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Continuous-Time ARMA

Processes

Peter J. Brockwell
Richard A. Davis

Yu Yang

Colorado State University

May 23, 2007



Outline

Graz 2007 2 / 38

■ Background
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Why study continuous-time models?

■ For handling irregularly-spaced data.
■ For financial applications—option pricing.
■ For taking advantage of the now wide-spread availability of

high-frequency data.
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Why study continuous-time models?

■ For handling irregularly-spaced data.
■ For financial applications—option pricing.
■ For taking advantage of the now wide-spread availability of

high-frequency data.

In recent years, various attempts have been made to use continuous-time
in order to capture the so-called stylized features of financial time series

■ tail heaviness
■ dependence without correlation
■ volatility clustering
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log-returns for Nikkei (7/97 – 4/99)
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A stochastic volatility model
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Barndorff-Nielsen and Shephard (2001) introduced the following SV
model for the log-asset price X∗:

dX∗(t) = (µ + βV (t))dt +
√

V (t)dW (t),

where W (t) is SBM. The volatility process V is an independent
stationary non-negative Lévy-driven Ornstein-Uhlenbeck process
satisfying

dV (t) + aV (t)dt = σdL(t), a > 0,

i.e.,

V (t) = σ

∫ t

−∞

e−a(t−u)dL(u)

with L(t) a Lévy process.
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Daily Volatility Estimates for DM/$ (12/1/86 to 6/30/99) based on 5-minute
returns (see Todorov).
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Lévy-driven CARMA processes
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The covariance function of Barndorff-Nielsen Shephard model has limited
behavior; namely covariance function must decrease exponentially.
Instead, we consider the case that V is a subordinator-driven
non-negative continuous-time ARMA (CARMA).



Lévy-driven CARMA processes

Graz 2007 7 / 38

The covariance function of Barndorff-Nielsen Shephard model has limited
behavior; namely covariance function must decrease exponentially.
Instead, we consider the case that V is a subordinator-driven
non-negative continuous-time ARMA (CARMA).

Let (Ω,F , (Ft)0≤t≤∞, P ) be a filtered probability space, where F0

contains all the P -null sets of F and (Ft) is right-continuous.

Definition (Lévy Process). {L(t), t ≥ 0} is an (Ft)-adapted Lévy
process if L(t) ∈ Ft for all t ≥ 0 and

■ L(0) = 0 a.s.,
■ L(t0), L(t1) − L(t0), . . . , L(tn) − L(tn−1) are independent for

0 ≤ t0 < t1 < · · · < tn,
■ the distribution of {L(s + t) − L(s) : t ≥ 0} does not depend on s,
■ L(t) is continuous in probability.



Lévy Process
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The characteristic function of L(t), φt(θ) := E(exp(iθL(t))), has the
Lévy-Khinchin representation,

φt(θ) = exp(tξ(θ)), θ ∈ R,

where

ξ(θ) = iθm −
1

2
θ2σ2 +

∫

R0

(

eiθx − 1 −
ixθ

1 + x2

)

ν(dx),

for some m ∈ R, σ > 0, and the measure ν is on the Borel subsets of
R0 = R \ {0}, known as the Lévy measure of the process L, satisfying

∫

R0

u2

1 + u2
ν(du) < ∞.



Some examples
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ξ(θ) = iθm −
1

2
θ2σ2 +

∫

R0

(

eiθx − 1 −
ixθ

1 + x2

)

ν(dx),

■ ν = 0 ⇒ Brownian motion.

■ m = σ2 = 0,
∫

R0

|u|
1+u2 ν(du) < ∞ ⇒ compound Poisson with drift.

■ ν(du) = αu−1e−βudu ⇒ a gamma process with

ξ(θ) =

∫

(eiθx−1 − 1)ν(dx) = (1 − iθ/β)−αt,

■ ν(du) = 1
2
α|u|−1e−β|u|du ⇒ a symmetrized gamma process

(L1 − L2).

■ ξ(θ) = exp(−c|θ|α), 0 < α ≤ 2, ⇒ symmetric stable process.



2nd order Lévy-driven CARMA Process
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Formally, a CARMA process driven by a Lévy process is a stationary
solution of the pth order linear differential equation

(1) a(D)Y (t) = σb(D)DL(t),

where D denotes differentiation with respect to t,

a(z) = zp + a1z
p−1 + · · · + ap,

b(z) = b0 + b1z
1 + · · · + bp−1z

p−1,

bq = 1, bj := 0 for j > q, and {L(t)} is a second-order Lévy process
with Var(L(1)) = 1.



Lévy-driven CARMA Process (cont)
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The defining SDE (1) is interpreted through the state-space formulation
given by the observation and state equations,

Y (t) = σb
′
X(t), t ≥ 0,(2)

dX(t) = AX(t)dt + e dL(t),(3)

where

A =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

−ap −ap−1 −ap−2 · · · −a1















,

e
′ =

[

0 0 · · · 0 1
]

, and

b
′ =

[

b0 b1 · · · bq 0 · · · 0 1
]

.



Lévy-driven CARMA Process (cont)
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The solution to (3) satisfies

(4) X(t) = eAt
X(0) +

∫ t

0

eA(t−u)
e dL(u).

Proposition. If X(0) is independent of {L(t)}, then {X(t)} given by
(4) is strictly (and weakly) stationary if and only if the eigenvalues of the
matrix A all have strictly negative real parts and X(0) ∼

∫ ∞

0
eAu

e dL(u).

Remark. It is easy to check that the eigenvalues of the matrix A are the
zeroes of the autoregressive polynomial a(z).



Lévy-driven CARMA Process (cont)
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Sometimes it is convenient to define the CARMA process for all real
values of t.

Extension to all t. Let {M(t), 0 ≤ t < ∞} be an independent copy of
L and set

L∗(t) = L(t)I[0,∞)(t) − M(−t−)I(−∞,0](t) .

If the eigenvalues of A have negative real parts, then

(5) X(t) =

∫ t

−∞

eA(t−u)
e dL∗(u) .

is a strictly stationary process satisfying

X(t) = eA(t−s)
X(s) +

∫ t

s

eA(t−u)
e dL∗(u) .



Lévy-driven CARMA Process (cont)

Graz 2007 14 / 38

Definition (Causal CARMA Process). If the eigenvalues of A have
negative real parts, then the CARMA process Y is the strictly stationary
process

Y (t) = σb
′
X(t)

where

X(t) =

∫ t

−∞

eA(t−u)
e dL(u),

i.e.,

Y (t) = σ

∫ t

−∞

b
′eA(t−u)

e dL(u) .

That is, {Y (t)} is a causal function of {L(t)},

Y (t) = σ

∫ ∞

−∞

g(t − u) dL(u) , where g(t) =

{

σb
′eAt

e, t > 0,

0, otherwise.



Second-order Properties
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Using the causal representation of Y (t), the ACVF of Y is

γ(h) = σ2

∫ ∞

−∞
g̃(h − u)g(u) du ,

where g̃(u) = g(−x). After some calculation, one can show that

γ(h) =
σ2

2π

∫ ∞

−∞
eiωh

∣

∣

∣

∣

b(iω)

a(iω)

∣

∣

∣

∣

2

dω,

i.e., Y has rational spectral density f(ω) = σ2

2π

∣

∣

∣

b(iω)
a(iω)

∣

∣

∣

2
.

Remark. Gaussian processes with rational spectral density have been of

interest for many years. (See extensive study by Doob (1944) and a nice

paper by Pham Din Duan (1977).) The SDE approach to such processes can

be found in the engineering literature and was employed by Jones (1978) for

modeling irregularly-spaced data.



Canonical Representation of a CARMA
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When the zeroes λ1, . . . , λp of the causal AR polynomial a(z) are
distinct, then the kernel function g and ACVF γ have the special form

g(h) = σ

p
∑

r=1

b(λr)

a′(λr)
eλrhI[0,∞)(h) and γ(h) = σ2

p
∑

r=1

b(λr)b(−λr)

a′(λr)a(−λr)
eλr |h|.

Now defining αr = σb(λr)/a
′(λr), r = 1, . . . , p, we can write

Y (t) =

p
∑

r=1

Yr(t) ,

where Yr is the CAR(1) process,

Yr(t) =

∫ t

−∞

αre
λr(t−u) dL(u) .



Canonical Representation (cont)
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Equivalently,
Y (t) = [1, . . . , 1]Y(t), t ≥ 0,

where Y is the solution of

dY(t) = diag[λi]
p
i=1Ydt + σBR−1

e dL

with Y(0) = σBR−1
X(0), B = diag[b(λi)], and R = [λi−1

j ].

Remark. Simulation of a CARMA(p, q) process with distinct AR roots
can be achieved by the much simpler problem of simulating component
CAR(1) processes and adding them together.



Joint Distribution
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From the representation, Y (t) =
∫ t

−∞
g(t − u) dL(u), the marginal

distribution of Y has cumulant generating function

log E (exp (iθY (t))) =

∫ ∞

−∞

ξ(θg(u)) du .

Using independence of the increments, one can easily calculate the joint
cgf of the fidis.

■ ν = 0 ⇒ Gaussian CARMA(p, q).
■ {L(t)} compound Poisson with bilateral exponential jumps ⇒ (in

the CAR(1) case) that {Y (t)} has marginal cfg,

κ(θ) = − λ
2a1

ln
(

1 + θ2

β2

)

, i.e., Y (t) has a symmetrized gamma

distribution (bilateral exponential if λ = 2a1).
■ For CAR(1) with non-negative Lévy input, see Barndorff-Nielsen and

Shephard (2001) and storage theory literature.



Inference for CARMA processes
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1. For linear Gaussian CARMA processes, MLE based on observations
Y (t1), . . . , Y (tn) can be easily carried out using the state-space
representation (see Jones (1981)).

2. For both the linear Lévy-driven CARMA and Gaussian CTAR
processes, the likelihood can be computed using the state-space
represntation and then optimized.



Estimation via the Sampled Process
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■ If Y is a Gaussian CARMA process, then it is well known (e.g., Doob
(1944), Phillips (1959), Brockwell (1995)), that the sampled process
Y (nh), n = 0,±1, . . . , for fixed spacing h is a strict Gaussian
ARMA(r, s) process with 0 ≤ s < r ≤ p.

■ If L is non-Gaussian, the sampled process will have the same spectral
density (and hence ACVF) as the analogous Gaussian CARMA
process. So from a second order perspective, the two sampled
processes are identical. However, (except in the CAR(1) case), the
non-Gaussian CARMA will not generally be a strict ARMA process.



Estimation (cont)
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CAR(1) Example. If Y is the CAR(1) process, then the sampled
process is the strict AR(1) process

Y (h)
n = φY

(h)
n−1 + Zn, n = 0, 1, . . . ,

where φ = exp(−ah) and

Zn = σ

∫ nh

(n−1)h

e−a(nh−u) dL(u) .

The noise sequence {Zn} is iid and Zn has the infinitely divisible
distribution with cgf

∫ h

0

ξ(σθe−au) du ,

where ξ(θ) is the log-characterstic function of L(1).



Estimation (cont)
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For the CARMA(p, q) process with p > 1, the situation is more
complicated. If the AR roots λ1, . . . , λp are all distinct then, from the
canonical representation, the sampled process is

Y (nh) =

p
∑

r=1

Yr(nh) ,

where {Yr(nh)} is the strict AR(1) process

Yr(nh) = eλrhYr((n − 1)h) + Zr(n), n = 0,±1, . . . ,

with

Zr(n) = αr

∫ nh

(n−1)h

eλr(nh−u) dL(u) .

and

αr = σ
b(λr)

a′(λr)
.



Estimation for non-negative CAR(1)
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Let Y be the CAR(1) process driven by the Lévy process {L(t), t ≥ 0} with
non-negative increments, i.e., Y is the stationary solution of the stochastic
differential equation,

dY (t) + aY (t)dt = σdL(t).

For any h > 0, the sampled process {Y
(h)
n := Y (nh), n = 0, 1, . . .} is a

discrete-time AR(1) process satisfying

Y (h)
n = φY

(h)
n−1 + Zn, n = 0, 1, . . . ,

where φ = exp(−ah) (obviously 0 < φ < 1), and

Zn = σ

∫ nh

(n−1)h
e−a(nh−u) dL(u) .

the noise sequence {Zn} is iid and positive since L has stationary,

independent, and positive increments.



Estimation for non-negative CAR(1)
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If the process {Y (t), 0 ≤ t ≤ T} is observed at times 0, h, . . . , Nh,
where N = [T/h], i.e., N is the integer part of T/h, then, since the

innovations Zn of the process {Y
(h)
n } are non-negative and 0 < φ < 1,

we can use the highly efficient Davis-McCormick estimator of φ,

φ̂
(h)
N = min

1≤n≤N
Y (h)

n /Y
(h)
n−1 .

To obtain the asymptotic distribution of φ̂
(h)
N with h fixed, we need to

suppose the distr F of Zn satisfies F (0) = 0 and that F is regularly
varying at zero with exponent α, i.e.,

lim
t↓0

F (tx)

F (t)
= xα, for all x > 0.

(These conditions are satisfied by the gamma-driven CAR(1) process as
we shall show later.)



Estimation for non-negative CAR(1)
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Under these conditions on F , the results of Davis and McCormick (1989)

imply that φ̂
(h)
N → φ a.s. as N → ∞ with h fixed and that

lim
N→∞

P
[

k−1
N (φ̂

(h)
N − φ)cα ≤ x

]

= Gα(x)

where kN = F−1(N−1), cα = (EY
(h)α
1 )1/α and Gα is the Weibull

distribution function,

Gα(x) =

{

1 − exp {−xα} , if x ≥ 0,

0, if x < 0.



Estimation for non-negative CAR(1)
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From the observations {Y
(h)
n , n = 0, 1, . . . , N}, we thus obtain the

estimator φ̂
(h)
N , and hence the estimator of a is

â
(h)
N = −h−1 log φ̂

(h)
N .

Using a Taylor series approximation, we find that

lim
N→∞

P
[

(−h)e−ahk−1
N (â

(h)
N − a)cα ≤ x

]

= Gα(x),

where Gα is the Weibull distribution specified above.
Since Var(Y (h)) = σ2/(2a), we use the estimator

σ̂2
N =

2â
(h)
N

N

N
∑

i=0

(Y
(h)
i − Y

(h)

N )2

to estimate σ2,



Gamma-driven CAR(1)
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Suppose L is a standardized gamma process, i.e., L(t) has the gamma density
fL(t) with exponent γt, and scale-parameter γ−1/2, mean γ1/2t and variance
t. The Laplace transform of L(t) is

f̃L(t)(s) = E exp(−sL(t))
= exp{−tΦ(s)}, R(s) ≥ 0,

where Φ(s) = γ log(1 + βs), β = γ−1/2, and γ > 0.

Theorem 1. For the gamma-driven CAR(1) process, we have â
(h)
N → a a.s.

and
lim

N→∞
P

[

(−h)e−ahk−1
N (â

(h)
N − a)cα ≤ x

]

= Gα(x)

where α = γh,

k−1
N ∼ (σβ)−1[Γ(γh + 1)]−1/(γh)e.5ahN1/(γh),

and cα is computed numerically using a result of Brockwell and Brown ‘78.



Gamma-driven CAR(1)
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Examining the normalizing constant k−1
N , we find that

lim
h→0

lim
N→∞

k−1
N

N1/(γh)
= (σβ)−1eγE

where γE is the Euler-Mascheroni constant.

Convergence is thus extremely fast for large N and small h.



Gamma-driven CAR(1) Process
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Example. We now illustrate the estimation procedure with a simulated
example. The gamma-driven CAR(1) process defined by,

DY (t) + 0.6Y (t) = DL(t), t ∈ [0, 5000], (7)

was simulated at times 0, 0.001, 0.002, . . . , 5000, using an Euler
approximation. The parameter γ of the standardized gamma process was
2. The process was then sampled at intervals h = 0.01, h = 0.1 and
h = 1 by selecting every 10th, 100th and 1000th observation respectively.
We generated 100 such realizations of the process and applied the above
estimation procedure to generate 100 independent estimates, for each h,
of the parameters a and σ. The sample means and standard deviations
of these estimators are shown in Table 1, which illustrates the remarkable
accuracy of the estimators.



Gamma-driven CAR(1) Process (Cont.)
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Table 1. Estimated parameters based on 100 replicates on [0, 5000] of
the gamma-driven CAR(1) process (7) with γ = 2, observed at times

nh, n = 0, . . . , [T/h].
Gamma increments

Spacing Parameter Sample mean Sample std deviation
of estimators of estimators

h=1 a 0.59269 0.00381
σ 0.99796 0.01587

h=0.1 a 0.59999 0.00000
σ 1.00011 0.01281

h=0.01 a 0.60000 0.00000
σ 0.99990 0.01175



Recovering the Lévy Increments
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In order to suggest an appropriate parametric model for L and to
estimate the parameters, it is important to recover an approximation to
L form the observed data. If the CAR(1) process is observed
continuously on [0, T ], we have

L(t) = σ−1

[

Y (t) − Y (0) + a

∫ t

0

Y (s)ds

]

.
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In order to suggest an appropriate parametric model for L and to
estimate the parameters, it is important to recover an approximation to
L form the observed data. If the CAR(1) process is observed
continuously on [0, T ], we have

L(t) = σ−1

[

Y (t) − Y (0) + a

∫ t

0

Y (s)ds

]

.

Replacing the CAR(1) parameters by their estimators and the integral by
a trapezoidal approximation, we obtain the estimator for the Lévy
increments ∆L

(h)
n := L(nh) − L((n − 1)h) on the interval

((n − 1)h, nh], given by

∆L̂(h)
n = σ̂−1

N

[

Y (h)
n − Y

(h)
n−1 + â

(h)
N h(Y (h)

n + Y
(h)
n−1)/2

]

. (6)



Gamma-driven CAR(1) Process (Cont.)
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Figure 1: The probability density of the increments per unit time of the stan-

dardized Lévy process and the histogram of the estimated increments from a

realization of the CAR(1) process (7).



Gamma-driven CAR(1) Process (Cont.)
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Table 2. Estimated parameter of the standardized driving Lévy process.
Spacing Parameter Sample mean Sample std deviation

of estimators of estimators
h = 1 γ 1.99598 0.05416
h = 0.1 γ 2.00529 0.03226
h = 0.01 γ 2.00547 0.02762



Estimation for Cont-Observed CAR(1)
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For a continuously observed realization on [0, T ] of a CAR(1) process
driven by a non-decreasing Lévy process with drift m = 0, the value of a
can be identified exactly with probability 1. This contrast strongly with
the case of a Gaussian CAR(1) process. This results is a corollary of the
following theorem.

Theorem 2. If the CAR(1) process {Y (t), t ≥ 0} is driven by a
non-decreasing Lévy process L with drift m and Lévy measure ν, then
for each fixed t,

Y (t + h) − Y (t)

h
+ aY (t) → m a.s. as h ↓ 0.

.



Estimation for Cont-Observed CAR(1)
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Corollary. If m = 0 in the Theorem 2 (this is the case if the point zero
belongs to the closure of the support of L(1)), then with probability 1,

a = sup
0≤s<t≤T

log Y (s) − log Y (t)

t − s
.

For observations available at times {nh : n = 0, 1, 2, . . . , [T/h]}, our
estimator can be expressed as

â
(h)
T = sup

0≤n<[T/h]

log Y (nh) − log Y ((n + 1)h)

h
.

The analogous estimator, based on closely but irregularly spaced
observations at times t1, t2, . . . , tN such that
0 ≤ t1 < t2 < · · · < tN ≤ T , is

âT = sup
n

log Y (tn) − log Y (tn+1)

tn+1 − tn
.



Estimation for Cont-Observed CAR(1)

Graz 2007 36 / 38

Remark. We have shown that, if the drift of the driving Lévy process is
zero and T is any finite positive time, both estimators,

â
(h)
T = sup

0≤n<[T/h]

log Y (nh) − log Y ((n + 1)h)

h
.

and

âT = sup
n

log Y (tn) − log Y (tn+1)

tn+1 − tn
.

converge almost surely to a as the maximum spacing between successive
observations converges to zero.
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■ We found a highly efficient method, based on observations at times
0, h, 2h, . . . , Nh, for estimating the parameters of a stationary
Ornstein-Uhlenbeck process {Y (t)} driven by a non-decreasing Lévy
process.
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Ornstein-Uhlenbeck process {Y (t)} driven by a non-decreasing Lévy
process.

■ Under specific conditions on the driving Lévy process, the asymptotic
behavior of the estimators can be determined.
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■ We found a highly efficient method, based on observations at times
0, h, 2h, . . . , Nh, for estimating the parameters of a stationary
Ornstein-Uhlenbeck process {Y (t)} driven by a non-decreasing Lévy
process.

■ Under specific conditions on the driving Lévy process, the asymptotic
behavior of the estimators can be determined.

■ If the sample spacing h is small, we used a discrete approximation to
the exact integral representation of L(t) in terms of {Y (s), s ≤ t} to
estimate the increments of the driving Lévy process, and hence to
estimate the parameters of the Lévy process.
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■ We found a highly efficient method, based on observations at times
0, h, 2h, . . . , Nh, for estimating the parameters of a stationary
Ornstein-Uhlenbeck process {Y (t)} driven by a non-decreasing Lévy
process.

■ Under specific conditions on the driving Lévy process, the asymptotic
behavior of the estimators can be determined.

■ If the sample spacing h is small, we used a discrete approximation to
the exact integral representation of L(t) in terms of {Y (s), s ≤ t} to
estimate the increments of the driving Lévy process, and hence to
estimate the parameters of the Lévy process.

■ Examples suggest extremely good performance of the estimates.
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■ If the driving Lev́y process has no drift, then CAR(1) coefficient a is
determined almost surely by a continuously observed realization of Y
on any interval [0, T ].
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■ If the driving Lev́y process has no drift, then CAR(1) coefficient a is
determined almost surely by a continuously observed realization of Y
on any interval [0, T ].

■ The expression for a suggests an estimator based on discrete
observations of Y which, for uniformly spaced observations, is the
same as the estimator developed above and establishes the almost
sure convergence of our estimator for any fixed T as h → 0.
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■ If the driving Lev́y process has no drift, then CAR(1) coefficient a is
determined almost surely by a continuously observed realization of Y
on any interval [0, T ].

■ The expression for a suggests an estimator based on discrete
observations of Y which, for uniformly spaced observations, is the
same as the estimator developed above and establishes the almost
sure convergence of our estimator for any fixed T as h → 0.

■ Analogous procedures for non-negative Lévy-driven continuous-time
ARMA processes are currently being investigated.
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