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Subtitle: When a Taylor series expansion fails.
• objective function is not differentiable (LAD)
• remainder is of same order as last included term (heavy-tailed noise)

Applications to:
• LAD estimation

(Pollard `91; Davis and Dunsmjuir `95)
• M-estimation with infinite variance
(Pollard `91; Davis, Knight and Liu `92; Davis `95)

• Unit root problems (AR + MA)
(Davis and Dunsmuir `95; Davis, Chen and Dunsmuir `95)

Asymptotics in Non-standard Inference Settings
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Illustration of the Paradigm

LAD Estimation:

1. Median.  Let {Zt} ~ IID with median 0 and pdf f such that f(0) > 0.

Objective function:

Reparameterize: θ = u/n1/2

It follows that
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Illustration of the Paradigm

2. AR(1)  Let {Xt} be the AR(1) process

Xt = φ0 Xt-1 + Zt,

where {Zt} ~ IID with median 0 and pdf f such that f(0) > 0.

Objective function:

Reparameterize: φ = φ0 + u/n1/2

It follows that
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MA(1) unit root problem 

MA(1):  (world’s simplest time series model!)

Yt = Zt − θ Zt-1 ,  {Zt} ~ IID (0, σ2)

Properties:

• |θ| < 1    ⇒ (invertible)

• |θ| > 1    ⇒ (non-invertible)

• |θ| = 1    ⇒ and

⇒ (perfect interpolation)

• |θ| < 1    ⇒

MLE = maximum (Gaussian) likelihood, n = sample size

What if θ =1?
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Why study MA(1) with a unit root? 

a) differencing (to remove non-stationarity)

• linear trend model: Xt = a + bt + Zt .
Yt = Xt − Xt-1 = b + Zt − Zt-1 ~ MA(1) with θ = 1.

• seasonal model: Xt = st + Zt , st seasonal component w/ period 12.
Yt = Xt − Xt-12 = Zt − Zt-12 ~ MA(12) with θ = 1.

b) random walk + noise

Xt = Xt-1 + Ut (random walk signal)

Yt = Xt + Vt (random walk signal + noise)

Then
Yt − Yt-1 = Ut + Vt − Vt-1 ~MA(1)

with θ=1 if and only if Var(Ut) = 0.
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Identifiability and the Gaussian likelihood
Identifiability (Yt = Zt − θ Zt-1 ,  {Zt} ~ IID (0, σ2) )

• |θ| > 1    ⇒ Yt = εt – θ−1 εt-1 , where {εt} ~ WN(0,θ2σ2).

• {εt} is IID if and only if {Zt} is Gaussian (Breidt and Davis `91)

• {εt} is a special case of an All-Pass Model (Breidt, Davis, 
Trindade `01, Andrews et al. `05a, `05b)

Gaussian Likelihood

LG(θ, σ2) = LG(1/θ, θ2σ2) ⇒ θ is only identifiable for |θ| ≤ 1.
Notes:
i) this implies LG(θ) = LG(1/θ) for the profile likelihood and θ = 1 is a 

critical point, 

ii) a pile-up effect ensues, i.e., 
even if θ < 1. 
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Gaussian likelihood, non-Gaussian data
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100 observations from Yt = Zt − θ0 Zt-1 ,  {Zt} ~ IID, Laplace pdf

θ0 =1.0θ0 =.8 θ0 =1.25
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Gaussian MLE for near-unit roots

Idea: build parameter normalization into the likelihood function.

Model: Yt = Zt - (1-β/n) Zt-1 , t =1,…,n.                

β = n(1-θ),  θ = 1- β/n, θ0 = 1- γ/n

Gaussian Likelihood:
Ln(β) = ln (1- β/n) - ln (1), ln ( ) = profile log-like.

Theorem (Davis and Dunsmuir `96): Under θ0 = 1-γ / n,
Ln(β)  →d Zγ (β) on C[0,∞).  

Results:

• argmax Ζγ(β)

• arglocalmax Ζγ(β)

• if γ = 0.
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Extensions of MLE (Gaussian likelihood)

i) non-zero mean (Chen and Davis `00): same type of limit, 
except pile-up is more excessive.

This makes hypothesis testing easy!  

Reject H0: θ = 1 if (size of test is .045)

 .955)1ˆ(P →=θmle

1ˆ <θmle

ii) heavy tails (Davis and Mikosch `98): {Zt} symmetric alpha stable

(SαS).  Then the max Gaussian likelihood estimator has the same 

normalizing rate, i.e.,

The pile-up decreases with increasing tail heaviness.
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Laplace likelihood/LAD estimation 
If noise distribution is non-Gaussian, the MA(1) parameter θ is 
identifiable for all real values.  

Q1. For MLE (non-Gaussian) does one have  1/n or 1/n1/2 asymptotics?

Q2. Is there a pile-up effect?

Look at this problem with non-Gaussian likelihood
• Specifically, consider Laplace likelihood / Least Absolute
Deviations for unit root only (not near-unit root) 
• Some results are preliminary only!
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Non-Gaussian likelihood – Joint and Exact
Model. Yt = Zt − θ Zt-1 ,  {Zt} ~ IID with median 0 and EZ4 < ∞. Initial 
variable.

Joint density: Let Yn=(Y1, . . . ,Yn),  then

where the zt are solved
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Laplace likelihood examples

100 observations from Yt = Zt − θ0 Zt-1 ,  {Zt} ~ IID Laplace pdf
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Laplace likelihood, Laplace noise

100 observations from Yt = Zt − θ0 Zt-1 ,  {Zt} ~ IID Laplace pdf

θ0 =1.0θ0 =.8 θ0 =1.25

Exact likelihood Joint likelihood at zmax(θ)
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Laplace likelihood-LAD estimation

(Joint) Laplace log-likelihood. (σ = E|Z0| is a scale parameter)

Maximizing wrt σ, we obtain

so that maximizing L is equivalent to minimizing  
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Joint Laplace likelihood — limit results 

Result 1.  Under the parameterizations, 
θ = 1 + β/n and zinit = Z0 + ασ/n1/2,

we have

where 

for β ≤ 0, and

for β > 0.
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From the limit,

it suggests (from the continuous mapping theorem?) that  
limit(optimum(criterion)) = optimum(limit(criterion)).

So for the optimizer of the Joint likelihood

where 

Joint Laplace likelihood — limit results
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The limits contain correlated Brownian Motions S(t) and W(t), obtained 
as the limits of the partial sum processes
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Note that the previous results imply that 

so that an unobserved random noise can be consistently estimated.

Does this make any sense?  

Recall that in the unit root case, 

so that in fact, consistent estimation is possible.

Consistent estimation of noise?
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Exact Laplace likelihood — limit results 

Exact Laplace Likelihood:  

Result 2.  For the local optimizer of the Exact likelihood,

where 

and  U*(β) is a stochastic process defined in terms of S(t) and W(t).
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Simulating from the limit process

Step 1. Simulate two indep sequences (W1, . . . , Wm) and (V1, . . . , Vm) of 
iid N(0,1) random variables with m=100000.
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Step 5. Determine the respective Local and Global minimizers of 
Joint limit U(β,α) and Exact limit U*(β) numerically. 

Step 2. Form W(t) and V(t) by the partial sum processes,

Step 3. Set S(t) = W(t) + c1V(t), where

Limit process depends only on c1 and f (0).

Step 4. Compute  U(β,α) and U*(β) from the definition.
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Simulated realizations of the limit processes

Simulate Joint and Exact limit processes, U(β,α(β)), U*(β).

• Simulate realization of each 
limit process, joint and exact

• Compute local and global 
optima 

• Repeat…

• Build up limit distribution 
functions
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Limit cdf
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Joint Lap Like

red graph = Laplace pdf for Zt blue graph = Gaussian pdf for Zt
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Simulation results: Global Exact and Global Joint

Exact = MLE

Joint = maximize over θ and zinit

Note: Joint dominates 
Exact (rmse is half the 
size)
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Analysis of pile-up probabilities

Look back at realizations of the limit processes, U(β,α(β)), U*(β).

• When is there a local 
optimum at θ = 1?

• Check derivatives

• Negative derivative from 
the left

• Positive derivative from 
the right

• Local optimum at θ = 1
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Pile-up probabilities (Joint)

Result 3. (Joint Laplace likelihood)

where

Idea: look at derivatives

Now, 

and the result follows. 
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Pile-up probabilities (Exact)

Result 4. (Exact Laplace likelihood)

The pile-up probability is always zero for the Exact, and always 
positive for the Joint (see Result 3).
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Remark. (Laplace pile-up)

If Zt has a Laplace density                          then  
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Laplace pile-up probabilities (cont)

It follows that the Joint estimator has pile-up probability
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But no pile-up probability for Local Exact:

Remark: if Local does not pile up, Global does not pile up

if Local does pile up, Global probably does as well
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Pile-up probabilities for Joint: )1ˆ(P J =θ

(No pile-up probabilities for Exact.)

)1ˆ(P J =θ



46Columbia 2007

Summary and Future Work

• Reviewed MA(1) unit root and near-unit root with Gaussian likelihood

• 1/n asymptotics, pile-up even if θ<1

• New results for MA(1) unit root with Least Absolute Deviations

• 1/n asymptotics for Joint or Exact

• Joint beats Exact; 

• Joint has pile-up and Exact does not

• Further work:
• Nail down preliminary results, conduct further simulations

• Other non-Gaussian criterion functions (MLE)?

• Non-zero mean?

• Near-unit root? (1-γ/n)

• Performance of Joint with Gaussian likelihood?


