
4.2 Slowly varying AR(2) model

where and {εt} ~ IID N(0,1).

Time

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Time
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Average Model

2.2 The MDL applied to piecewise AR models
M = class of piecewise AR models for y = (y1, . . . , yn)

LF (y) = = code length of y relative to F ∈ M

Best fitting MDL model is minimizer of

where nj is the length of the j-th segment and        is the Yule-Walker
estimate of σ2 in the j-th segment.
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1.1 Piecewise Autoregressive processes
Setup: there exist m and τ0 = 1 < τ1 < . . . < τm < τm+1 = n + 1
(n = sample size) such that

where {εt} is IID(0,1).

Goal: Estimate

m = number of segments

τj = location of jth break point

γj = level in jth epoch

pj = order of AR process in jth epoch

= AR coefficients in jth epoch

σj = scale in jth epoch

1.2 Motivation for using piecewise AR models

Piecewise AR is a special case of a piecewise stationary process (see

Adak 1998),

where , j = 1, . . . , m is a sequence of stationary processes.  It

is argued in Ombao et al. (2001) that if  {Yt,n} is a locally stationary

process (in the sense of Dahlhaus), then there exist a piecewise

stationary process           and a sequence mn

that approximates {Yt,n} (in average mean square).

Roughly speaking: {Yt,n} is a locally stationary process if it has a

time-varying spectrum that is approximately |A(t/n,w)|2 , where

A(u,w) is a continuous function in u.
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2.3 Consistency
Assume there exist true values m and 0 < λ1<  . . .  < λm < 1 with

τi = [λin], i = 1,2, . . . , m.
Theorem. For the piecewise AR model, if the number of breakpoints 

m is known, then 
a.s. j = 1, 2, …, m.
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3.1 Basics of the Genetic Algorithm (GA)
The GA is an optimization algorithms that mimics natural evolution.

• Start with an initial set of chromosomes, or population, of
possible solutions to the optimization problem. 

• Parent chromosomes are randomly selected (proportional to the   
rank of their objective function values), and produce offspring
using crossover or mutation operations.

• After a sufficient number of offspring are produced to form a 
second generation, the process then restarts to produce a third 
generation.

• Based on Darwin’s theory of natural selection, the process 
should produce future generations that give a smaller (or larger)
objective function. 

4.1  Piecewise stationary with dyadic structure

where {εt} ~ IID N(0,1).

Sample realization.
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τ1=513, τ2=769; AR(1); AR(2); AR(2)
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GA results: 3 pieces, breaks at τ1=293, τ2=615.  Total run time 27.45 secs

Fitted model: φ1 φ2 σ2

1- 292: .365    -0.753 1.149
293- 614:    .821    -0.790  1.176
615-1024:  1.084   -0.760        0.960
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Left: True model log-spectrogram; Center: Auto-PARM log-
spectrogram; Right: Average of Auto-PARM log-spectrogram 
based on 200 reps.
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Simulation Results based  on 200 reps

5.  Speech signal segmentation1. Introduction

We consider the problem of modeling a non-stationary time series 

by segmenting the series into blocks of different autoregressive

(AR) processes.  The number of break points, denoted by m, as 

well as their location, and the order of the respective AR models 

are assumed to be unknown.  We propose an automatic procedure 

for obtaining such an optimal partition called Auto-PARM for 

Automatic Piecewise AutoRegressive Modeling.  

Speech signal: GREASY, n = 5762 observations
Auto-PARM results: m = 15 break points, run time = 18.02s
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Bottom: Spectogram based on Auto-PARM model

6. Conclusions 

• Introduced Auto-PARM (an automatic procedure for 
segmenting a time series signal into piecewise AR 
models).

• Model selection based on MDL (minimum description 
length) principle. 

• A genetic algorithm was used to find a near optimal 
solution to the model selection problem based on MDL.

• Auto-PARM works well for both detecting segments and 
for  estimating time-varying spectra.
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2.1 Model selection using Minimum Description Length (MDL)
The idea behind MDL is to choose the model which maximizes the
compression of the data or, equivalently, select the model that
minimizes the code length of the data (i.e., amount of memory
required to encode the data).

3.2 Implementation of GA
A chromosome consists of n genes, each taking the value of -1 (no
break) or p (order of AR process).  Use natural selection to find a near
optimal solution. An element F∈M is mapped with a chromosome c by

For example,

c = (2, -1, -1, -1, -1, 0, -1,  -1, -1, -1, 0, -1, -1, -1, 3, -1, -1, -1, -1,-1)
t: 1                       6 11 15

corresponds to 

AR(2), t=1:5; AR(0), t=6:10; AR(0), t=11:14; AR(3), t=15:20
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