case (cont)

Another formulation (polar coordinates):

Define the £ 1 valuedrv e, PO=1)=p,PO=-1)=1-p=aq.
Then
Xis RV(a) if and only if

P( X|>tx, X/|X|eS)
P(X|[>1)

—> X *P(0e€S)

or

P(| X|>tx,X/| X|eo)
P(| X|>1)

—, X "P(0 o)

(—, vague convergence of measures on S%= {-1,1}).

Lisbon-L1 10/04
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Regular variation — multivariate case

Multivariate regular variation of X=(X,, ..., X): There exists a
random vector 8 € S™1 such that

P(IX|> tx, X/|X| € ¢ )/IP(|X|>t) =, x*“P(0 c o)
(—, vague convergence on S™1!, unit sphere in R™) .
* P( 6 e9) is called the spectral measure

e a IS the index of X.

Equivalence:
P(X cte)

P(X]|>1)

—, u(e)

u Is a measure on R™ which satisfies for x > 0 and A bounded away
from O,
n(xB) = x=* u(xA).
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Regular variation — multivariate case (cont)

Examples:

1. If X;>0and X,>0 are iid RV(a), then X= (X, X,) is multivariate
regularly varying with index o and spectral distribution

P(6=(0,1))=P(6=(1,0)) =5 (mass on axes).

Interpretation: Unlikely that X; and X, are very large at the same

time. 2| (e

Figure: plot of
(X1, X,p) for realization

of 10,000. |t
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2. 1f X, = X,>0, then X= (X, X,) is multivariate regularly varying
with index o and spectral distribution

P(0=(1N2,1N2))=1.

3. AR(1): X=.9 X, + Z;, {Z}~IID symmetric stable (1.8)
+
et of 6 {_(1,.9)/Sqrt(1.81), W.P. .9898

+0,1), W.P. .0102
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Applications of multivariate regular variation

e Domain of attraction for sums of iid random vectors
(Rvaceva, 1962). That is, when does the partial sum

n
-1
a,' > X,
t=1
converge for some constants a,?

* Spectral measure of multivariate stable vectors.

* Domain of attraction for componentwise maxima of iid
random vectors (Resnick, 1987). Limit behavior of

n
-1
a, t\:/1Xt
* Weak convergence of point processes with iid points.
e Solution to stochastic recurrence equations, Y =AY, ;+ B,

* \Weak convergence of sample autocovariances.

Lisbon-L1 10/04
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Operations on regularly varying vectors — products

Products (Breiman 1965). Suppose X, Y > 0 are independent with

X~RV(a) and EY* < o for some € > 0. Then XY ~ RV(a) with
P(XY > x) ~EY*P(X > Xx).

Multivariate version. Suppose the random vector X is regularly
varying and A is a matrix independent of X with

0 < EJ[[A]|**& < o0,
Then

AX is regularly varying with index a.

Lisbon-L1 10/04
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Applications of multivariate regular variation (cont)

Linear combinations:

X ~RV(a) = all linear combinations of X are regularly varying

l.e., there exist o and slowly varying fcn L(.), s.t.
P(c™X> t)/(t*L(t)) —»w(c), exists for all real-valued c,

where

w(tc) = tow(c).

Use vague convergence with A_.={y: c'y > 1}, i.e.,

P(XetA,) _ P(c'X>t)

LY P(X[>t) (A) =w(e),

N

where t*L(t) = P(|X| > t).
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Applications of multivariate regular variation (cont)

Converse?

X ~RV(a) < all linear combinations of X are regularly varying?

There exist o and slowly varying fcn L(.), s.t.

(LC) P(c™X> t)/(t“L(t)) »w(c), exists for all real-valued c.

Theorem (Basrak, Davis, Mikosch, 02). Let X be a random vector.

1. |If X satisfies (LC) with a non-integer, then X is RV(a).

2. If X > 0 satisfies (LC) for non-negative ¢ and a is non-integer,
then X'is RV(a).

3. If X > 0 satisfies (LC) with oo an odd integer, then X is RV(a).
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Applications of multivariate regular variation (cont)

ldea of argument: Define the measures
m,(*)= P(Xete)/ (toL(t))
* By assumption we know that for fixed c, m(A,) =>n(A,).
* {m} is tight: For B bded away from 0, sup,m,(B) < .
* Do subsequential limits of {m;} coincide?

If m,—,pn, and mu.—, u, then

1 (A) = ny(Ay) forall ¢ = 0. <

\2

Problem: Need p, =p, but only have equality on A, , not a n-system.

In general, equality need not hold (see Ex 6.1.35 in Meerschaert &
Scheffler (2001)).

Lisbon-L1 10/04 21



Applications of theorem

1. Kesten (1973). Under general conditions, (LC) holds with L(t)=1

for stochastic recurrence equations of the form
Y=A Yt By (A, BY ~ 1D,
A, dxd random matrices, B,random d-vectors.

It follows that the distributions of Y,, and in fact all of the finite dim’l

distrs of Y, are regularly varying (if a is non-even).

2. GARCH processes. Since squares of a GARCH process can be

embedded in a SRE, the finite dimensional distributions of a

GARCH are regularly varying.

Lisbon-L1 10/04
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Examples

Example of ARCH(1): X&=(agto, X2,)Y2Z, {Z}~1ID.

a found by solving E|o, Z2|*? = 1.

a, | .312 577 100 157
a | 800 4.00 200 1.00

Distr of 0:

P® < o) = E{||(B,2)I|* I(arg((B,2)) < )}/ E||(B,2)||*
where

PB=1)=P(B=-1)=5

Lisbon-L1 10/04
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x_{t+1}

Examples (cont)

Example of ARCH(1): og=1, a;=1, a=2, X=(og+0o, X2, ,)2Z,, {Z}~1ID

Figures: plots of (X, X,;) and estimated distribution of 8 for
realization of 10,000.
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Applications of theorem (cont)

Example: SV model X, = o, Z,
Suppose Z, ~ RV(a) and

loge? = > wie ;, > ' <o{e}~1IDN(0,G).

j=—oc

Then Z =(Z,,...,Z,)" is regulary varying with index a and so is
X,= (X,...,X) =diag(cy,..., o,) Z,

with spectral distribution concentrated on (£1,0), (0, £1).

Figure: plot of
(X1 X141) TOT

realization of 10,000.
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Point process application

Theorem Let {X;} be an iid sequence of random vectors satisfying 1

of the 3 conditions in the theorem. Then
n 0
. d .
|\In = Z"‘:;Xt/an —N:= ngiei :
t=1 j=1

If and only if for every c #0

o0

n
. d "
Nn,c T Z‘,Sc'Xt/an } Nc '_ 8c'Pi()i J
t=1 =1

j
where {a,} satisfies nP(| X/> a,) =1, and N is a Poisson process

with intensity measure p.

* {P} are Poisson pts corresponding to the radial part, i.e., has

iIntensity measure o x-¢! (dx).

* {0:} are iid with the spectral distribution given by the RV

Lisbon-L1 10/04
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Point process convergence

Theorem (Davis & Hsing 95, Davis & Mikosch '97). Let {X} be a
stationary sequence of random m-vectors. Suppose

(i) finite dimensional distributions are jointly regularly varying (let
0_, ..., 0,) be the vector in S@Gk+*Im-1jn the definition).

(i) mixing condition A (a,,) or strong mixing.

(iii) I|mI|msupP( voX |>a,y|1X,|>a,y)=0.

k<|t|<

Then
Kk
y=ImE(| 0y [ — v 16491]), /E |65 | (extremal index)

exists. Ify> 0, then

stt Ja — 94 SN: Z ZsPQU

=1 j=1

Lisbon-L1 10/04
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Point process convergence(cont)

* (P;) are points of a Poisson process on (0,) with intensity function
v(dy)=yay->-dy.
° Z%u , 121, are iid point process with distribution Q, and Q is the
j=1

weak limit of

k k
- k) 1o (k) (k) o (k)
LLrQE(leo | _j\z/llej ). I.(degk))/E(leo | _j\z/llej ).

)<k

Remarks:

1. GARCH and SV processes satisfy the conditions of the theorem.

2. Limit distribution for sample extremes and sample ACF follows from

this theorem.

Lisbon-L1 10/04
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Extremes for GARCH and SV processes

Setup
= X,=o0,Z, {Z}~1D(0,1)
= X ISRV (o)
= Choose {b}s.t. nP(X;>Db,) —1
Then
P"(b*X, < X) > expfx}.
Then, with M= max{X,, ..., X },
(i) GARCH:

P(b*M_<x)—exp{yx“},
v is extremal index (0 <y <1).

(i) SV model:
P(b:*M_ < x) — exp{~x"*},

extremal index y = 1 no clustering.

Lisbon-CTI TO/04
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Extremes for GARCH and SV processes (cont)

() GARCH: P(b;*M, < x) — exp{~yx“}
(i) SV model: P(b;*M_ <x) —>exp{-x}

Remarks about extremal index.
() vy <1implies clustering of exceedances
(i)  Numerical example. Suppose c is a threshold such that
P"(b*X,<c)~.95
Then, if y=.5, P(b.*M_<c)~(.95)° =.975
(i) 1/yis the mean cluster size of exceedances.
(iv) Use v to discriminate between GARCH and SV models.

(v) Even for the light-tailed SV model (i.e., {Z;} ~IID N(0,1), the
extremal index is 1 (see Breidt and Davis 98)

Lisbon-L1 10/04
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Extremes for GARCH and SV processes (cont)
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Summary of results for ACF of GARCH(p,q) and SV models

GARCH(p,q)
ae(0,2):

(ﬁx (h))hzl,...,m —d_)(vh /Vo)hzl,...,m’

ae(2,4):
(nl_zmﬁ X (h))h=1,...,m L)Vil (O)(Vh )h:l,...,m'

o€ (4,):

(nl/ZﬁX (h))hzl,...,m —d_)y;(l (O)(Gh )hzl,...,m'

Remark: Similar results hold for the sample ACF based on |[X| and
X2

Lisbon-L1 10/04
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Summary of results for ACF of GARCH(p,q) and SV models (cont)

SV Model
ae(0,2):
(n/Inn)"“p, (h)—— 616“;1“& S
o, S
oe(2, ):

(nllzfs X (h))hzl,...,m L)Y;<l (O)(Gh )hzl,...,m'

Lisbon-L1 10/04
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Sample ACF for GARCH and SV Models (1000 reps)
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(a) GARCH(1,1) Model, n
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10000

(a) GARCH(1,1) Model, n

Sample ACF for Squares of GARCH (1000 reps)

_____

35

100000

b) GARCH(1,1) Model, n
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Sample ACF for Squares of SV (1000 reps)

(c) SV Model, n=10000
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(d) SV Model, n=100000
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Amazon returns May 16, 1997 to June 16, 2004.
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Wrap-up

* Reqgular variation is a flexible tool for modeling both dependence

and tail heaviness.

» Useful for establishing point process convergence of heavy-tailed

time series.

» Extremal index y < 1 for GARCH and y =1 for SV.

Unresolved issues related to RV< (LC)
°o=2n7?

* there is an example for which X, X, >0, and (c, X,) and (c, X,)
have the same limits for all ¢ > 0.

« o = 2n-1 and X 4 0 (not true in general).
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