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Example: Daily Asthma Presentations (1990:1993)
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Notation and Setup

Countdata: Y, ..., Y,

Regression (explanatory) variable: x,

Model: Distribution of the Y, given x, and a stochastic process v, are indep
Poisson distributed with mean

M = exp(x;" B + V).

The distribution of the stochastic process v, may depend on a vector of
parameters'y.

Note: v,= 0 corresponds to standard Poisson regression model.

Primary objective: Inference about f3.




Parameter-Driven Model for the Mean Function

Parameter-driven specification: (Assume Y| 1 Is Poisson(L,))

log P =x,"B +v,,
where {v, } Is a stationary Gaussian process.

e.g. (AR(1) process)
(v, +0%2) = @(v., + 0%2) + &, {}~1ID N(O, o*(1-@)).
Advantages:
* properties of model (ergodicity and mixing) easy to derive.
* interpretability of regression parameters
E(Y,) =exp(x,' B )Eexp(v) = exp(x,' B), if Eexp(v) =1.

Disadvantages:
* estimation is difficult-likelihood function not easily calculated (MCEM,

Importance sampling, estimating eqgns).
* model building can be laborious
* prediction is more difficult.



Observation Driven Model for the Mean Function p,

Observation-driven specification: (Assume Y,| M, is Poisson(L))

log b =x"B+v,,
where v, is a function of past observations Y, s <t.
E.0. Ve =YY ¥ Y Y
Advantages:
* likelihood easy to calculate
* prediction is straightforward (at least one lead-time ahead).

Disadvantages:

* stability behavior, such as stationarity and ergodicty, is difficult to derive.
*x,' B isnot easily interpretable. In the special case above,

E(Y,) =exp(x," B)EeXp(Y; Y1 + ... +V,Y,)




Generalized Linear ARMA (GLARMA) Model for Poisson Counts

Two components in the specification of v, (see also Shephard (1994)).
1. Uncorrelated (martingale difference sequence)
For A >0, define
e, = (Y.~ ) 1
(Specification of A will be described later.)

2. Form a linear process driven by the MGD sequence {e;}

logp, =x;B+v,,

Vi = Z P
=

Since the conditional mean L, is based on the whole past, the model is no longer
Markov.

where




Properties of the New Model

e, = (Y, =) 1 logu, =x;B+v,, v, :leiet—i'
i=1

1. {e;} is a MG difference sequence E(e,| F.,) =0
2. {e.} is an uncorrelated sequence (follows from 1)
3. E(e?) = E(ui2)

=1ifA=5
4.Set, W, =logp, =X;B+v,,

so that
E(W)=xp  and Var(W,)=> ¢E(u?)
i=1

:i:,uf (if A= 5)




Properties continued

S. COV(Wt ! Wt+h) = Z l‘plLlJHhE(l"l:tIZ)\)

It follows that {W,} has properties similar to the latent process specification:
W, =B+ Z i€

=1
which, by using the results for the latent process case and assuming the linear
process part is nearly Gaussian, we obtain

E(eWt ) — E(ex;rﬁ"'ziwiet—i )

~ extTB+Var(vt)/2
XTB+3 WP /2

— e i=1 ’

By adjusting the intercept term, E(l,) can be interpreted as exp(x,"3).




Properties continued

6. (GLARMA model). Let {U} be an ARMA process with driven by the MGD
sequence {e}, i.e.,

U=@U +...+ QU +e+ B, +...+0e,

Then the best predictor of U, based on the infinite past is

LAJt = Z P&
=

where

imizi - (2)6(z) -1.

The model for log b, is then

Wt :XIB'FZU
where
Z=U, = (pl(zt-l +et—1) +"‘+(pp(zt-p +et—p) +elet—1 +---+0.e

q-t-q°
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Existence and uniqueness of a stationary distr in the simple case.

Consider the simplest form of the model with A = 1, given by

W, =B+y(Y,, —e")e™.

Theorem: The Markov process {W,} has a unique stationary distribution.
Idea of proof:

* State space is [B—Y,) (if y>0) and (- oo, B=y] (if y<0).

* Satisfies Doeblin’s condition:

There exists a prob measure v such for somem>1, € >0, and o >0,

V(A) > & implies PM(x,A) = o for all x.
* Chain is strongly aperiodic.

* |t follows that the chain {W,} is uniformly ergodic (Thm 16.0.2 (iv) in
Meyn and Tweedie (1993))
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Existence of Stationary Distr in Case .5 < A <1.

Consider the process
—_ Wi AWy
W, =B+y(Y,, —e"™)e™,

Propostion: The Markov process {W,} has at least one stationary distribution.

Idea of proof:
* {W.} is weak Feller.

* {W,} is bounded in probability on average, i.e., for each x, the sequence
ik i _ .
{k*> . P'(x0 k=12,.} istight
* There exists at least one stationary distribution (Thm 12.0.1 in M&T)

Lemma: If a MC {X} is weak Feller and {P(x, -), xUX} is tight, then {X} is
bounded in probability on average and hence has a stationary distribution.

Note: For our case, we can show tightness of {P(x, -), xUX} using a Markov
style inequality.
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Unigueness of Stationary Distr in Case .5 < A <1?

Theorem (M&T "93): If the Markov process {X} is an e-chain which is bounded
In probability on average, then there exists a unique stationary distribution if and
only if there exists a reachable point x".

For the process W, =B +y(Y,, —e")e™, we have
e {W.,} is bounded in probability uniformly over the state space.

* {W,} has a reachable point x™ that is a zero of the equation
0= x"+yexp{(1-A) X'}

® e-chain?

Reachable point: x™ is a reachable point if for every open set O containing X,

o0

anlpn(X,O) >0 forall x.

e-chain: For every continuous f with compact support, the sequence of functions
{P"f, n=1,...} is equicontinuous, on compact sets.
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Estimation for Poisson GLARMA

Let d=( ", y")" be the parameter vector for the model (y corresponds to the
parameters in the linear process part).

Model: Y,| W, is Poisson(p,)
Log-likelihood:

: log, =x;B+v,,
L(0) = Z (YtWt (0) - eWt(é))v

Vi = Z Wi€,;-
i=1

where

W,(8) =X+ 0, (3)e,

First and second derivatives of the likelihood can easily be computed recursively

and Newton-Raphson methods are then implementable. For example,

0L(d) _ w, (3)y OW, (9)
“ =Ny, e @) 2
9o ;( t ) 06

and the term 9W,(9)/ad can be computed recursively.
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Asymptotic Results for MLE

Define the array of random variables by

W, (6)) aWt (6) .

Nt :n_llz(Yt —€ 95

Properties of {n.}:
*{n..} Is @ martingale difference sequence.
* Y EM Ny Fy) 2 V().
t=1

e Y E@ (0,17 €) | Fy) OE O,
t=1

Using a MG central limit theorem, it “follows” that

nY2(6-8) T2 N(O,V™),

where v = lim =Y e“OwW  (3)OW, (3).

n-*Ni3
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Simulation Results

Model 1: W, =, +y(Y,_, —e")e™, n =500, nreps = 5000

Parameter Mean SD SD(from like)
B, =1.50 1.499 0.0263 0.0265
y = 0.25 0.249 0.0403 0.0408
B,=1.50 1.499 0.0366 0.0364
y = 0.75 0.750 0.0218 0.0218
B, =3.00 3.000 0.0125 0.0125
y = 0.25 0.249 0.0431 0.0430
B, =3.00 3.000 0.0175 0.0174
vy = 0.75 0.750 0.0270 0.0271
Model 2: W, =B, +B,t/500 + y(Y,, —e"*)e™, n =500, nreps = 5000
B, =1.00 1.000 0.0286 0.0284
B, =0.50 0.500 0.0035 0.0034
y = 0.25 0.248 0.0420 0.0426
B,=1.50 0.998 0.0795 0.0805
B,=-.15 -150 0.0171 0.0173
y = 0.25 0.247 0.0337 0.0339
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Application to Sydney Asthma Count Data

Data: Y, ..., Y4 daily asthma presentations in a Campbelltown hospital.

Preliminary analysis identified.
® no upward or downward trend
® annual cycle modeled by cos(21t/365), sin(211t/365)

® seasonal effect modeled by

py=—t [ 1ot
i T B(2.5,5) 100 100

where B(2.5,5) is the beta function and T;; is the start of the j™ school term
In year l.

® day of the week effect modeled by separate indicator
variables for Sunday and Monday (increase in admittance on
these days compared to Tues-Sat).

® Of the meteorological variables (max/min temp, humidity)
and pollution variables (ozone, NO, NO,), only humidity at

lags of 12-20 days and NO,(max) appear to have an association. .




Model for Asthma Data

Trend function.

x.™=(1, S, M,, COS(2Tt/365), Sin(2/365), P,,(t), P,,(t),
P21 (1), Pao(t), Pai(t), P3o(t), Pas(t), Pao(t), Hy N

6

(H, = %Z h._,; and his the residual from an annual cycle fitted to the daily
i=0

average humidity at 0900 and 1500.)

Model for {v}.

MA(7): v, = 0.,
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Results for Asthma Data

Term Est SE T-ratio
Intercept 0.583 0.062 9.46
Sunday effect 0.197 0.056 3.53
Monday effect | 0.230 0.055 4.20
cos(21/365) -0.214 0.039 -5.54
sin(2mt/365) 0.176 0.040 4.35
Term 1, 1990 0.200 0.056 3.54
Term 2, 1990 0.132 0.057 2.31
Term 1, 1991 0.087 0.066 1.32
Term 2, 1991 0.172 0.057 2.99
Term 1, 1992 0.254 0.055 4.66
Term 2, 1992 0.308 0.049 6.31
Term 1, 1993 0.439 0.050 8.77
Term 2, 1993 0.116 0.061 1.91
Humidity H/20] 0.169 0.055 3.09
NO, max -0.104 0.033 -3.16
MA, lag 7 6, 0.042 0.018 2.32

19




. —— cond means
Asthma Data: observed and conditional means
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GLARMA Extensions (Binary data)

Binary data: Y, ..., Y,

Regression (explanatory) variable: x,

Model: Distribution of the Y, given x, and the past is Bernoulli(p,), 1.€.,
P(Y,=1 F.)=p, and P(Y,=0| F_,) = 1-p,.

As before construct a MGD sequence

€ = (Yt - pt)/( pt(l_ pt))1/2

and using the logistic link function, the GLARMA model becomes

W, = log - P with w, =xTB+2,,
— Py

Zt = Ot :(pl(zt-l+et—1)+"‘+(Pp(Zt-p +et—p)+elet—l +---+06.e

and

q-t-q°
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A Simple GLARMA Model for Price Activity (R&S)

Model for price change: The price change C, of the it transaction has the
following components:

° Y, activity {0,1}

* D, direction {-1,1}
°S;size{1,2,3,...}

Rydberg and Shephard consider a model for these components. An autologistic
model is used for Y, .

Simple GLARMA(0,1) model for price activity: Y, is a Bernoulli rv representing
a price change at the t'" transaction. Assume Y, given F,_, is Bernoulli(p), i.e.,

P(Y,=1|F.)=p,=1-P(Y;=0]|F.y),

where ,
_ e ~ Pus
P, = ——and Z
L (L+e™) thl(l Pes)

=e_,.
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Existence of Stationary Solns for the Simple GLARMA Model

Consider the process
_ Yii " Pu
7 =

t )
\/ Pria (1_ pt-l)
where Y, is Bernoulli with parametep,, =e (1+e°+)™,

Propostion: The Markov process {Z,} has a unique stationary distribution.

Idea of proof:
* {Z,} is an e-chain.
e {Z,} is bounded in probability on uniformly over the state space

* Possesses a reachable point ( xHis soln to x+e/2=0 )
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BIN Models: A Modeling Framework for Stock Prices
(Davis, Ryderberg, Shephard, Streett)

Consider the model of a price of an asset at time t given by
N (t)

p(t) = p(0) + D Z,,
where =
* N(t) is the number of trades up to time t
* Z. is the price change of the i"" transaction.
Then for a fixed time period A,

N ((t+1)A-)

p = p((t+1)A-) - p(d) = > Z;

i=N (tA)+1
denotes the rate of return on the investment during the t time interval and

N, := N((t +1)A-) - N(tA)

denotes the number of trades in [t A, (t+1) A).
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The Bin Model for the Number of Trades

Bin(p,q) model: The distribution of the number of trades N, in [t A, (1+1) A),
conditional on information up to time t A— is Poisson with mean

P q
A=a+> yN_ +>3A_,a200<vy,,3, <l
j=1 j=1
Proposition: For the Bin(1,1) model,

Ay =a+yN +0A

there exists a unique stationary solution.
Idea of proof:
* {A} Is an e-chain.
* {A} Is bounded in probability on average.

* Possesses a reachable point ( x"=a/(1-y))
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Summary Remarks

The observation model for the Poisson counts proposed here has the following
properties.

1. Easily interpretable on the linear predictor scale and on the scale of the mean
L. with the regression parameters directly interpretable as the amount by which
the mean of the count process at time t will change for a unit change in the
regressor variable.

2. An approximately unbiased plot of the £4 can be generated by
ﬂt = exp(W, _'52¢Ii2)-
i=1
3. Is easy to predict with.

4. Provides a mechanism for adjusting the inference about the regression
parameter (3 for a form of serial dependence.

5. Generalizes to ARMA type lag structure.

6. Estimation (approx MLE) is easy to carry out.
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