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Introduction

Structural breaks:
Kitagawa and Akaike (1978)
« fitting locally stationary autoregressive models using AIC
« computations facilitated by the use of the Householder transformation
Davis, Huang, and Yao (1995)

« likelihood ratio test for testing a change in the parameters and/or order
of an AR process.

Kitagawa, Takanami, and Matsumoto (2001)

« signal extraction in seismology-estimate the arrival time of a seismic
signal.

Ombao, Raz, von Sachs, and Malow (2001)

« orthogonal complex-valued transforms that are localized in time and
frequency- smooth localized complex exponential (SLEX) transform.

« applications to EEG time series and speech data.




Introduction (cont)

Locally stationary:
Dahlhaus (1997, 2000,...)
e locally stationary processes
e estimation
Adak (1998)

e piecewise stationary
« applications to seismology and biomedical signal processing
MDL and coding theory:

Lee (2001, 2002)
e estimation of discontinuous regression functions

Hansen and Yu (2001)
» model selection




Introduction (cont)

Time Series: y, ...,Y

n

Piecewise AR model:

where ty=1<1,<...<1T,,<T,=n+1 and {g} is 1ID(0,1).
Goal: Estimate

m = number of segments

t; = location of j™ break point

v; = level in j" epoch

p; = order of AR process in j™ epoch
(¢j1r---, 95, ) = AR coefficients in j* epoch
c; = scale in j" epoch




Introduction (cont)

Motivation for using piecewise AR models:

Piecewise AR is a special case of a piecewise stationary process (see Adak 1998),

\?;’n =YY e, ey (1),
. j=1
where {Y,’},j=1, ..., m is asequence of stationary processes. It is argued in
Ombao et al. (2001), that if {Y,.} is a locally stationary process (in the sense of

Dahlhaus), then there exists a piecewise stationary process {Vt,n} with

m, > with m_/n—0, as n — oo,

that approximates {Y, .} (in average mean square).

Roughly speaking: {Y, .} Is a locally stationary process if it has a time-varying
spectrum that is approximately |A(t/n,w)|? , where A(u,m) is a continuous function in u.



Example--Monthly Deaths & Serious Injuries, UK

Data: y, = number of monthly deaths and serious injuries in UK, Jan 75 — Dec 84,
(t=1,...,120)
Remark: Seat belt legislation introduced in Feb "83 (t = 99).
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Example -- Monthly Deaths & Serious Injuries, UK (cont)

Differenced Counts

Data: x, = number of monthly deaths and serious injuries in UK, differenced at lag

12; Jan 75— Dec 84, (t=13,..., 120)

Remark: Seat belt legislation introduced in Feb "83 (t = 99).
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Traditional regression analysis:
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Year

Model: b=-373.4, {N}~AR(13).

Y, =a+Dbf (t) +W,,
0, If1<t<98,
fit)y=9_".
1, 1If 98 <1 <120.
Xt :Yt _Yt—12
=bg(t) + N,
1 1f99<1<110,
g(t) = .
0, otherwise.



Model Selection Using Minimum Description Length

Basics of MDL.:
Choose the model which maximizes the compression of the data or, equivalently,

select the model that minimizes the code length of the data (i.e., amount of
memory required to encode the data).

M = class of operating models fory = (y;, . - ., Y,)

L-(y) = code length of y relative to F e M
Typically, this term can be decomposed into two pieces (two-part code),

L, (y) = L(Fly) +L(&|F),
where

L(Fly) = code length of the fitted model for F
L(8|F) = code length of the residuals based on the fitted model




Model Selection Using Minimum Description Length (cont)

Applied to the segmented AR model:
Yo=v; +0pY++ 0, Y, +05E, ift,,<t<r,

Firstterm L(Fly) : Let N=1— 74 and y;=(v;,0;,....9;,,0;) denote the
length of the j™ segment and the parameter vector of the j™ AR process,
respectively. Then

L(FIY) = L(M)+ L(ty,. ., T) + L(Pyy-s P) + LT | Y) 4+ L(G | Y)

= L(m)+L(n,,....n, ) + (P s Pr) + LOWL 1Y)+ + LW, | Y)
Encoding:
integer 1 : log, I bits (if I unbounded)
log, 1, bits (if I bounded by 1))

MLE 0 : % log,N bits (where N = number of observations used to compute 0;
Rissanen (1989))

10



Model Selection Using Minimum Description Length (cont)

So,
P, +2

L(Fly) =log, m+mlog,n+>"log, p, + Y.
j=1 j=1

Second term L(&|F): Using Shannon’s classical results on information theory,
Rissanen demonstrates that the code length of € can be approximated by the
negative of the log-likelihood of the fitted model, i.e., by

(log,(2767%) +1)

oA LN
L(6|F)zz7j
j=1

For fixed values of m, (t,py)s. - -, (t:Py), We define the MDL as
MDL(mI(Tl’ pl)"'°’(rm’ pm))

m np.+2
. Iogzm+mlogzn+ZIog2 P, +Z P;
j=1 j=1

m n R n
log, n, +Z§J|°92(2m?)+§
j=1

The strategy is to find the best segmentation that minimizes MDL(m,t,p4,---, TPp)-
To speed things up, we use Y-W estimates of AR parameters. 1



Optimization Using Genetic Algorithms

Basics of GA:
Class of optimization algorithms that mimic natural evolution.

o Start with an initial set of chromosomes, or population, of possible
solutions to the optimization problem.

 Parent chromosomes are randomly selected (proportional to the rank of
their objective function values), and produce offspring using crossover or
mutation operations.

o After a sufficient number of offspring are produced to form a second
generation, the process then restarts to produce a third generation.

 Based on Darwin’s theory of natural selection, the process should produce
future generations that give a smaller (or larger) objective function.

12




Application to Structural Breaks—(cont)

Genetic Algorithm: Chromosome consists of n genes, each taking the value of -1

(no break) or p (order of AR process). Use natural selection to find a near optimal

solution.

Map the break points with a chromosome c via

(m,(Tl, pl)"'l(rm’ pm)) <> C= (61""’6n)l

where
5 {—1, if no break pointatt,
t =

p,, if break pointat timet =1, , and AR order is p;.
For example,

c=(-1-1-1-10,-1, -1,-1,-1,0,-1,-1,-1,3,-1,-1, -1, -1,-1)
t:1 6 11 15

would correspond to a process as follows:

AR(2), t=1:5; AR(0), t=6:10; AR(0), t=11:14; AR(3), t=15:20

13



Implementation of Genetic Algorithm—(cont)

Generation 0: Start with L (200) randomly generated chromosomes, c,, . . . ,C,
with associated MDL values, MDL(c,), . . ., MDL(c)).

Generation 1: A new child in the next generation is formed from the
chromosomes c,, . . ., ¢, of the previous generation as follows:

» with probability &, crossover occurs.

= two parent chromosomes c; and c; are selected at random with
probabilities proportional to the ranks of MDL(c;)).

= k™ gene of child is 5, = §; w.p. ¥2and §;, w.p. %2
» with probability 1- ., mutation occurs.
= 3 parent chromosome c; is selected

= k'™ gene of child is §, = §; w.p. m; ; =1 w.p. 7, ; and p w.p. 1— mt,—,.
14




Implementation of Genetic Algorithm—(cont)

Execution of GA: Run GA until convergence or until a maximum number of
generations has been reached. .

Various Strategies:

» Include the top ten chromosomes from last generation in next generation.

» use multiple islands, in which populations run independently, and then
allow migration after a fixed number of generations. This implementation is

amenable to parallel computing.

15




Simulation Examples-based on Ombao et al. (2001) test cases

1. Piecewise stationary: Consider a time series following the model,
Y, , +¢, If 1<t<513

Y, =<1.69Y,, -.81Y,_, +¢, If 513<t< 769,

1.32Y_, —.81Y_, +¢, If 769<1<1024,

where {&.} ~ 11D N(0,1).

1 200 400 600 800 1000

Time

16




1. Piecewise stat (cont)

Implementation: Start with NI =50 islands, each with population size L = 200.

After every Mi = 5 generations, allow migration.

Replace worst 2 in Island 2
with best 2 from Island 4.

Stopping rule: Stop when the max MDL
does not change for 10 consecutive
migrations or after 100 migrations.

Span configuration for model selection: Max AR order K =10,
P 0 1 2 3 4 5

m 25 25 30 35 40 45
I .08 1 1 .09 .09 .09




1. Piecewise stat (cont)

0.1 0.2 0.3 0.4 0.5
|

0.0
|

GA results: 3 pieces with breaks at t,=513 and t,=769. Total run time 16.31 secs
Fitted model: b, b, o?
1- 512: | .857 9945
513-768: |1.68 -0.801  1.1134
769-1024: 11.36 -0.801 1.1300

True Model Fitted Model

I I I I I I I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time Time
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1. Piecewise stat (cont)

Simulation: 200 replicates of time series of length 1024 were generated. (SLEX
results from Ombao et al.)

n 32 A
ASE =n"(1/33)> > {log f (t/n,®,)—log f (t/n,0,)}’, ®,=2nj/64.
t=1 j=0
# of Auto-SLEX GA
segments % Change Points ASE | % mean std  ASE
2 0 1/2 i 0
500 | .006 | 3.64
3 60.0 14, 34 2542 | o5
(4.56) 749 | .006 | (.13)
476 | .080
34.09 3.73
4 34.0 1/4, 214, 3/4 175 | 616 | .110
(6.74) (.13)
761 | .037
32.77
5 5.0 | 2/8, 4/8,5/8, 6/8, 7/8 0
(5.20)
50.01
> 6 1.0 0.5 3.83
(6.25) o




1. Piecewise stat (cont)

Simulation (cont):

True model:

Y, , +¢, If 1<t<513
Y, =41.69Y, , —.81Y, , +¢, If 513<t<769,
1.32Y_, —.81Y_, +¢, If 769<1<1024,

AR orders selected (percent).

Order| O 1 2 3 4 5 >6
p, | O 99.4 0.60 0 0 0 0
p, | O 0 86.0 11.6 1.8 0.6 0
p; | O 0 89.0 10.4 0.6 0 0

20




Simulation Examples (cont)

2. Pilecewise stationary:

{ 9Y,_, +g, if 1<t<198
Y, =

-.9Y, , +¢, 11198 <t <1024
where {&.} ~ 11D N(0,1).

1 200 400 600 800 1000

Time

21




2. Plecewise stationary (cont)

0.2 0.3 0.4 0.5
|

0.1

0.0
|

GA results: 2 pieces with break at t,=196. Total run time 11.96 secs

Fitted model: b, o?
1-195: .872 1.081
196 - 1024: -.883 1.078

True Model Fitted Model

0.2
|

0.1
!

0.0
|

I I I I I I I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time Time
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2. Plecewise stationary (cont)

Simulation: 200 replicates of time series of length 1024 were generated. AR(1)

models with break at 196/1024 =.191.

# of Auto-SLEX # of change points
segments % ASE segmnts | % mean std  ASE
<4 0 - 1 0
1.81 017
5 44.0 2 97.0 192 .002
(.039) (.013)
220 154 .023 060
6 37.0 3 3.0
(.056) 323 320 | (.044)
7 6.0 211 >4 0
' (.047) B
290
8 12.0
(.096)
. L0 255
- | (.100) 23




Simulation Examples (cont)

3. Piecewise stationary:

t

| 9 te, If 1<t <5l
|.25Y,, +¢,, if 50<t <500

where {&.} ~ 11D N(0,1).

GA results: 2 pieces with break at t,=47

1 100 200 300 400 500

Time

24




3. Plecewise stationary (cont)

Simulation results: Change occurred at time t, = 51; 51/500=.1

# of change points
segments| 9%  mean @ std
1 9.0
2 89.0 .096 017
.048 .020
3 2.0
.092 011
>4 0

25




Simulation Examples (cont)

4. Slowly varying AR(2) model:

where a, =.8[1-0.5cos(nt/1024)], and {&,} ~ 11D N(0,1).

Y, =

aY,_, -8l ,+¢g if 1<t<1024

12

1.0

a_t
0.8

0.6

0.4

200

400

Time

600 800 1000 0 200

400

time

600

800
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4. Slowly varying AR(2) (cont)

GA results: 3 pieces with breaks at t,=293 and t,=615. Total run time 27.45 secs
Fitted model: b, b, o2

0.5
!

0.4
!

0.3
!

0.2
|

0.1
!

0.0
|

1-292: .365 -0.753 1.149
293-614: 821 -0.790 1.176
615-1024: 1.084 -0.760 0.960

True Model Fitted Model

0.5
|

0.4
|

0.2 0.3
| |

0.1
|

0.0
|

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time Time 27



4. Slowly varying AR(2) (cont)

Simulation: 200 replicates of time series of length 1024 were generated.

# of Auto-SLEX # of change points
segments % ASE segments| % mean std  ASE
238
<4 14.0 1 0
(.030)
) 127
5 27.0 228 2 36.0 502 .044
(.025) (.014)
232 258 | .071 080
6 35.0 3 63.0 : : ‘
(.029) 661 | .075 | (.016)
243
V4 18.0 033 309
( ) 4 1.0 550
.269
8 15.0 .860
(.040)
> 9 1.0 308 =5 0
29




4. Slowly varying AR(2) (cont)

Simulation (cont):

Truemodel: Y, =aY,,—.81Y, ,+¢, if 1<t<1024

t

AR orders selected (percent): (2 segment realizations)

Order| O 1 2 3 4 >5
p, | O 0 97.2 1.4 1.4 0
p, | O 0 97.2 2.8 0 0

AR orders selected (percent): (3 segment realizations)

Order| O 1 2 3 4 >5
p, | O 0 100 0 0 0
p, | O 0 98.4 1.6 0 0
p; | O 0 97.6 1.6 0.8 0

29



4. Slowly varying AR(2) (cont)

In the graph below right, we average the spectogram over the GA fitted models
generated from each of the 200 simulated realizations.

True Model Average Model

0.5
05
|

0.4
0.4

0.3

Frequency
0.3

0.2
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0.2

0.1
0.1
|

0.0
\

I I I I I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0

Time Time
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Example: Monthly Deaths & Serious Injuries, UK

Data: Y, = number of monthly deaths and serious injuries in UK, Jan 75 — Dec 84,
(t=1,...,120)
Remark: Seat belt legislation introduced in Feb 83 (t = 99).
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Example: Monthly Deaths & Serious Injuries, UK

Data: Y, = number of monthly deaths and serious injuries in UK, Jan "7
(t=1,...,120)
Remark: Seat belt legislation introduced in Feb 83 (t = 99).

200
|

Differenced Counts
-200 0
| |
o0—— |
T —
O<:

1l

|

1976 1978 1980 1982 1984

-400
|

-600

Year

5 - Dec 84,

Results from GA: 3 pieces; time = 4.4secs
Piece 1. (t=1,...,98) IID; Piece 2: (t=99,...108) IID; Piece 3: t=109,

...,120 AR(L)
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Application to Multivariate Time Series

Multivariate time series (d-dimensional): y,, . .., Y,
Piecewise AR model:
Yo=v; +O, Y ++ @ Y, + 27, ity <t<y,

th

where tp=1<1,<...<1,,<t,=n+1and {Z} is lID(O0, 1,).

In this case,
MDL(m, (1, p,)...-, (T, P,,)) = logm +mlogn +Z|09 p;

+Z

where Y, = E(Y, | Y,,...Y,) and V, = E(Y,-Y,)? and the AR parameters are
estimated by the multivariate Y-W equations based on Whittle’s generalization

p,d* +d+d(d+1)/2 jogn +Z Z(IOQ(IV )+ (Y, = V)V (Y, Y))

1 t=7;

of the Durbin-Levinson algorithm. 23



Example: Bivariate Time Series

10

-10

 {Y. } same as the series in Example 2 (3 segments: AR(1), AR(3), AR(2))
* {Y,} same as the series in Example 1 (2 segments: AR(1), AR(1))

GA results:

TS 1: 3 pieces with breaks at t,=513 and t,=769. Total run time 16.31 secs

TS 2: 2 pieces with break at 1,=196. Total run time 11.96 secs

Bivariate: 4 pieces with breaks at t,=197, 1,=519, 1,=769: AR(1), AR(1), AR(2), AR(2)
Total run time 1126 secs

\
1 200 400 600 800 1000 1 200 400 600 800 1000
Time Time 34



EEG T3 channel

Example: EEG Time series

Data: Bivariate EEG time series at channels T3 (left temporal) and P3 (left
parietal). Female subject was diagnosed with left temporal lobe epilepsy. Data
collected by Dr. Beth Malow and analyzed in Ombao et al (2001). (n=32,768;
sampling rate of 100H). Seizure started at about 1.85 seconds.

GA biveeidtta esaliks 114reakpathtNRorderd 1 Bréakp et f8r 9, 5, 4, 1

200

-400 -200

-600

T3 Channel

1 50 100 150 200 250 300

Time in seconds

EEG P3 channel

-300 -200 -100

-400

P3 Channel

1 50 100 150 200 250 300

Time in seconds
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Frequency (Hertz)

Example: EEG Time series (cont)

Remarks:

* the general conclusions of this analysis are similar to those reached in Ombao

et al.

e prior to seizure, power concentrated at lower frequencies and then spread to

high frequencies.

 power returned to the lower frequencies at conclusion of seizure.

T3 Channel

P3 Channel

50
50

40
40

30
30

20

Frequency (Hertz)
20

10
10

\ \ \ \ \ \ \ \ \ \
1 50 100 150 200 250 300 1 50 100

Time in seconds

\ \
150 200

Time in seconds

250

300
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Example: EEG Time series (cont)

Remarks (cont):

e T3 and P3 strongly coherent at 9-12 Hz prior to seizure.

« strong coherence at low frequencies just after onset of seizure.

e strong coherence shifted to high frequencies during the seizure.

Frequency (Hertz)

T3/P3 Coherency

50

40

30
\

20

10

1 50 100 150 200 250 300 37

Time in seconds




Application to Structural Breaks (Davis, Lee, Rodriguez-Yam)

State Space Model Setup:

Observation equation:

p(Y: | o) = exp{ay Y, — b(ay) + c(yy)}-

State equation: {o} follows the piecewise AR(1) model given by

=Y+ oo +o¢g, If 1,5t <1,
where I=1,< 1, < ... <t,<n, and {g} ~ 11D N(O,1).

Parameters:
m = number of break points
1, = location of break points
v, = level in ki epoch
o, = AR coefficients k' epoch
o, = scale in k' epoch

38




Application to Structural Breaks—(cont)

Estimation: For (m, t,, ..., t,) fixed, calculate the approximate likelihood

evaluated at the “MLE”, I.e.,

| |1/2
n

K+G,)"*
Where \’|-\I:(',Y\ll"'l”y\mlEI\)ll"'!a)mlé}]Z_!"'lé}rzn) IS the MLE

L. (W;Y,) = ( exp{y,o” —1'{b(a’) —c(y, )}~ (e —p)' G, (o —p)/ 2},

Goal: Optimize an objective function over (m, t, .. ., 7).

* use minimum description length (MDL) as an objective function

* use genetic algorithm for optimization

39



Application to Structural Breaks—(cont)

Minimum Description Length (MDL): Choose the model which maximizes the
compression of the data or, equivalently, select the model that minimizes the code
length of the data (i.e., amount of memory required to store the data).

Code Length(“data”) = CL(*fitted model”) + CL(“data | fitted model”)

~ CL(“parameters™) + CL(“residuals”)
MDL(m,<,,...,<, )

Iog(m)+m|og(n)+1 SZIog(r —T4) - Zlog(L (Y

CL(" Parameters ) CL(" residuals” )

)

JlT

Generalization: AR(p) segments can have unknown order.

MDL(m, (ty, Py),-.-, (Ths Pr))

= log(m) + mlog(n) + 0. 52(p1+2)log(r ~T4) - Zlog(L (WiiY. 2))

Tj-1-T)

40
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10

Count Data Example
Model: Y| a, ~ Pois(exp{p + o, }), o= da,;+ ¢, {e}~1ID N(0, c?)

MDL
1002 1004 1006 1008 1010 1012 1014

A v

1 100 200 300 400 500 1 100 200 300 400 500

time Breaking Point

True model:
* Y| o, ~Pois(exp{.7 + a, }), a,= .50+ ¢, {e}~1ID N(O, .3), t <250
" Y, | o~ Pois(exp{.7 + a, }), o,= 504+ ¢, {eJ~11D N(O, .3), t> 250.
= GA estimate 251, time 267secs

N
H




SV Process Example

Model: Y| a,~ N(0,exp{a}), a,=vy + d o+ ¢, {e}~1ID N(O, c3)

3
1315

1310

MDL
1305

1300

1295

T T T T
1 500 1000 1500 2000 2500 3000 1 500 1000 1500 2000 2500

time Breaking Point

I
3000

True model:

" Y| o, ~N(O, exp{o}), a,=-.05+ .975a,,+ ¢, {e}~11D N(O, .05), t<750
=Y, | a,~ N(O, exp{a, }), o,=-.25+.9000,,+ ¢, {e}~1ID N(O, .25), t> 750.
= GA estimate 754, time 1053 secs

42




0.5

0.0
MDL
515

-520 -

-0.5

SV Process Example

Model: Y| a,~ N(0,exp{a}), a,=vy + d o+ ¢, {e}~1ID N(O, c3)

-505 -500

-510

-525

-530

1 100 200 300 400 500 1 100 200 300 400

time Breaking Point

True model:

= Y, | o, ~ N(O, exp{o}), o,=-175+ .977a, .+ ¢, {e}~11D N(O, .1810), t <250
=Y, | a,~ N(O, exp{a, }), o,=-.010 +.9960, .+ €., {e}~11D N(O, .0089), t> 250.
= GA estimate 251, time 269s
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0.5

0.0

-0.5

SV Process Example-(cont)

True model:

Y, | o~ N, exp{o,}), o,=-.175+.9770, .+ &, {e}~1ID N(0, .1810), t< 250
“Y, | o ~ N, exp{oy }), ,=-.010 +.9960,,+ & , {e2~IID N(0, .0089), t > 250.

Fitted model based on no structural break:

Y, | o~ N, exp{o,}), o,=-.0645+.9889q, ,+ ¢, {e}~11D N(O, .0935)

original series

1 sl

1 100

200

time

300

400

500

<
F

0.5

0.0

-0.5

1 simulated series

1 100 200

time

300

400

44

500




SV Process Example-(cont)

Fitted model based on no structural break:

* Y, | o ~ N, exp{o,}), o, =-.0645 +.9889a, .+ ¢,, {e}~11D N(O, .0935)

1.0

0.5

0.0

-0.5

VMR VW AN IaaN

1 simulated series )
gi_
[o)
gi_
o
lq?_
A~
i = 5
<
;_
[{]
_ §
<o)
l:lr_
T T T T T I T T
1 100 200 300 400 500 1 100

time

T T
200 300

Breaking Point
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Summary Remarks

1. MDL appears to be a good criterion for detecting structural breaks.

2. Optimization using a genetic algorithm is well suited to find a near optimal
value of MDL.

3. This procedure extends easily to multivariate problems.

4. While estimating structural breaks for nonlinear time series models is more
challenging, this paradigm of using MDL together GA holds promise for break
detection in parameter-driven models and other nonlinear models.

46




