Observation Driven Models for Time Series of Counts

Richard A. Davis Colorado State University

(http://www.stat.colostate.edu/~rdavis/lectures)

Joint work with:

William Dunsmuir, University of New South Wales Sarah Streett, National Center for Atmospheric Research

Outline

- > Introduction
 - Example: asthma data
- > Parameter-driven models
- Observation-driven models
- ➤ Generalized Linear ARMA (GLARMA) models for time series of counts
 - Properties
 - Existence and uniqueness of stationary distributions
 - Maximum likelihood estimation and asymptotic theory
 - Application to asthma data
- GLARMA extensions
 - Bernoulli
- > Other (BIN)

Example: Daily Asthma Presentations (1990:1993)

Notation and Setup

Count data: Y_1, \ldots, Y_n

Regression (explanatory) variable: $\mathbf{x_t}$

Model: Distribution of the Y_t given x_t and a stochastic process v_t are indep Poisson distributed with mean

$$\mu_t = \exp(\mathbf{x}_t^T \boldsymbol{\beta} + \boldsymbol{\nu}_t).$$

The distribution of the stochastic process v_t may depend on a vector of parameters γ .

Note: $v_t = 0$ corresponds to standard Poisson regression model.

Primary objective: Inference about β .

Parameter-Driven Model for the Mean Function µ_t

Parameter-driven specification: (Assume $Y_t | \mu_t$ is $Poisson(\mu_t)$)

$$\log \mu_t = \mathbf{x}_t^T \boldsymbol{\beta} + \boldsymbol{\nu}_t ,$$

where $\{v_t\}$ is a stationary Gaussian process.

e.g. (AR(1) process)

$$(\nu_{t} + \sigma^{2}/2) = \phi(\nu_{t-1} + \sigma^{2}/2) + \epsilon_{t} , \quad \{\epsilon_{t}\} \sim IID \ N(0, \sigma^{2}(1-\phi^{2})).$$

Advantages:

- properties of model (ergodicity and mixing) easy to derive.
- interpretability of regression parameters

$$E(Y_t) = \exp(\mathbf{x}_t^T \boldsymbol{\beta}) E\exp(v_t) = \exp(\mathbf{x}_t^T \boldsymbol{\beta}), \text{ if } E\exp(v_t) = 1.$$

Disadvantages:

- estimation is difficult-likelihood function not easily calculated (MCEM, importance sampling, estimating eqns).
- model building can be laborious
- prediction is more difficult.

Observation Driven Model for the Mean Function μ_t

Observation-driven specification: (Assume $Y_t | \mu_t$ is Poisson(μ_t))

$$\log \mu_t = \mathbf{x}_t^T \mathbf{\beta} + \mathbf{v}_t ,$$

where v_t is a function of past observations Y_s , s < t.

$$\underline{e.g.} \ \nu_t = \gamma_1 Y_{t-1} + \ldots + \gamma_p Y_{t-p}$$

Advantages:

- likelihood easy to calculate
- prediction is straightforward (at least one lead-time ahead).

Disadvantages:

- stability behavior, such as stationarity and ergodicty, is difficult to derive.
- $\mathbf{x}_t^T \boldsymbol{\beta}$ is not easily interpretable. In the special case above,

$$E(Y_t) = \exp(\mathbf{x}_t^T \boldsymbol{\beta}) E \exp(\gamma_1 Y_{t-1} + \dots + \gamma_p Y_{t-p})$$

Generalized Linear ARMA (GLARMA) Model for Poisson Counts

Two components in the specification of v_t (see also Shephard (1994)).

1. Uncorrelated (martingale difference sequence)

For $\lambda > 0$, define

$$e_t = (Y_t - \mu_t) / \mu_t^{\lambda}$$

(Specification of λ will be described later.)

2. Form a linear process driven by the MGD sequence $\{e_t\}$

$$\log \mu_t = \mathbf{x}_t^{\mathrm{T}} \boldsymbol{\beta} + \mathbf{v}_t,$$

where

$$v_t = \sum_{i=1}^{\infty} \psi_i e_{t-i}.$$

Since the conditional mean μ_t is based on the whole past, the model is no longer Markov.

Properties of the New Model

$$e_{t} = (Y_{t} - \mu_{t}) / \mu_{t}^{\lambda}, \quad \log \mu_{t} = X_{t}^{T} \beta + \nu_{t}, \quad \nu_{t} = \sum_{i=1}^{\infty} \psi_{i} e_{t-i}.$$

- 1. $\{e_t\}$ is a MG difference sequence $E(e_t \mid F_{t-1}) = 0$
- 2. $\{e_t\}$ is an uncorrelated sequence (follows from 1)

3.
$$E(e_t^2) = E(\mu_t^{1-2\lambda})$$

= 1 if $\lambda = .5$

4. Set,
$$W_t = \log \mu_t = X_t^T \boldsymbol{\beta} + \boldsymbol{\nu}_t$$
,

so that

$$E(\mathbf{W}_{t}) = \mathbf{x}_{t}^{\mathrm{T}} \boldsymbol{\beta} \qquad \text{and} \qquad \operatorname{Var}(\mathbf{W}_{t}) = \sum_{i=1}^{\infty} \psi_{i}^{2} E(\mu_{t-i}^{1-2\lambda})$$
$$= \sum_{i=1}^{\infty} \psi_{i}^{2} \quad (\text{if } \lambda = .5)$$

Properties continued

5.
$$Cov(W_t, W_{t+h}) = \sum_{i=1}^{\infty} \psi_i \psi_{i+h} E(\mu_{t-i}^{1-2\lambda})$$

It follows that $\{W_t\}$ has properties similar to the latent process specification:

$$\mathbf{W}_{t} = \mathbf{X}_{t}^{\mathrm{T}} \boldsymbol{\beta} + \sum_{i=1}^{\infty} \boldsymbol{\psi}_{i} \boldsymbol{e}_{t-i}$$

which, by using the results for the latent process case and assuming the linear process part is nearly Gaussian, we obtain

$$E(e^{W_t}) = E(e^{\mathbf{x}_t^{\mathrm{T}} \mathbf{\beta} + \sum_i \psi_i e_{t-i}})$$

$$\approx e^{\mathbf{x}_t^{\mathrm{T}} \mathbf{\beta} + Var(\mathbf{v}_t)/2}$$

$$= e^{\mathbf{x}_t^{\mathrm{T}} \mathbf{\beta} + \sum_{i=1}^{\infty} \psi_i^2/2},$$

By adjusting the intercept term, $E(\mu_t)$ can be interpreted as $exp(\mathbf{x}_t^T\beta)$.

Properties continued

6. (GLARMA model). Let $\{U_t\}$ be an ARMA process with driven by the MGD sequence $\{e_t\}$, i.e.,

$$U_{t} = \phi_{1}U_{t-1} + \ldots + \phi_{p}U_{t-p} + e_{t} + \theta_{1}e_{t-1} + \ldots + \theta_{q}e_{t-q}$$

Then the best predictor of U_t based on the infinite past is

$$\hat{\mathbf{U}}_{t} = \sum_{i=1}^{\infty} \mathbf{\psi}_{i} e_{t-i}$$

where

$$\sum_{i=1}^{\infty} \psi_i z^i = \phi(z)^{-1} \theta(z) - 1.$$

The model for $\log \mu_t$ is then

$$\mathbf{W}_{t} = \mathbf{X}_{t}^{\mathrm{T}} \boldsymbol{\beta} + \boldsymbol{Z}_{t},$$

where

$$Z_{t} = \hat{U}_{t} = \phi_{1}(Z_{t-1} + e_{t-1}) + \dots + \phi_{p}(Z_{t-p} + e_{t-p}) + \theta_{1}e_{t-1} + \dots + \theta_{q}e_{t-q}.$$

Existence and uniqueness of a stationary distr in the simple case.

Consider the simplest form of the model with $\lambda = 1$, given by

$$W_{t} = \beta + \gamma (Y_{t-1} - e^{W_{t-1}}) e^{-W_{t-1}}.$$

Theorem: The Markov process $\{W_t\}$ has a unique stationary distribution.

Idea of proof:

- State space is $[\beta-\gamma, \infty)$ (if $\gamma>0$) and $(-\infty, \beta-\gamma]$ (if $\gamma<0$).
- Satisfies Doeblin's condition:

There exists a prob measure ν such for some m > 1, $\epsilon > 0$, and $\delta > 0$, $\nu(A) > \epsilon \text{ implies } P^m(x,A) \ge \delta \text{ for all } x.$

- Chain is strongly aperiodic.
- It follows that the chain $\{W_t\}$ is uniformly ergodic (Thm 16.0.2 (iv) in Meyn and Tweedie (1993))

Existence of Stationary Distr in Case $.5 \le \lambda < 1$.

Consider the process

$$W_{t} = \beta + \gamma (Y_{t-1} - e^{W_{t-1}}) e^{-\lambda W_{t-1}}.$$

Propostion: The Markov process $\{W_t\}$ has at least one stationary distribution.

Idea of proof:

- {W_t} is weak Feller.
- {W_t} is bounded in probability on average, i.e., for each x, the sequence $\{k^{-1}\sum_{i=1}^{k}P^{i}(x,\cdot), k=1,2,...,\}$ is tight.
- There exists at least one stationary distribution (Thm 12.0.1 in M&T)

Lemma: If a MC $\{X_t\}$ is weak Feller and $\{P(x, \bullet), x \in X\}$ is tight, then $\{X_t\}$ is bounded in probability on average and hence has a stationary distribution.

Note: For our case, we can show tightness of $\{P(x, \bullet), x \in X\}$ using a Markov style inequality.

Uniqueness of Stationary Distr in Case $.5 \le \lambda < 1$?

Theorem (M&T `93): If the Markov process $\{X_t\}$ is an *e-chain* which is bounded in probability on average, then there exists a unique stationary distribution if and only if there exists a *reachable point* x^* .

For the process $W_t = \beta + \gamma (Y_{t-1} - e^{W_{t-1}}) e^{-\lambda W_{t-1}}$, we have

- {W_t} is bounded in probability uniformly over the state space.
- {W_t} has a reachable point x^* that is a zero of the equation $0 = x^* + \gamma \exp\{(1-\lambda) x^*\}$
- e-chain?

Reachable point: x^* is a reachable point if for every open set O containing x^* ,

$$\sum_{n=1}^{\infty} P^n(x, O) > 0 \text{ for all } x.$$

e-chain: For every continuous f with compact support, the sequence of functions $\{P^nf, n = 1,...\}$ is equicontinuous, on compact sets.

Estimation for Poisson GLARMA

Model: $Y_t \mid \mu_t$ is Poisson(μ_t)

 $\log \mu_{t} = \mathbf{x}_{t}^{\mathrm{T}} \boldsymbol{\beta} + \mathbf{v}_{t},$

 $v_t = \sum_{i=1}^{\infty} \psi_i e_{t-i}.$

Let $\delta = (\beta^T, \gamma^T)^T$ be the parameter vector for the model (γ corresponds to the parameters in the linear process part).

Log-likelihood:

$$L(\delta) = \sum_{t=1}^{n} (Y_t W_t(\delta) - e^{W_t(\delta)}),$$

where

$$\mathbf{W}_{t}(\boldsymbol{\delta}) = \mathbf{X}_{t}\boldsymbol{\beta} + \sum_{i=1}^{\infty} \boldsymbol{\psi}_{i}(\boldsymbol{\delta}) e_{t-i}.$$

First and second derivatives of the likelihood can easily be computed recursively and Newton-Raphson methods are then implementable. For example,

$$\frac{\partial L(\boldsymbol{\delta})}{\partial \boldsymbol{\delta}} = \sum_{t=1}^{n} (Y_{t} - e^{W_{t}(\boldsymbol{\delta})}) \frac{\partial W_{t}(\boldsymbol{\delta})}{\partial \boldsymbol{\delta}}$$

and the term $\partial W_{t}(\delta)/\partial \delta$ can be computed recursively.

Asymptotic Results for MLE

Define the array of random variables by

$$\eta_{nt} = n^{-1/2} (\mathbf{Y}_{t} - e^{\mathbf{W}_{t}(\boldsymbol{\delta})}) \frac{\partial \mathbf{W}_{t}(\boldsymbol{\delta})}{\partial \boldsymbol{\delta}}.$$

Properties of $\{\eta_{nt}\}$:

• $\{\eta_{nt}\}$ is a martingale difference sequence.

$$\bullet \sum_{t=1}^{n} E(\eta_{nt} \eta_{nt}^{T} | F_{t-1}) \xrightarrow{P} V(\boldsymbol{\delta})$$

•
$$\sum_{t=1}^{n} E(\eta_{nt} \eta_{nt}^{T} | F_{t-1}) \xrightarrow{P} V(\delta).$$
•
$$\sum_{t=1}^{n} E(\eta_{nt} \eta_{nt}^{T} I(| \eta_{nt} | > \varepsilon) | F_{t-1}) \xrightarrow{P} 0.$$

Using a MG central limit theorem, it "follows" that

$$n^{1/2}(\hat{\boldsymbol{\delta}}-\boldsymbol{\delta}) \xrightarrow{D} N(0,V^{-1}),$$

where
$$V = \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} e^{W_t(\delta)} \partial W_t(\delta) \partial W_t^T(\delta)$$
.

Simulation Results

Model 1:
$$W_t = \beta_0 + \gamma (Y_{t-1} - e^{W_{t-1}}) e^{-W_{t-1}}$$
, $n = 500$, nreps = 5000

Parameter	Mean	SD	SD(from like)
$\beta_0 = 1.50$	1.499	0.0263	0.0265
$\gamma = 0.25$	0.249	0.0403	0.0408
$\dot{\beta}_0 = 1.50$	1.499	0.0366	0.0364
$\gamma = 0.75$	0.750	0.0218	0.0218
$\dot{\beta}_0 = 3.00$	3.000	0.0125	0.0125
$\gamma = 0.25$	0.249	0.0431	0.0430
$\dot{\beta}_0 = 3.00$	3.000	0.0175	0.0174
$\gamma = 0.75$	0.750	0.0270	0.0271

Model 2:
$$W_t = \beta_0 + \beta_1 t / 500 + \gamma (Y_{t-1} - e^{W_{t-1}}) e^{-W_{t-1}}$$
, $n = 500$, $n = 500$

$\beta_0 = 1.00$	1.000	0.0286	0.0284
$\beta_1 = 0.50$	0.500	0.0035	0.0034
$\gamma = 0.25$	0.248	0.0420	0.0426
$\hat{\beta}_0 = 1.50$	0.998	0.0795	0.0805
$\beta_1 =15$	150	0.0171	0.0173
$\gamma = 0.25$	0.247	0.0337	0.0339

Application to Sydney Asthma Count Data

Data: Y_1, \ldots, Y_{1461} daily asthma presentations in a Campbelltown hospital.

Preliminary analysis identified.

- no upward or downward trend
- annual cycle modeled by $\cos(2\pi t/365)$, $\sin(2\pi t/365)$
- seasonal effect modeled by

$$P_{ij}(t) = \frac{1}{B(2.5,5)} \left(\frac{t - T_{ij}}{100} \right)^{2.5} \left(1 - \frac{t - T_{ij}}{100} \right)^{5}$$

where B(2.5,5) is the beta function and T_{ij} is the start of the j^{th} school term in year i.

- day of the week effect modeled by separate indicator variables for Sunday and Monday (increase in admittance on these days compared to Tues-Sat).
- Of the meteorological variables (max/min temp, humidity) and pollution variables (ozone, NO, NO₂), only humidity at lags of 12-20 days and NO₂(max) appear to have an association.

Model for Asthma Data

Trend function.

$$\mathbf{x_t}^{T}$$
=(1, $\mathbf{S_t}$, $\mathbf{M_t}$, $\cos(2\pi t/365)$, $\sin(2\pi t/365)$, $\mathbf{P_{11}}(t)$, $\mathbf{P_{12}}(t)$, $\mathbf{P_{21}}(t)$, $\mathbf{P_{22}}(t)$, $\mathbf{P_{31}}(t)$, $\mathbf{P_{32}}(t)$, $\mathbf{P_{41}}(t)$, $\mathbf{P_{42}}(t)$, $\mathbf{H_t}$, $\mathbf{N_t}$)

 $(H_t = \frac{1}{7} \sum_{i=0}^{6} h_{t-12-i})$ and h_t is the residual from an annual cycle fitted to the daily average humidity at 0900 and 1500.)

Model for $\{v_t\}$.

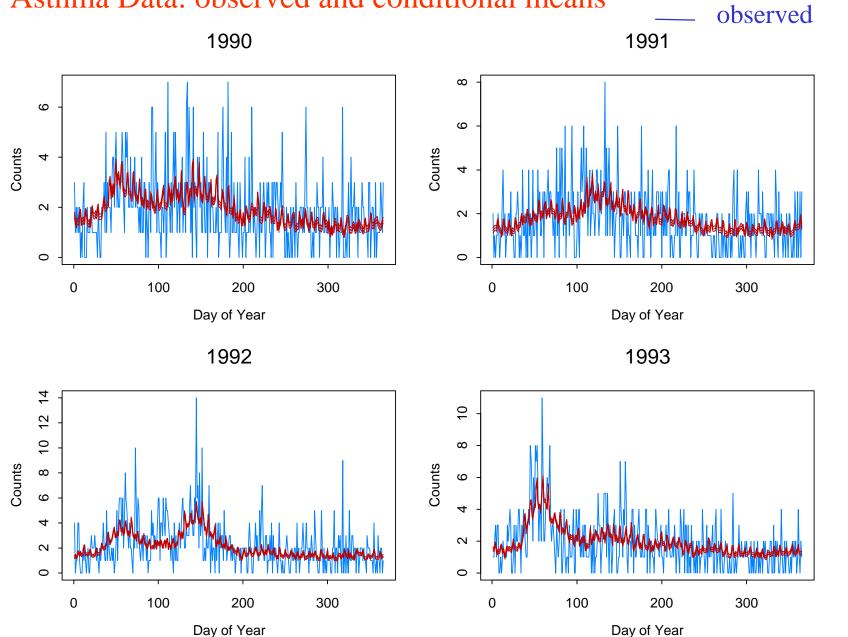
MA(7):
$$v_{t} = \theta_{7}e_{t-7}$$

Results for Asthma Data

Term	Est	SE	T-ratio
Intercept	0.583	0.062	9.46
Sunday effect	0.197	0.056	3.53
Monday effect	0.230	0.055	4.20
$\cos(2\pi t/365)$	-0.214	0.039	-5.54
$\sin(2\pi t/365)$	0.176	0.040	4.35
Term 1, 1990	0.200	0.056	3.54
Term 2, 1990	0.132	0.057	2.31
Term 1, 1991	0.087	0.066	1.32
Term 2, 1991	0.172	0.057	2.99
Term 1, 1992	0.254	0.055	4.66
Term 2, 1992	0.308	0.049	6.31
Term 1, 1993	0.439	0.050	8.77
Term 2, 1993	0.116	0.061	1.91
Humidity H _t /20	0.169	0.055	3.09
NO ₂ max	-0.104	0.033	-3.16
MA, lag 7 θ_7	0.042	0.018	2.32

Asthma Data: observed and conditional means

— cond means



GLARMA Extensions (Binary data)

Binary data: Y_1, \ldots, Y_n

Regression (explanatory) variable: \mathbf{x}_{t}

Model: Distribution of the Y_t given x_t and the past is Bernoulli(p_t), i.e.,

$$P(Y_t = 1 | F_{t-1}) = p_t$$
 and $P(Y_t = 0 | F_{t-1}) = 1 - p_t$.

As before construct a MGD sequence

$$e_t = (Y_t - p_t)/(p_t(1-p_t))^{1/2}$$

and using the logistic link function, the GLARMA model becomes

$$\mathbf{W}_{t} = \log \frac{p_{t}}{1 - p_{t}} \text{ with } W_{t} = \mathbf{x}_{t}^{\mathrm{T}} \boldsymbol{\beta} + Z_{t},$$

$$Z_{t} = \hat{U}_{t} = \phi_{1}(Z_{t-1} + e_{t-1}) + \dots + \phi_{p}(Z_{t-p} + e_{t-p}) + \theta_{1}e_{t-1} + \dots + \theta_{q}e_{t-q}.$$

A Simple GLARMA Model for Price Activity (R&S)

Model for price change: The price change C_i of the ith transaction has the following components:

- Y_t activity {0,1}
- D_t direction $\{-1,1\}$
- S_t size $\{1, 2, 3, \ldots\}$

Rydberg and Shephard consider a model for these components. An autologistic model is used for Y_t .

Simple GLARMA(0,1) model for price activity: Y_t is a Bernoulli rv representing a price change at the t^{th} transaction. Assume Y_t given F_{t-1} is Bernoulli(p_t), i.e.,

$$P(Y_t = 1 | F_{t-1}) = p_t = 1 - P(Y_t = 0 | F_{t-1}),$$

where

$$p_{t} = \frac{e^{\sigma Z_{t}}}{(1 + e^{\sigma Z_{t}})} \text{ and } Z_{t} = \frac{Y_{t-1} - p_{t-1}}{\sqrt{p_{t-1}(1 - p_{t-1})}} = e_{t-1}.$$

Existence of Stationary Solns for the Simple GLARMA Model

Consider the process

$$Z_{t} = \frac{Y_{t-1} - p_{t-1}}{\sqrt{p_{t-1}(1 - p_{t-1})}},$$

where Y_{t-1} is Bernoulli with parameter $p_{t-1} = e^{\sigma Z_{t-1}} (1 + e^{\sigma Z_{t-1}})^{-1}$.

Propostion: The Markov process $\{Z_t\}$ has a unique stationary distribution.

Idea of proof:

- $\{Z_t\}$ is an e-chain.
- $\{Z_t\}$ is bounded in probability on uniformly over the state space
- Possesses a reachable point (x^* is soln to $x+e^{\sigma x/2}=0$)

BIN Models: A Modeling Framework for Stock Prices (Davis, Ryderberg, Shephard, Streett)

Consider the model of a price of an asset at time t given by

$$p(t) = p(0) + \sum_{i=1}^{N(t)} Z_i,$$

where

- N(t) is the number of trades up to time t
- Z_i is the price change of the i^{th} transaction.

Then for a fixed time period Δ ,

$$p_t := p((t+1)\Delta -) - p(t\Delta) = \sum_{i=N(t\Delta)+1}^{N((t+1)\Delta -)} Z_i,$$

denotes the rate of return on the investment during the tth time interval and

$$N_t := N((t+1)\Delta -) - N(t\Delta)$$

denotes the number of trades in $[t \Delta, (t+1) \Delta)$.

The Bin Model for the Number of Trades

Bin(p,q) model: The distribution of the number of trades N_t in $[t \Delta, (t+1) \Delta)$, conditional on information up to time $t \Delta$ — is Poisson with mean

$$\lambda_{t} = \alpha + \sum_{j=1}^{p} \gamma_{j} N_{t-j} + \sum_{j=1}^{\bar{q}} \delta_{j} \lambda_{t-j}, \alpha \geq 0, 0 \leq \gamma_{j}, \delta_{j} < 1.$$

Proposition: For the Bin(1,1) model,

$$\lambda_{t} = \alpha + \gamma N_{t-1} + \delta \lambda_{t-1},$$

there exists a unique stationary solution.

Idea of proof:

- $\{\lambda_t\}$ is an e-chain.
- $\{\lambda_t\}$ is bounded in probability on average.
- Possesses a reachable point ($x^* = \alpha/(1-\gamma)$)

Summary Remarks

The observation model for the Poisson counts proposed here has the following properties.

- 1. Easily interpretable on the linear predictor scale and on the scale of the mean μ_t with the regression parameters directly interpretable as the amount by which the mean of the count process at time t will change for a unit change in the regressor variable.
- 2. An approximately unbiased plot of the μ_t can be generated by

$$\hat{\mu}_t = \exp(\hat{W}_t - .5\sum_{i=1}^{\infty} \hat{\psi}_i^2).$$

- 3. Is easy to predict with.
- 4. Provides a mechanism for adjusting the inference about the regression parameter β for a form of serial dependence.
- 5. Generalizes to ARMA type lag structure.
- 6. Estimation (approx MLE) is easy to carry out.