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Financial Time Series Modeling

One possible goal: Develop models that capture essential features
of financial data.

Strategy: Formulate families of models that at least exhibit these
key characteristics. (e.g., GARCH and SV)

Linkage with goal: Do fitted models actually capture the desired
characteristics of the real data?

Answer wrt to GARCH and SV models: Yes and no. Answer may
depend on the features.

Starica’s paper: “Is GARCH(1,1) Model as Good a Model as the
Nobel Accolades Would Imply?”

This paper discusses inadequacy of GARCH(1,1) model as a “data
generating process” for the data.
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Financial Time Series Modeling (cont)

Goal of this talk: compare and contrast some of the features of
GARCH and SV models.

* Regular-variation of finite dimensional distributions
* Time-reversibility
* Point process convergence

* Extreme value behavior

* Sample ACF

Cornell 4/05



Characteristics of financial time series

Define X;=1In (P,) - In (P.,) (log returns)

* heavy tailed

P(|X,] > x) ~RV(-a), 0O<a<4.

* uncorrelated

p,(h) near O for all lags h >0

* |X{| and X have slowly decaying autocorrelations

Py (k) and p . (%) converge to 0 slowly as h increases.

* process exhibits ‘volatility clustering’.
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Example: Pound-Dollar Exchange Rates
(Oct 1, 1981 — Jun 28, 1985; Koopman website)
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Example: Pound-Dollar Exchange Rates
Hill's estimate of alpha (Hill Horror plots-Resnick)
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Starica Plots for Pound-Dollar Exchange Rates

15 realizations from GARCH model fitted to exchange rates +
exchange rate data. Which one is the real data?
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Starica Plots for Pound-Dollar Exchange Rates

ACF of the squares from the 15 realizations from the GARCH
model on previous slide.
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Starica Plots for Pound-Dollar Exchange Rates

15 realizations from SV model fitted to exchange rates + real
data. Which one is the real data?
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Example: Amazon (May 16, 1997 — June 16, 2004)
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Example: Amazon-returns (May 16, 1997 — June 16, 2004)
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Hill
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Example: Amazon-returns
Hill's estimate of alpha (Hill Horror plots-Resnick)
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Starica Plots for the Amazon Data

15 realizations from GARCH model fitted to Amazon +
. Which one is the real data?

exchange rate data
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ACF of the squares from the 15 realizations from the GARCH

Starica Plots for Amazon

model on previous slide.
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Multiplicative models for log(returns)

Basic model
Xi=In(Py)-In(P.) (logreturns)

=0, 4,

where

* {Z} is IID with mean 0, variance 1 (if exists). (e.g. N(0,1) or
a t-distribution with v df.)

* {c.} is the volatility process

* 5, and Z, are independent.

Properties:
* EX, =0, Cov(X,, X,) =0, h>0 (uncorrelated if Var(X,) < )

* conditional heteroscedastic (condition on o).

Cornell 4/05
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Multiplicative models for log(returns)-cont

X, = o, Z, (observation eqn in state-space formulation)

Two classes of models for volatility:

(i) GARCH(p,q) process (General AutoRegressive Conditional
Heteroscedastic-observation-driven specification)

2 2 2 2 2
G, =0 + oy X, +---+ 0 X +Boy, ++B 0y, -

Special case: ARCH(1):
th = (0, + O(‘lxtz-l)ztz
= OL1Zt2 Xt2-1 + OLoztz

=AX;, +B, (stochastic recurrence eqn)

p..(h)=a, if of <1/3.

Cornell 4/05
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Multiplicative models for log(returns)-cont

GARCH(2,1): X, =6,Z,, o =a,+aX’, +o,X, +B,o7, .

Then Y, =(c?, X%,)' follows the SRE given by

Gtz _ O‘1Zt2-1‘|'[31 a, Gt2-1 n Gy
Xt, Z: 0 | Xi,] LO

Questions:

 Existence of a unique stationary solution to the SRE?
 Regular variation of the joint distributions?

Cornell 4/05
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Multiplicative models for log(returns)-cont

X, = o, Z, (observation eqn in state-space formulation)

(ii) stochastic volatility process (parameter-driven specification)

loge? = > w,e . D w:<o{e}~1IDN(0,07)
J== j==

P, (h)= CO’(GzZ 1 Gt2+h) / EZf

Question:

- Joint distributions of process regularly varying if distr of Z, is
regularly varying?

Cornell 4/05

20



Two models for log(returns)-cont

GARCH(1,1):
X, =0,Z, o, =0g+aX; +po;, {Z}~11D(0))
Stochastic Volatility:

X =02, logo’=¢,+d,logc’, +¢, {e}~I1IDN(0,6°)

Main question:

What intrinsic features in the data (if any) can be used to
discriminate between these two models?

Cornell 4/05
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Regular variation — univariate case

Def: The random variable X is regularly varying with index a. if
P(X|> t x)/P(]X|>t) - x and P(X> t)/P(|X|>t) —p,
or, equivalently, if
P(X>t X)/P(|X[>t) > px and P(X< -t x)/P(]X|>t) —» gx—,
where 0 < p <1 and p+qg=1.

Equivalence:
Xis RV(a) if and only if P(X € te ) /P(|X|>t)—, u(e)

(—, vague convergence of measures on R\{0}). In this case,

u(dx) = (pa x-*11(x>0) + qa. (-x)=11(x<0)) dx

Note: w(tA) =t* u(A) for every t and A bounded away from O.

Cornell 4/05
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Regular variation — univariate case (cont)

Another formulation (polar coordinates):
Define the £+ 1 valuedrv 6, P(O6=1)=p,P(6=-1)=1-p =q.
Then

Xis RV(a) if and only if

P(X|>tx, XI|X]|e S)
P(X]|>1)

—> X “P(0eS)

or

P(IX|>tx,X/| X |eo)
P(| X|>1)

— XP(@¢ce)

(—, vague convergence of measures on S%= {-1,1}).

Cornell 4/05
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Regular variation — multivariate case

Multivariate regular variation of X=(X,, ..., X_): There exists a
random vector 6 € S™' such that

P(IX|> t x, X/|X| € ¢ )/P(|X|>t) >, x*P(0 € o)
(—, vague convergence on S™', unit sphere in R™) .
* P( 0 o) is called the spectral measure

* o is the index of X.

Equivalence:
P(X ete)

P(X]|>1)

—, 1W(e)

i is a measure on R™ which satisfies for x > 0 and A bounded away
from O,
n(xB) = x=* u(xA).

Cornell 4/05
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Regular variation — multivariate case (cont)

Examples:

1. It X;>0and X,> 0 are iid RV(a), then X= (X,, X, ) is multivariate
regularly varying with index o and spectral distribution

P(06=(0,1))=P(06=(1,0))=.5 (mass on axes).

Interpretation: Unlikely that X, and X, are very large at the same

time. 2 %

Figure: plot of
(X, Xp) for realization

of 10,000. |t

30
|

X

10

Cornell 4/05 X1
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2. 1t X, =X,> 0, then X= (X;, X, ) is multivariate regularly varying
with index o and spectral distribution

P(6= (12, 12))=1.

3. AR(1): X= .9 X, + Z,, {Z}~IID symmetric stable (1.8)

St of 6, {i(l,.9)/sqrt(1 81), W.P. .9898

+(0,1), W.P. .0102

30
L

Figure: plot of (X,

20
L

Xi+1) for realization
of 10,000.

x_{t+1}

10
|

0

-10
|
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Applications of multivariate regular variation

Cornell 4/05

* Domain of attraction for sums of iid random vectors
(Rvaceva, 1962). That is, when does the partial sum

1 n
an ZXt
t=1
converge for some constants a,?

* Spectral measure of multivariate stable vectors.

* Domain of attraction for componentwise maxima of iid
random vectors (Resnick, 1987). Limit behavior of

a’vX,
t=1
* Weak convergence of point processes with iid points.

* Solution to stochastic recurrence equations, Y =AY, ,+ B,

* Weak convergence of sample autocovariances.

27



Applications of multivariate regular variation (cont)

Linear combinations:

X ~RV(a) = all linear combinations of X are regularly varying

l.e., there exist o and slowly varying fcn L(.), s.t.
P(cTX> t)/(t>L(t)) —w(c), exists for all real-valued c,

where

w(tc) = tow(c).

Use vague convergence with A_={y: cTy > 1}, i.e,,

P(XetA) P(c'X>t)
L) P(X|>t)

— WA,) = w(c),

N

where tL(t) = P(|X]| > t).

Cornell 4/05 28



Applications of multivariate regular variation (cont)

Converse?

X ~RV(a) <= all linear combinations of X are regularly varying?

There exist a. and slowly varying fcn L(.), s.t.

(LC) P(cTX> t)/(tL(t)) ->w(c), exists for all real-valued c.

Theorem (Basrak, Davis, Mikosch, '02). Let X be a random vector.

1. If X satisfies (LC) with a. non-integer, then X is RV(a.).

2. If X > 0 satisfies (LC) for non-negative ¢ and a is non-integer,

then X'is RV(a).

3. If X >0 satisfies (LC) with o an odd integer, then X is RV(a).

Cornell 4/05 29



Applications of multivariate regular variation (cont)

There exist a. and slowly varying fcn L(.), s.t.

(LC) P(cTX> t)/(t“L(t)) —w(c), exists for all real-valued c.

1. If X satisfies (LC) with a. non-integer, then X is RV(a.).

2. If X > 0 satisfies (LC) for non-negative ¢ and a is non-integer,
then X'is RV(a).

3. If X > 0 satisfies (LC) with o an odd integer, then X is RV(a.).

Remark: Hult and Lindskog (2005) show that .

* 1 cannot be extended to integer a.
e 2 cannot be extended to integer a.

° |tis unknown if 3 can be extended to even integers.

Cornell 4/05 30



Applications of theorem

1. Kesten (1973). Under general conditions, (LC) holds with L(t)=1

for stochastic recurrence equations of the form

Y=A Yt By (A, BY ~ID,

A, dxd random matrices, B,random d-vectors.

It follows that the distributions of Y,, and in fact all of the finite dim’l

distrs of Y, are regularly varying (if o is non-even).

2. GARCH processes. Since squares of a GARCH process can be

embedded in a SRE, the finite dimensional distributions of a

GARCH are regularly varying.

Cornell 4/05
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Examples

Example of ARCH(1):  X&=(agtoy X2 )22,  {Z}~IID.

a found by solving E|o, Z3|%? = 1.

a, | .312 577 1.00 157
a | 800 4.00 200 1.00

Distr of 0:

P(0 < ) = E{|I(B,2)||* I(arg((B,2)) < *)}/ E|I(B,Z)||*
where

PB=1)=P(B=-1)=5

Cornell 4/05
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Examples (cont)

Example of ARCH(1): og=1, 0,=1, a=2, X=(ag+oq X24)"2Z,, {Z}~IID

Figures: plots of (X,, Xi,,) and estimated distribution of 0 for
realization of 10,000.

Cornell 4/05 33



Excursion to time-reversibility

Reversibility. A stationary sequence of random variables {X} is time-
reversible if (X4, ... ,X,) =4 (X, ... ,Xq)foralln >1.

Results: i) IID sequences {Z;} are time-reversible.

i) Linear time series (with a couple obvious exceptions) are time-
reversible iff Gaussian. (Breidt and Davis 91)

Application: If plot of time series does not look time- reversible, then it
cannot be modeled as IID or a Gaussian process. Use the “flip and
compare” inspection test!

I i T\ IITTT?I jT I%?ITTIT ?T (D'an ‘élj [HT RF'
T LA L I mmw il
UL e A U e L 1 M il e R / )l
i R AR L il it il
d ) b . A Pty g
Ml | i g i ’ 1‘ [
I |

0
Cornell 4/05
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Reversibility. Does the following series look time-reversible?

F<

~.or

‘Sample ACF

-804

60

.40

.00

-.20+

-. 40+

-.60~

-.80-

—.0r-

160 ‘ 200

Residual ACF: Squares

.20
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Examples (cont)

Example of ARCH(1): og=1, 04=1, a=2, X=(ag+oq X24)"2Z,, {Z}~IID

Is this process time-reversible?

Figures: plots of (X,, X,4) and (X.,,, X;) implies non-reversible.

X

Cornell 4/05 36



Examples (cont)

Example: SV model X, = o, Z,
Suppose Z, ~ RV(a) and

X =027, logc’=¢,+¢ logc’, +¢,, {&}~1IDN(0,6°)

Then Z =(Z,,...,Z,)" is regulary varying with index o and so is
X,= (X4,...,X, ) =diag(c,..., 6,) Z,

with spectral distribution concentrated on (£1,0), (0, £1).

2000
\

Figure: plot of .
(X Xi4q) for -1 e

realization of 10,000.

-2000
\

I I
-2000 0 2000
Cornell 4/05 x_1
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X

Examples (cont)

Example: SV model X, = o, Z,

* SV processes are time-reversible

if log-volatility is Gaussian.

* Asymptotically time-reversible if

log-volatility is nonGaussian

2000
I

-2000

Cornell 4/05 40 0 2000

x_1

0.14 0.16 0.18 0.20

0.12

2000
I

-2000
L
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Point process convergence

Theorem (Davis & Hsing '95, Davis & Mikosch "97). Let {X;} be a
stationary sequence of random m-vectors. Suppose

(i) finite dimensional distributions are jointly regularly varying (let
0_,...,0,) be the vector in SEk*1m-1jn the definition).

(i) mixing condition A (a,,) or strong mixing.

(iii) IImIImSUpP(k<|>|/< |1 X, |>a,y||X,|>a,y)=0.
Then
k
y=limE(6” [* ~ v |61 ]), IE|67 " (extremal index)
—>00 Jj=

exists. Ify> 0, then

N stt,a —4 3N = Z ZsPQU

i=1 j=1

Cornell 4/05
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Point process convergence(cont)

* (P,) are points of a Poisson process on (0,%) with intensity function
v(dy)=yay—*dy.

. quij , 1>1, are iid point process with distribution Q, and Q is the
=1

weak limit of

k k
i (k) o (k) (k) 1o (k)
limEQ O = v, 1007 1), L.(Y )/ B0 F ~ v, |67,

lt|<k

Remarks:

1. GARCH and SV processes satisfy the conditions of the theorem.

2. Limit distribution for sample extremes and sample ACF follows from
this theorem.

Cornell 4/05

41




Extremes for GARCH and SV processes

Setup
= X,=06,Z, {Z}~I1ID(0,1)
= X, isRV (o)
= Choose {b}s.t. nP(X;>Db,) —>1

Then
P'(b X, <x) >expfx}.

Then, with M= max{X,, ..., X},
(i) GARCH:
P(b, 1Mn <x) >exp{yx "},
v is extremal index (0 <y<1).

(i) SV model:
P(b*M, < x) — exp{—x"},

extremal index y = 1 no clustering.

Cornell 4705
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Extremes for GARCH and SV processes (cont)

(i) GARCH: P(b,'M , < x) — exp{—yx*}
(i) SV model: P(b,*M, < x) —exp{-x "}

Remarks about extremal index.
(i) vy <1 implies clustering of exceedances
(i)  Numerical example. Suppose c is a threshold such that
P'(b X, <c)~.95
Then, if y=.5, P(b.*"M, <c)~(.95)° =.975
(iii) 1/yis the mean cluster size of exceedances.
(iv) Use y to discriminate between GARCH and SV models.

(v) Even for the light-tailed SV model (i.e., {Z;} ~IID N(0,1), the
extremal index is 1 (see Breidt and Davis 98 )

Cornell 4/05 43



Extremes for GARCH and SV processes (cont)

Absolute values of ARCH

8_
8_
o
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I I I I

0 20 40 60

time
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Extremes for GARCH and SV processes (cont)

Absolute values of SV process

RS ||*|‘

time
Cornell 4/05
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Extremal Index Estimates for Amazon

N
23
° 2 2 8 2
2 9 v v v v Y Y v v Y
X X X ) % X X
«© _| X
o
< X
A
N..
~ o
= o
% X
(@)
<
o
N _|
o
< |
o
I I I I I
0.990 0.992 0.994 0.996 0.998
Quantiles
v, = block method Y5 = interval method (Ferro and Segers)

v, = 1/(mean cluster size) 74 = interval method (Ferro and Segers)
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Summary of results for ACF of GARCH(p,q) and SV models

GARCH(p,q)
ae(0,2):

CRQ) I (V179 M

ae(2,4):
(nH/aﬁX (h))h=1m L)V;(l (O)(Vh )h:l,...,m'

o€ (4,):

(nllzﬁ x () )hzl,. o —d_)'Y;(l (0) (Gh )hzl,. o’

Remark: Similar results hold for the sample ACF based on |X| and
XZ.

Cornell 4/05
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Summary of results for ACF of GARCH(p,q) and SV models (cont)

SV Model
ae(0,2):
(n/nnl'p  (h) —is Gl““ﬁ”a S
foul, 5
oe(2, ):

(%, (1)y o — YOGy

Cornell 4/05
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10000

(a) GARCH(1,1) Model, n

L]

8

L4

s%a

T

Lt

Sample ACF for GARCH and SV Models (1000 reps)

50

10000

(b) SV Model, n
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Sample ACF for Squares of GARCH (1000 reps)

10000

(a) GARCH(1,1) Model, n

_______

100000

b) GARCH(1,1) Model, n

_______

51
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Sample ACF for Squares of SV (1000 reps)

Cornell 4/05

0.0 0.05 0.10 0.15

(c) SV Model, n=10000

. ° o 8 3 o ° : °
. : § ° g © 8 2 ° g § :
i i i i i i -i- l i i i i L i ; i ; i i i

(d) SV Model, n=100000

0.0 0.01 0.02 0.03 0.04

°

Plidiiisddaaaddiidiiy
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ACF of abs values

Example: Amazon-returns (May 16, 1997 — June 16, 2004)

log returns
4

0 500 1000 1500
° timeo
;7 ég,
“ \‘\“\\‘\“\“\\\““\\\\\‘
= [ [T P TP PP T P T P P T o [ 1 1
T T T T I T T I T T
10 20 30 40 0 10 20 30 40

0
Cornell 4/05
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ACF abs values

Amazon returns (GARCH model)

GARCH(1,1) model fit to Amazon returns:
a,=.00002493, o,= .0385, B, = .957, X;=(ag+o, X?.4)"2Z,, {Z}~IID t(3.672)

Simulation from GARCH(1,1) model

0.4 0.6 0.8 1.0
ACF of squares
0.4 0.6 0.8 1.0

0.2
0.2

0.0

Lag Lag

Cornell 4/05 54



ACF of abs values

Amazon returns (SV model)

Stochastic volatility model fit to Amazon returns:
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Wrap-up

* Reqgular variation is a flexible tool for modeling both dependence

and tail heaviness.

 Useful for establishing point process convergence of heavy-tailed

time series.
» Extremal index y < 1 for GARCH and y =1 for SV.

« ACF has faster convergence for SV.
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