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Introduction 

Structural breaks: 
Kitagawa and Akaike (1978)

• fitting locally stationary autoregressive models using AIC
• computations facilitated by the use of the Householder transformation

Davis, Huang, and Yao (1995)

• likelihood ratio test for testing a change in the parameters and/or order 
of an AR process.

Kitagawa, Takanami, and Matsumoto (2001)

• signal extraction in seismology-estimate the arrival time of a seismic 
signal.

Ombao, Raz, von Sachs, and Malow (2001)

• orthogonal complex-valued transforms that are localized in time and 
frequency- smooth localized complex exponential (SLEX) transform.
• applications to EEG time series and speech data.
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Introduction (cont) 

Locally stationary: 
Dahlhaus (1997, 2000,…)

• locally stationary processes
• estimation

Adak (1998)

• piecewise stationary

• applications to seismology and biomedical signal processing 

MDL and coding theory:

Lee (2001, 2002)
• estimation of discontinuous regression functions

Hansen and Yu (2001)
• model selection
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Introduction (cont) 

Time Series: y1, . . . , yn

Piecewise AR model:

where τ0 = 1 < τ1 < . . . < τm-1 < τm = n + 1, and {εt} is IID(0,1).

Goal: Estimate

m = number of segments
τj = location of jth break point 
γj = level in jth epoch
pj = order of AR process in jth epoch

= AR coefficients in jth epoch
σj = scale in jth epoch
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Introduction (cont) 

Motivation for using piecewise AR models:

Piecewise AR is a special case of a piecewise stationary process (see Adak 1998),

where         , j = 1, . . . , m is a sequence of stationary processes.  It is argued in 

Ombao et al. (2001), that if  {Yt,n} is a locally stationary process (in the sense of 

Dahlhaus), then there exists a piecewise stationary process     with

that approximates {Yt,n} (in average mean square).

Roughly speaking: {Yt,n} is a locally stationary process if it has a time-varying 
spectrum that is approximately |A(t/n,ω)|2 , where A(u,ω) is a continuous function in u.
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Data:  yt = number of monthly deaths and serious injuries in UK, Jan `75 – Dec `84, 
(t = 1,…, 120)
Remark: Seat belt legislation introduced in Feb `83 (t = 99).

Example--Monthly Deaths & Serious Injuries, UK
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Data:  xt = number of monthly deaths and serious injuries in UK, differenced at lag 
12; Jan `75 – Dec `84, (t = 13,…, 120)
Remark: Seat belt legislation introduced in Feb `83 (t = 99).

Example -- Monthly Deaths & Serious Injuries, UK (cont)

Year
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Traditional regression analysis:
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Model Selection Using Minimum Description Length

Basics of MDL:
Choose the model which maximizes the compression of the data or, equivalently, 
select the model that minimizes the code length of the data (i.e., amount of 
memory required to encode the data).

M = class of operating models for y = (y1, . . . , yn)

LF (y) = = code length of y relative to F ∈ M
Typically, this term can be decomposed into two pieces (two-part code), 

where   

= code length of the fitted model for F

= code length of the residuals based on the fitted model

,ˆ|ˆ(  ˆ()( )eL|y)LyL FFF +=

|y)L F̂(

)|eL F̂ˆ(
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Model Selection Using Minimum Description Length (cont)

Applied to the segmented AR model:

First term              : Let nj = τj – τj-1 and                                            denote the 
length of the jth segment and  the parameter vector of the jth AR process, 
respectively.  Then
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Encoding:
integer I :  log2 I bits (if I unbounded)

log2 IU   bits (if I bounded by IU)

MLE :  ½ log2N  bits (where N = number of observations used to compute ; 
Rissanen (1989))

θ̂ θ̂
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Model Selection Using Minimum Description Length (cont)
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Second term              : Using Shannon’s classical results on information theory, 
Rissanen demonstrates that the code length of      can be approximated by the 
negative of the log-likelihood of the fitted model, i.e., by  
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The strategy is to find the best segmentation that minimizes MDL(m,τ1,p1,…, τm,pm).
To speed things up, we use Y-W estimates of AR parameters.
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Optimization Using Genetic Algorithms

Basics of GA:
Class of optimization algorithms that mimic natural evolution.

• Start with an initial set of chromosomes, or population, of possible 
solutions to the optimization problem. 

• Parent chromosomes are randomly selected (proportional to the rank of 
their objective function values), and produce offspring using crossover or 
mutation operations.

• After a sufficient number of offspring are produced to form a second 
generation, the process then restarts to produce a third generation.

• Based on Darwin’s theory of natural selection, the process should produce 
future generations that give a smaller (or larger) objective function. 



13

Map the break points with a chromosome c via

where

For example, 

c = (2, -1, -1, -1, -1, 0, -1,  -1, -1, -1, 0, -1, -1, -1, 3, -1, -1, -1, -1,-1)
t: 1                       6 11 15

would correspond to a process as follows:

AR(2), t=1:5; AR(0), t=6:10; AR(0), t=11:14; AR(3), t=15:20

Application to Structural Breaks—(cont)

Genetic Algorithm: Chromosome consists of n genes, each taking the value of −1
(no break) or p (order of AR process).  Use natural selection to find a near optimal 
solution.  
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Implementation of Genetic Algorithm—(cont)

Generation 0:  Start with L (200) randomly generated chromosomes, c1, . . . ,cL

with associated MDL values, MDL(c1), . . . , MDL(cL).

Generation 1:  A new child in the next generation is formed from the 
chromosomes c1, . . . , cL of the previous generation as follows:

with probability πc, crossover occurs. 

two parent chromosomes ci and cj are selected at random with 
probabilities proportional to the ranks of MDL(ci).

kth gene of child is δk = δi,k w.p. ½ and δj,k w.p. ½

with probability 1− πc, mutation occurs. 

a parent chromosome ci is selected 

kth gene of child is δk = δi,k w.p. π1 ; −1 w.p. π2 ; and p w.p. 1− π1−π2.
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Implementation of Genetic Algorithm—(cont)

Execution of GA:  Run GA until convergence or until a maximum number of 
generations has been reached. .

Various Strategies:  

include the top ten chromosomes from last generation in next generation.

use multiple islands, in which populations run independently, and then 
allow migration after a fixed number of generations. This implementation is 
amenable to parallel computing.
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Simulation Examples-based on Ombao et al. (2001) test cases

1.  Piecewise stationary:  Consider a time series following the model,

where {εt} ~ IID N(0,1).
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Replace worst 2 in Island 3 
with best 2 from Island 2.
Replace worst 2 in Island 4 
with best 2 from Island 3.
Replace worst 2 in Island 1 
with best 2 from Island 4.

1. Piecewise stat (cont)

Implementation:  Start with NI = 50 islands, each with population size L = 200.  

Span configuration for model selection:  Max AR order K = 10,

p 0 1 2 3 4 5 6-10

mp 25 25 30 35 40 45 50

πp .08 .1 .1 .09 .09 .09 .09

Replace worst 2 in Island 2 
with best 2 from Island 1. 3

4

1

2
Stopping rule:  Stop when the max MDL 
does not change for 10 consecutive 
migrations or after 100 migrations.

After every Mi = 5 generations, allow migration.
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1. Piecewise stat (cont)

GA results: 3 pieces with breaks at τ1=513 and τ2=769.  Total run time 16.31 secs

Time
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Time
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True Model Fitted Model

Fitted model: φ1 φ2 σ2

1- 512: .857 .9945
513- 768:   1.68     -0.801  1.1134
769-1024:   1.36    -0.801        1.1300
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1. Piecewise stat (cont)

Simulation: 200 replicates of time series of length 1024 were generated.  (SLEX 
results from Ombao et al.)

GA
%       mean        std        ASE

Auto-SLEX
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1. Piecewise stat (cont)

Simulation (cont):

True model:
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Order 0 1 2 3 4 5 ≥ 6
p1 0 99.4 0.60 0 0 0 0
p2 0 0 86.0 11.6 1.8 0.6 0
p3 0 0 89.0 10.4 0.6 0 0

AR orders selected (percent):
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Simulation Examples (cont)

2. Piecewise stationary:

where {εt} ~ IID N(0,1).
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Time
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
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0.
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0.
4
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Time
0.0 0.2 0.4 0.6 0.8 1.0
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0.
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5

2. Piecewise stationary (cont)

Fitted model: φ1 σ2

1- 195: .872    1.081
196 - 1024:  -.883    1.078

GA results: 2 pieces with break at τ1=196. Total run time 11.96 secs

True Model Fitted Model
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2. Piecewise stationary (cont)

Simulation: 200 replicates of time series of length 1024 were generated.  AR(1) 
models with break at 196/1024 =.191.  

.220
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37.06
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Simulation Examples (cont)

3.  Piecewise stationary:

where {εt} ~ IID N(0,1).

⎩
⎨
⎧

≤≤ε+
<≤ε+

=
−

−

   50050 if  ,25.
     511  if  ,9.

1

1

tY
tY

Y
tt

tt
t

GA results: 2 pieces with break at τ1=47

⎩
⎨
⎧

≤≤ε+
<≤ε+

=
−

−

   50050 if  ,25.
     511  if  ,9.

1

1

tY
tY

Y
tt

tt
t



25

3. Piecewise stationary (cont)

Simulation results:  Change occurred at time τ1 = 51; 51/500=.1

.017.09689.02
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Simulation Examples (cont)

4.  Slowly varying AR(2) model:

where                                                 and {εt} ~ IID N(0,1).
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4. Slowly varying AR(2)  (cont)

GA results: 3 pieces with breaks at τ1=293 and τ2=615.  Total run time 27.45 secs

True Model Fitted Model

Fitted model: φ1 φ2 σ2

1- 292: .365    -0.753 1.149
293- 614:    .821    -0.790  1.176
615-1024:  1.084    -0.760        0.960

Time
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4. Slowly varying AR(2)  (cont)

Simulation: 200 replicates of time series of length 1024 were generated.  
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4. Slowly varying AR(2)  (cont)

Simulation (cont):

True model:

Order 0 1 2 3 4 ≥ 5
p1 0 0 97.2 1.4 1.4 0
p2 0 0 97.2 2.8 0 0

AR orders selected (percent):  (2 segment realizations)

10241  if   81. 21 ≤≤ε+−= −− tYYaY ttttt

Order 0 1 2 3 4 ≥ 5
p1 0 0 100 0 0 0
p2 0 0 98.4 1.6 0 0
p3 0 0 97.6 1.6 0.8 0

AR orders selected (percent):  (3 segment realizations)
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4. Slowly varying AR(2)  (cont)

True Model Average Model

In the graph below right, we average the spectogram over the GA fitted models
generated from each of the 200 simulated realizations.
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Data:  Yt = number of monthly deaths and serious injuries in UK, Jan `75 – Dec `84, 
(t = 1,…, 120)
Remark: Seat belt legislation introduced in Feb `83 (t = 99).

Example: Monthly Deaths & Serious Injuries, UK

Year
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Piece 1: (t=1,…, 98)  IID;  Piece 2: (t=99,…108) IID;  Piece 3: t=109,…,120  AR(1)

Data:  Yt = number of monthly deaths and serious injuries in UK, Jan `75 – Dec `84, 
(t = 1,…, 120)
Remark: Seat belt legislation introduced in Feb `83 (t = 99).

Example: Monthly Deaths & Serious Injuries, UK

Year

D
iff
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C
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1976 1978 1980 1982 1984
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0
20

0

Results from GA: 3 pieces; time = 4.4secs
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Application to Multivariate Time Series
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Multivariate time series (d-dimensional): y1, . . . , yn

Piecewise AR model:

where τ0 = 1 < τ1 < . . . < τm-1 < τm = n + 1, and {Ζt} is IID(0, Id).

In this case, 
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estimated by the multivariate Y-W equations based on Whittle’s generalization
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GA results: 
TS 1:  3 pieces with breaks at τ1=513 and τ2=769.  Total run time 16.31 secs
TS 2: 2 pieces with break at τ1=196. Total run time 11.96 secs

• {Yt1} same as the series in Example 2  (3 segments: AR(1), AR(3), AR(2))

• {Yt2} same as the series in Example 1  (2 segments: AR(1), AR(1))

Example: Bivariate Time Series

Bivariate: 4 pieces with breaks at τ1=197, τ2=519, τ3=769: AR(1), AR(1), AR(2), AR(2)
Total run time 1126 secs
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GA univariate results: 14 breakpoints for T3;  11 breakpoints for P3

Data:  Bivariate EEG time series at channels T3 (left temporal) and P3 (left 
parietal). Female subject was diagnosed with left temporal lobe epilepsy.  Data 
collected by Dr. Beth Malow and analyzed in Ombao et al (2001).  (n=32,768; 
sampling rate of 100H).  Seizure started at about 1.85 seconds.

Example: EEG Time series

GA bivariate results: 11 pieces with AR orders, 17, 2, 6 15, 2, 3, 5, 9, 5, 4, 1

Time in seconds

E
E

G
 T

3 
ch

an
ne

l

1 50 100 150 200 250 300

-6
00

-4
00

-2
00

0
20

0

Time in seconds

E
E

G
 P

3 
ch

an
ne

l

1 50 100 150 200 250 300

-4
00

-3
00

-2
00

-1
00

0

T3 Channel P3 Channel



36

Remarks:

• the general conclusions of this analysis are similar to those reached in Ombao
et al.

• prior to seizure, power concentrated at lower frequencies and then spread to 
high frequencies.

• power returned to the lower frequencies at conclusion of seizure.  

Example: EEG Time series (cont)
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Remarks (cont):

• T3 and P3 strongly coherent at 9-12 Hz prior to seizure. 

• strong coherence at low frequencies just after onset of seizure.

• strong coherence shifted to high frequencies during the seizure.

Example: EEG Time series (cont)
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Application to Structural Breaks (Davis, Lee, Rodriguez-Yam)

State Space Model Setup:
Observation equation: 

p(yt | αt) = exp{αt yt − b(αt) + c(yt)}.

State equation: {αt} follows the piecewise AR(1) model given by

αt = γk + φkαt-1 + σkεt ,   if   τk-1 ≤ t < τk ,

where 1 = τ0  < τ1 < … < τm < n, and  {εt } ~ IID N(0,1).

Parameters: 
m = number of break points
τk = location of break points 
γk = level in kth epoch
φk = AR coefficients kth epoch
σk = scale in kth epoch
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Application to Structural Breaks—(cont)

Estimation:  For (m, τ1, . . . , τm) fixed, calculate the approximate likelihood 

evaluated at the “MLE”, i.e.,   

where                                                           is  the MLE.

Goal: Optimize an objective function over (m, τ1, . . . , τm).

• use minimum description length (MDL) as an objective function

• use genetic algorithm for optimization
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Application to Structural Breaks—(cont)

Minimum Description Length (MDL):  Choose the model which maximizes the 
compression of the data or, equivalently, select the model that minimizes the code 
length of the data (i.e., amount of memory required to store the data). 

Code Length(“data”)  = CL(“fitted model”)   +  CL(“data | fitted model”) 

~ CL(“parameters”)  + CL(“residuals”)

Generalization: AR(p) segments can have unknown order.
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Count Data Example
Model:  Yt | αt ∼ Pois(exp{β + αt }), αt = φαt-1+ εt ,  {εt}~IID N(0, σ2)
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True model:  

Yt | αt ∼ Pois(exp{.7 + αt }), αt = .5αt-1+ εt ,  {εt}~IID N(0, .3),  t < 250

Yt | αt ∼ Pois(exp{.7 + αt }), αt = −.5αt-1+ εt ,  {εt}~IID N(0, .3),  t > 250.

GA estimate 251, time 267secs
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Model:  Yt | αt ∼ N(0,exp{αt}), αt = γ  + φ αt-1+ εt ,  {εt}~IID N(0, σ2)

SV Process Example

True model:  

Yt | αt ∼ N(0, exp{αt}), αt = -.05 + .975αt-1+ εt ,  {εt}~IID N(0, .05),  t ≤ 750

Yt | αt ∼ N(0, exp{αt }), αt = -.25 +.900αt-1+ εt ,  {εt}~IID N(0, .25),  t > 750.

GA estimate 754, time 1053 secs
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Model:  Yt | αt ∼ N(0,exp{αt}), αt = γ  + φ αt-1+ εt ,  {εt}~IID N(0, σ2)

SV Process Example

True model:  

Yt | αt ∼ N(0, exp{αt}), αt = -.175 + .977αt-1+ εt ,  {εt}~IID N(0, .1810),  t ≤ 250

Yt | αt ∼ N(0, exp{αt }), αt = -.010 +.996αt-1+ εt ,  {εt}~IID N(0, .0089),  t > 250.

GA estimate 251, time 269s
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SV Process Example-(cont)
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Fitted model based on no structural break:  

Yt | αt ∼ N(0, exp{αt}), αt = -.0645 + .9889αt-1+ εt ,  {εt}~IID N(0, .0935)

True model:  

Yt | αt ∼ N(0, exp{αt}), αt = -.175 + .977αt-1+ εt ,  {εt}~IID N(0, .1810),  t ≤ 250

Yt | αt ∼ N(0, exp{αt }), αt = -.010 +.996αt-1+ εt ,  {εt}~IID N(0, .0089),  t > 250.
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SV Process Example-(cont)
Fitted model based on no structural break:  

Yt | αt ∼ N(0, exp{αt}), αt = -.0645 + .9889αt-1+ εt ,  {εt}~IID N(0, .0935)
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Summary Remarks

1. MDL appears to be a good criterion for detecting structural breaks.

2. Optimization using a genetic algorithm is well suited to find a near optimal 
value of MDL.

3. This procedure extends easily to multivariate problems.

4. While estimating structural breaks for nonlinear time series models is more 
challenging, this paradigm of using MDL together GA holds promise for break 
detection in parameter-driven models and other nonlinear models.  


