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Model Selection for Geostatistical Models

Problem: How does one choose the “best” set of covariates and family of covariance
functions?

Potential Objectives of Model Selection

1. Choose the correct model (consistency)

e There exists a “true” finite-dimensional model.

e If not a finite-dimensional model, at least include the key explanatory
variables.

2. Choose the model that is best for prediction (efficiency)
e [ind a model that predicts well at un-observed locations.
3. Choose the model that maximizes data compression.

e ['ind a model that summarizes the data in the most compact fashion.



The Geostatistical Model

Let Z = (Z(s1),...,Z(sn)) be a partial realization of a random field Z(s), where
s € D, a fixed finite area under study:.

A model for the random field at any location s is given by
Z(s)=X'(s)B + d(s),
where

e X(s) = (1,Xi(s),...,X,(s)) is a vector of explanatory variables observed at
location s,

e 31is ap+ 1 vector of unknown coefficients

e We assume that the error process d(s) is a stationary, isotropic Gaussian
process with mean zero and covariance function
Cov(d(s),d(t)) = a*p(||s — t]|, @), where o is the variance of the process,
p(+,8) is an isotropic correlation function, and || - || denotes Euclidean distance.



Autocorrelation Functions

Some of the standard autocorrelation functions:

1. Exponential

2. (Gaussian

3. Matern
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where Cp,(+) is the modified Bessel function.

), 6, >0, 65 >0,

e Range parameter, 61, controls the rate of decay of the correlation between
observations as distance increases.

e Smoothness parameter, 65, controls the smoothness of the random field.



AIC for Spatial Models

Background on AIC

Burnham and Anderson (1998), and McQuarrie and Tsai (1998)

Suppose
*Z ~ fr
o {f(-;¢), ¥ € U} is a family of candidate probability density functions

The Kullback-Leibler information between f(-;4) and fr

1) = [ -2t (CE;?) fr(z)dz.

e distance between f(-;¢) and fr
e similar to the notion of relative entropy

e loss of information when f(-;1)) is used instead of fr.



AIC for Spatial Models

By Jensen’s inequality;,

I(v¥) > 0 ifandonly if f(z;9)= fr(z) ae. [fr]
Basic idea: minimize the Kullback-Leibler index

AW) = [ ~210g(7(z1v) fr(2)idz
— ET(_Q log LZ(¢)> )
where Lz(1)) is the likelihood based on the data Z.




Model Selection and Spatial Correlation

Traditional approach to model selection:
1. Select explanatory variables to model the large scale variation.
2. Estimate parameters using residuals from model in step 1.
3. Iterate.

Limitations:

e [gnores potential confounding between explanatory variables and correlation in
spatial process

e [gnoring autocorrelation function can mask importance of explanatory variables

Simulations: Compare model selection performance of AIC for independent error
regression model and geostatistical model



Model Selection: Simulation Set-up

1. Sampling Design: 100 locations simulated in a random pattern.

2. Explanatory Variables: Five possible explanatory variables:
X17 X27 X37 X47 X5 ~ \/% t12

3. Response:
Z =24+0.75X1+0.50X9+0.25X3+ 9,

where & is a Gaussian random field with mean zero, o = 50, and
autocorrelation Matern with parameters 6; = 4 and 65 = 1.

4. Replicates: 500 replicates were simulated with a new Gaussian random field
generated for each replication.

5. AIC: Computed for 2° = 32 possible models per replicate



Model Selection: Random Pattern Sampling Design
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Model Selection: Simulation Results for the Random Pattern

e Independent AIC and Spatial AIC report the percentage of simulations that
each model was selected.

e Of the 32 possible models, the results given here include only those with 10%
or more support for one of the models.

Spatial | Independent

Variables in Model AIC AIC
X1, X5 X3 46 0
X1, X5 18 6
X1, X, X3, X5 11 0
Intercept only 0 37
X 1 18
X5 0 12




Model Selection: Independent model AIC Values
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Model Selection: Spatial model AIC Values
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Sampling Patterns
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Model Selection: Effect of Sampling Design

Summary of model selection results for 5 different sampling patterns

Highly |  Lightly Regular | Grid
Variables in Model | Clustered | Clustered | Random | Pattern | Design
X1, X9, X3 73 65 46 43 16
X, Xy 0 2 18 21 35
X1, X9, X35, Xy 12 13 8 8 3
X1, X9, X3, X5 10 13 11 7 7

e Fach column reports the percentage of simulations that each model was
selected.

e Of the 32 possible models, the results given here include only those with 10%
or more support for at least one of the sampling patterns.



Prediction

Efficient prediction

e Time series (Shibata (1980), Brockwell and Davis (1991)). AIC is an efficient
order selection procedure for autoregressive models.

e Regression (see McQuarrie and Tsai (1998)).

e Other notions of efficiency, e.g., Kullback-Leibler efficiency and Lo efficiency
(see McQuarrie and Tsai (1998)).



Prediction: Prediction Error

Simulations:

e Performed model selection and estimation using 100 observations and evaluated
prediction performance using 100 additional observations simulated as above.

e Evaluated predictive performance

Mean Square Prediction Error:

1 100 N2
MSPE = — (Z-—Z-)
100 ; J J

where Zj is the universal kriging predictor for the ;% prediction location using the
true parameter values.



Prediction: MSPE
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Prediction: Predictive Coverage

Predictive Coverage: for a 95% prediction interval, do 95% of the observed data fall
in their corresponding prediction intervals?

Simulations:
For each of the 500 simulations, we compute predictive coverage. Then, over all 500
simulations, we examine:

e Mean predictive coverage
e Standard deviation of predictive coverage

Model Mean | Std Dev
Independent error AIC | 0.95 0.18
Spatial error AIC 0.92 0.25




Example: Lizard abundance

Abundance for the orange-throated whiptail lizard in southern California
Ver Hoef et al. (2001)
Data:

e 147 locations

o 7 = log(ave # of lizards caught per day)

e Explanatory variables: ant abundance (three levels), log(% sandy soils),
elevation, barerock indicator, % cover, log(% chapparal plants)



Example: Lizard abundance

e [ixplanatory variables:

ant abundance (three levels), log(% sandy soils), % cover, elevation,

barerock indicator, log(% chapparal plants)
e 160 possible models

Spatial Ind
Predictors AIC Rank Rank
Anty, % sand 54.8 1 66
Anty,Antsy, % sand 54.8 2 56
Anty, % sand, % cover 55.7 3 59
Anty, Anty, % sand, % cover, elevation, barerock, % chaparral 92.2 41 1
Ant;, Ante, % sand, % cover, elevation, barerock, % chaparral 955 33 2
Anty, % sand, % cover, elevation, barerock, 95.7 38 3




Some Other Approaches to Model Selection and Prediction

e Bayesian Model Averaging

— Model uncertainty is typically ignored in inference

— Protect from over-confident inferences by averaging over models
e Minimum Description Length (MDL)

— Goal: Find model that achieves maximum data compression.

The code length (CL) of the data (Lee 2001) is the amount of memory
required to store the data. Decomposition of CL:

CL(“data”) = CL(“fitted model™) + C L(“data given fitted model”).

Here C'L(“fitted model”) might be interpreted as the code length of the
model parameters and C'L(“data given fitted model”) as the code length
of the residuals from the fitted model.



Conclusions

e Ignoring spatial correlation can influence model selection results for both
covariate selection and prediction

e Sampling patterns that offer observation pairs at small and larger distances
may be advantageous for model selection

e Preliminary results suggest that accounting for spatial correlation can have
large effects on prediction errors, but perhaps smaller impacts on predictive
coverage.



